Statistically-Sender-Private Oblivious-Transfer from LPN and Derandomization

Nir Bitansky, Sapir Freizeit

Tel Aviv University

Goal

To expand the reach of Learning Parity with Noise (LPN).

Goal

To expand the reach of Learning Parity with Noise (LPN).

Focus

2-message Statistically-Sender-Private Oblivious-Transfer (SSP-OT)

• OT where we take <u>round complexity</u> and <u>security</u> to the extreme

Goal

To expand the reach of Learning Parity with Noise (LPN).

Focus

2-message Statistically-Sender-Private Oblivious-Transfer (SSP-OT)

• OT where we take <u>round complexity</u> and <u>security</u> to the extreme

Results:

- 1. Construct SSP-OT in the common random string model from LPN.
- 2. Remove the crs using a standard derandomization assumption.

Learning Parity With Noise (LPN_{ε}) Noise rate: $\varepsilon = \varepsilon(n)$

$$A \leftarrow \mathbb{F}_2^{l \times n}, s \leftarrow \mathbb{F}_2^n, e \leftarrow Bern(\check{\varepsilon})^l, r \leftarrow \mathbb{F}_2^l$$

• Learning With Errors (*LWE*): \mathbb{F}_q for large q, Gaussian error.

- Learning With Errors (LWE): \mathbb{F}_q for large q, Gaussian error.
- Both are plausibly <u>hard</u>, resilient to <u>quantum attacks</u>.

- Learning With Errors (LWE): \mathbb{F}_q for large q, Gaussian error.
- Both are plausibly <u>hard</u>, resilient to <u>quantum attacks</u>.

• Similar in flavor – but <u>different</u>: <u>LPN</u> is far behind <u>LWE</u>.

- Learning With Errors (*LWE*): \mathbb{F}_q for large q, Gaussian error.
- Both are plausibly <u>hard</u>, resilient to <u>quantum attacks</u>.

• Similar in flavor – but <u>different</u>: *LPN* is far behind *LWE*.

Known Applications:

• $LPN \Rightarrow$ mostly <u>basic</u> primitives:

secret-key encryption [Gilbert et al. 08], PKE [Alekhnovich 03], commitments [JPT 11], CRH [BLVW19, YZW+17]...

• $LWE \Rightarrow advanced$ primitives:

Fully Homomorphic Encryption [Gen09, BV11], ABE [BV16], NIZK [PS19] and much more...

- Learning With Errors (*LWE*): \mathbb{F}_q for large q, Gaussian error.
- Both are plausibly <u>hard</u>, resilient to <u>quantum attacks</u>.

• Similar in flavor – but <u>different</u>: <u>LPN</u> is far behind <u>LWE</u>.

Known Applications:

• $LPN \Rightarrow$ mostly <u>basic</u> primitives:

secret-key encryption [Gilbert et al. 08], PKE [Alekhnovich 03], commitments [JPT 11], CRH [BLVW19, YZW+17]...

• $LWE \Rightarrow advanced$ primitives:

Fully Homomorphic Encryption [Gen09, BV11], ABE [BV16], NIZK [PS19] and much more...

<u>Hardness Results</u>:

LWE [Regev05, Peikert09...] is better understood than LPN [BKW00, BLVW19].

So why LPN?

• Efficiency: simple bit operations.

So why LPN?

- Efficiency: simple bit operations.
- Robustness: basing crypto on a variety of assumptions.

So why LPN?

- Efficiency: simple bit operations.
- Robustness: basing crypto on a variety of assumptions.
- Theoretical: fundamental problem.

Our Contribution

This work:

Statistically-Sender-Private Oblivious-Transfer (SSP-OT) from *LPN* and derandomization

Oblivious Transfer (OT)

Common Goal

Receiver should learn m_c .

Security

- Sender doesn't learn c.
- Receiver doesn't learn m_{1-c} .

Features of interest:

round complexity, communication complexity, security level...

