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size (witness size = 
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Lattice Bulletproofs 
[BLNS20,AL21,ACK21]

Lattices 𝑂(log2𝑁) - -

[NS22] Lattices 𝑂( 𝑁) 6MB -
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1024×2048 for 
𝑞 ≈ 232.

Hash-based proof systems

Scheme Proof size

Ligero [AHIV17] 157KB

Aurora 
[BCR+19,BCOS20]

72KB

Permutation-based proofs

Scheme Proof size

Stern proofs (e.g. 
[Ste93,LNSW13])

3MB

[Beu20] 233KB

NTT/CRT-packing proofs

Scheme Proof size

[BLS19,YAZ+19] 384KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

Sizes taken from [ENS20,LNS21]
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Proving linear relations, i.e. 𝐴𝒔 = 𝒖:

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

Ƹ𝑧 = ො𝑦 + 𝛼𝒔

𝐴 Ƹ𝑧 = 𝐴ො𝑦 + 𝛼𝒖

𝛼 ∈ ℤ𝑞

Here, ො𝑥 = 𝑁𝑇𝑇(𝑥).
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• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.
- New product proof which does not require sending 𝑧 [ALS20]

- New linear proof which does not require sending 𝑧 [ENS20]

• If one wants to prove a degree 𝑘 equation, the prover sends 𝑘 − 1
garbage commitments 𝑡𝑖 [ALS20].

Do we really 
need NTT 
packing?



Lattice-based 
zero-knowledge 

proofs aye!
• Does not rely on NTT packing

• (Almost) one-shot

• Compressing commitment
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• The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will 
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• It combines the Ajtai [Ajt96] and BDLOP [BDLOP18] commitments into one.

• It puts the long commitment to 𝒔 into the “Ajtai” part of the commitment scheme.

• The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will 
need to be committed to later in the protocol.

“are you still with 
me?”



Roadmap

ABDLOP 
commitment

Product proofs 
over 𝑅𝑞

• Simple adaption of the [ALS20] protocol.

• It can be used to prove product relations, e.g. 𝒔𝑇𝒔 = 𝟎. 

• Extended to also prove quadratic equations involving 𝑅𝑞-automorphisms, e.g. 𝒔𝑇𝜎 𝒔 = 𝟎.



Roadmap

ABDLOP 
commitment

Product proofs 
over 𝑅𝑞

Inner product 
arguments 
over ℤ𝑞

• We prove inner products over ℤ𝑞 , e.g. 𝒔, 𝒗 = 0 or 𝒔, 𝒔 = 𝐵.

• Fact: There is an automorphism 𝜎 such that 𝒙, 𝒚 ∈ ℤ𝑞 is the constant coefficient of the polynomial 𝒙𝑇𝜎 𝒚 .

• Proving the const. coeff. of a polynomial is zero: [ENS20] + Product proof (with automorphisms) over 𝑅𝑞 . 
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arguments 
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Approximate 
range proofs

• We know how to prove equations modulo 𝑞.

• But how to prove relations over integers?

• ||𝒔||2 = 𝒔, 𝒔 = 𝐵 (𝑚𝑜𝑑 𝑞) and 𝒔 approximately small coefficients ⟹ ||𝒔||2 = 𝐵 over integers!
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More applications in the paper…



Ngoc Khanh Nguyen

Joint work with Vadim Lyubashevsky and Maxime Plancon

Thank you!
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