Minimal Round Complexity

Minimal 2-message protocol.

Minimal Round Complexity

Minimal 2-message protocol.

Computational Receiver Security

Comp-bounded Sender doesn't learn c.

Minimal Round Complexity

Minimal 2-message protocol.

Computational Receiver Security

Comp-bounded Sender doesn't learn c.

Statistical Sender Security

Unbounded Receiver doesn't learn m_{1-c} . 1st msg information-theoretically fixes $c^* \in \{0,1\}$ s.t. m_{1-c^*} is statistically hidden.

Minimal Round Complexity

Minimal 2-message protocol.

Computational Receiver Security

Comp-bounded Sender doesn't learn c.

Statistical Sender Security

Unbounded Receiver doesn't learn m_{1-c} . 1st msg information-theoretically fixes $c^* \in \{0,1\}$ s.t. m_{1-c^*} is statistically hidden.

• Taking <u>round-complexity</u> and <u>security</u> to the extreme.

Minimal Round Complexity

Minimal 2-message protocol.

Computational Receiver Security

Comp-bounded Sender doesn't learn c.

Statistical Sender Security

Unbounded Receiver doesn't learn m_{1-c} . 1st msg information-theoretically fixes $c^* \in \{0,1\}$ s.t. m_{1-c^*} is statistically hidden.

- Taking <u>round-complexity</u> and <u>security</u> to the extreme.
- Highly <u>useful</u>, reducing interaction: 2-msg statistically-WI [BGI+17], [KKS18], weak zero-knowledge [JKKR17], [BKP19], MPC with min round complexity [AJ17], [BGJ+18], Correctness amplification for iO [BV16] ...

Prior work

• Up until recently, SSP-OT only from number-theoretic assumptions (quantumly broken) [NP01, AIR01, HK12...].

Prior work

- Up until recently, SSP-OT only from number-theoretic assumptions (quantumly broken) [NP01, AIR01, HK12...].
- Post quantum SSP-OT: from *LWE* [Brakerski Dottling 18], [DGI+19], [ADD+22].

Prior work

- Up until recently, SSP-OT only from number-theoretic assumptions (quantumly broken) [NPO1, AIRO1, HK12...].
- Post quantum SSP-OT: from *LWE* [Brakerski Dottling 18], [DGI+19], [ADD+22].
- From LPN: (both sides) computationally private OT in the crs model [Dottling et al. 19].

Results

1. Construct a 2-message statistically-sender-private OT (SSP-OT) in the common random string (*crs*) model from *LPN*.

Results

- 1. Construct a 2-message statistically-sender-private OT (SSP-OT) in the common random string (*crs*) model from *LPN*.
- 2. Remove the *crs* using standard Nisan-Wigderson style derandomization.

Low noise: $LPN_{\log^2 n/n}$ is breakable in quasi-poly time [BKW00].

Low noise: $LPN_{\log^2 n/n}$ is breakable in quasi-poly time [BKW00].

• <u>Other basic</u> primitives are only known from $LPN_{\log^2 n/n}$. E.g., collision resistant hashing [BLVW19, YZW+17].

Low noise: $LPN_{\log^2 n/n}$ is breakable in quasi-poly time [BKW00].

- <u>Other basic</u> primitives are only known from $LPN_{\log^2 n/n}$. E.g., collision resistant hashing [BLVW19, YZW+17].
- Potential Complexity Barrier:

1. LPN_{ε} implies SSP-OT $\Rightarrow LPN_{\varepsilon} \in BPP^{SZK}$,

Low noise: $LPN_{\log^2 n/n}$ is breakable in quasi-poly time [BKW00].

- <u>Other basic</u> primitives are only known from $LPN_{\log^2 n/n}$. E.g., collision resistant hashing [BLVW19, YZW+17].
- Potential Complexity Barrier:

1. LPN_{ε} implies SSP-OT $\Rightarrow LPN_{\varepsilon} \in BPP^{SZK}$, 2. currently known only for $\varepsilon \approx \log^2 n / n$ [BLVW19].

AND NOW FOR THE CONSTRUCTION...

Tradeoff (why small noise)

$$\Rightarrow \qquad \varepsilon = O\left(\frac{\log^2 n}{n}\right)$$

Where is the challenge?

Now, receiver may choose v_0 adaptively depending on the seed v.

Extractor argument no longer works.

Answer

Inner-product-extractor is generally NOT resilient to such "linear splitting attacks". (counter example in the paper)

In Our Case

- 1. Specific <u>leakage</u> form: $x^t A$
- 2. Can choose the entropy source \mathcal{X} .

In Our Case

- 1. Specific <u>leakage</u> form: $x^t A$
- 2. Can choose the entropy source \mathcal{X} .

Choosing ${\mathcal X}$

 $\mathcal{X} \coloneqq \sum_{i=1}^{k} U\{e_1, \dots, e_l\}$ The sum (over \mathbb{F}_2) of k random unit vectors.

- Correctness $\Rightarrow k \approx n/\log(n)$.
- \mathcal{X} behaves nicely with Fourier analysis [BLVW19]

In Our Case

- 1. Specific <u>leakage</u> form: $x^t A$
- 2. Can choose the entropy source \mathcal{X} .

Choosing ${\mathcal X}$

 $\mathcal{X} \coloneqq \sum_{i=1}^{k} U\{e_1, \dots, e_l\}$ The sum (over \mathbb{F}_2) of k random unit vectors.

- Correctness $\Rightarrow k \approx n/\log(n)$.
- \mathcal{X} behaves nicely with Fourier analysis [BLVW19]

Goal w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$,

In Our Case

- 1. Specific <u>leakage</u> form: $x^t A$
- 2. Can choose the entropy source \mathcal{X} .

Choosing ${\mathcal X}$

 $\mathcal{X} \coloneqq \sum_{i=1}^{k} U\{e_1, \dots, e_l\}$ The sum (over \mathbb{F}_2) of k random unit vectors.

• Correctness $\Rightarrow k \approx n/\log(n)$.

• \mathcal{X} behaves nicely with Fourier analysis [BLVW19]

Goal w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$, \forall split $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1, \exists \mathbf{v}_i \in \{\mathbf{v}_0, \mathbf{v}_1\}$:

In Our Case

- 1. Specific <u>leakage</u> form: $x^t A$
- 2. Can choose the entropy source \mathcal{X} .

Choosing ${\mathcal X}$

 $\mathcal{X} \coloneqq \sum_{i=1}^{k} U\{e_1, \dots, e_l\}$ The sum (over \mathbb{F}_2) of k random unit vectors.

• Correctness $\Rightarrow k \approx n/\log(n)$.

• \mathcal{X} behaves nicely with Fourier analysis [BLVW19]

Goal w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$, \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$: $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$ $\mathbf{x}^{t}\mathbf{v}_{i} \text{ looks random, given } \mathbf{x}^{t}\mathbf{A}$

But how are we going to prove this?

Goal w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$, \forall split $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1, \exists \mathbf{v}_i \in \{\mathbf{v}_0, \mathbf{v}_1\}$: $(\mathbf{x}^t \mathbf{A}, \mathbf{x}^t \mathbf{v}_i) \stackrel{s}{\approx} (\mathbf{x}^t \mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$, \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$: $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over
$$(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$$
,
 \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$:
 $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over
$$(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$$
,
 \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$:
 $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over
$$(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$$
,
 \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$:
 $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over
$$(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$$
,
 \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$:
 $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Goal (reminder)

w.h.p over
$$(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_{2}^{l \times n} \times \mathbb{F}_{2}^{l}$$
,
 \forall split $\mathbf{v} = \mathbf{v}_{0} + \mathbf{v}_{1}, \exists \mathbf{v}_{i} \in \{\mathbf{v}_{0}, \mathbf{v}_{1}\}$:
 $(\mathbf{x}^{t}\mathbf{A}, \mathbf{x}^{t}\mathbf{v}_{i}) \stackrel{s}{\approx} (\mathbf{x}^{t}\mathbf{A}, Bern(1/2))$

Step 2 – one of the cosets is balanced

Goal (reminder)

w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$, $\forall \text{ split } \mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1, \exists \mathbf{v}_i \in \{\mathbf{v}_0, \mathbf{v}_1\}$:

"All vectors in coset $\mathbf{A} + \mathbf{v}_i$ are balanced"

Balance parameter $(\beta_u + 1) \frac{len(u)}{2} \coloneqq weight(u)$

Step 2 – one of the cosets is balanced

w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$, \forall split $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1, \exists \mathbf{v}_i \in \{\mathbf{v}_0, \mathbf{v}_1\}$:

"All vectors in coset $\mathbf{A} + \mathbf{v}_i$ are balanced"

Balance parameter

$$(\beta_u + 1) \frac{len(u)}{2} \coloneqq weight(u)$$

w.h.p A is affinely-balanced For any $w \in \mathbb{F}_2^l$, in the coset A + wmost members are well balanced.

Step 2 – one of the cosets is balanced

w.h.p over $(\mathbf{A}, \mathbf{v}) \leftarrow \mathbb{F}_2^{l \times n} \times \mathbb{F}_2^l$, \forall split $\mathbf{v} = \mathbf{v}_0 + \mathbf{v}_1, \exists \mathbf{v}_i \in \{\mathbf{v}_0, \mathbf{v}_1\}$:

"All vectors in coset $A + v_i$ are balanced"

Balance parameter

$$(\beta_u + 1) \frac{len(u)}{2} \coloneqq weight(u)$$

w.h.p A is affinely-balanced For any $w \in \mathbb{F}_2^l$, in the coset A + wmost members are well balanced.

w.h.p \boldsymbol{v} is **A**-balanced for sums

 $\forall \boldsymbol{v} = \boldsymbol{v}_0 + \boldsymbol{v}_1, \exists \boldsymbol{v}_i \in \{\boldsymbol{v}_0, \boldsymbol{v}_1\} \text{ s.t. in the coset } \boldsymbol{A} + \boldsymbol{v}_i$

all members are somewhat balanced.

Now, let's remove the *crs*...

- 1. <u>Reverse randomization</u> [Dwork-Naor: NIZK to ZAP 00].
 - \Rightarrow Receiver security holds \forall *crs*

- 1. <u>Reverse randomization</u> [Dwork-Naor: NIZK to ZAP 00]. \Rightarrow Receiver security holds $\forall crs$
- Derandomize crs [Barak-Ong-Vadhan Zaps 07].
 NW style worst-case assumption ⇒ ∃PRG that "fools" nondeterministic distinguishers

- 1. <u>Reverse randomization</u> [Dwork-Naor: NIZK to ZAP 00]. \Rightarrow Receiver security holds $\forall crs$
- Derandomize crs [Barak-Ong-Vadhan Zaps 07].
 NW style worst-case assumption ⇒ ∃PRG that "fools" nondeterministic distinguishers

Challenge: need an algebraic characterization that capture bad crs's

Open Questions:

- 1. Can we achieve SSP-OT from *LPN* with better noise?
- 2. How expressive is LPN in the $n^{-\varepsilon}$ noise regime? (CRH, hardness in SZK, ...)
- 3. How far can we push *LPN* (PIR, HE, ABE,...)?

Open Questions:

- 1. Can we achieve SSP-OT from *LPN* with better noise?
- 2. How expressive is LPN in the $n^{-\varepsilon}$ noise regime? (CRH, hardness in SZK, ...)
- 3. How far can we push *LPN* (PIR, HE, ABE,...)?

Thanks! eprint.iacr.org/2022/185