ETHziirich IBM Research | Zurich

Lattice-Based Zero-Knowledge Proofs and ‘

Applications: Shorter, Simpler, and More General é’ o;} ~

— "

Joint work with Vadim Lyubashevsky and Maxime Plancon

/ero-knowledge proofs

/ero-knowledge proofs
statement

“| got even funnier
lines in the full version
of the song!”

/ero-knowledge proofs
statement

“| got even funnier
Prover lines in the full version Verifier
of the song!”

3"

&

/ero-knowledge proofs

statement
Witness “| got even funnier
Prover lines in the full version Verifier

of the song!”

3"

&

/ero-knowledge proofs
statement

Witness “| got even funnier

Prover lines in the full version Verifier
of the song!”

3"

&

/ero-knowledge proofs
statement

Witness “| got even funnier
Prover lines in the full version Verifier

of the song!”
&

& .

£
SN
~/

v

v

)/JF\\
\

v/ X

Zero-knowledge:

the verifier does not learn
anything about the witness
from the interaction

Completeness: Soundness:

if the witness is valid, if the witness is invalid, the
the verifier accepts verifier rejects

AMY ADAMS JEREMY RENNER FOREST WHITAKER

/ero-knowledge proofs

statement
Witness “| got even funnier
lines in the full version
of the song!”
_MP3 >
AR R ..V A=%
ZerO'knOWledge IN THEATRES I1.11 o
Completeness: Soundness: o '
it the witness is valid, if the witness is invalid, the the verifier does not learn

anything about the witness

the verifier accepts
from the interaction

verifier rejects

Current state-of-the-art of Quantum-Safe /K

Scheme

Structure

Asymptotic proof

Concrete proof size

Prover runtime

Ligero [AHIV17]

Aurora [BCR+19]

Fractal [COS20]

[BLNSZ20]

Lattice Bulletproofs
[BLNS20,AL21,ACK21]

Hash
functions

Hash
functions

Hash
functions

Lattices

Lattices

size (witness size = N = 220
N)
0(VN) IMB
0(log? N) 170KB
0(log? N) 215KB
O(Nl/d) _
0(log? N) -

Sizes and runtimes taken from [ACMLT22,ISW21, NS22]

38s

304s

184s

Current state-of-the-art of Quantum-Safe /K

Scheme

Concrete proof size

N =~ 220

Prover runtime

Ligero [AHIV17]

Aurora [BCR+19]

Fractal [COS20]

[BLNSZ20]

Lattice Bulletproofs
[BLNS20,AL21,ACK21]

[NS22]
[ACLMTZ2 2]

Structure | Asymptotic proof
size (witness size =
N)

Hash 0(/N)
functions

Hash 0(log? N)
functions

Hash 0(log? N)
functions
Lattices O(N/%)
Lattices 0(log? N)
Lattices 0(VN)

Lattices polylog(N)

Sizes and runtimes taken from [ACMLT22,ISW21, NS22]

9MB

1/70KB

215KB

6MB
32MB

38s

304s

184s

Possible research directions (in the lattice world)

/

Construct succinct (e.g.
logarithmic-sized) ZK proofs

Possible research directions (in the lattice world)

/\

Construct succinct (eg. Construct practically efficient ZK proofs < 50KB
logarithmic-sized) ZK proofs for interesting statements

Possible research directions (in the lattice world)

/

Construct succinct (e.g.
logarithmic-sized) ZK proofs

T~

Construct practically efficient ZK proofs < 50KB
for interesting statements

In this talk

What are the interesting statements?

AsS =u

What are the interesting statements?

AsS =u

N

-

~

Equation over

-

ring R
/

What are the interesting statements?

AsS =u

N

/\/ector S has\
small
coefficients

. eg. (-1.01}

-

~

Equation over

-

ring R
/

-xact proofs

Benchmark: prove As = u where s; € {—=1,0,1} and A € Zg?**2945 for
g ~ 232.

-xact proofs

Benchmark: prove As = u where s; € {—=1,0,1} and A € Zg?**2945 for
g ~ 232.

/Hash—based proof systems \

Ligero [AHIV17/] 157KB

Aurora 72KB
[BCR+19,BCOS20]

- /

Sizes taken from [ENS20,LNS21]

-xact proofs

Benchmark: prove As = u where s; € {—=1,0,1} and A € Zg?**2945 for

g ~ 232.

/Hash—based proof systems \

Ligero [AHIV17/] 157KB

Aurora 72KB

[BCR+19,BCOS20]

- /

Sizes taken from [ENS20,LNS21]

/Permutation—based proofs \

Stern proofs (e.g. 3MB
[Ste93,LNSW13])
[Beuz20] 2 33KB

N /

-xact proofs

Benchmark: prove As = u where s; € {—=1,0,1} and A € Zg?**2945 for

g ~ 232.

/Hash—based proof systems \

Ligero [AHIV17/] 157KB

Aurora 72KB

[BCR+19,BCOS20]

- /

Sizes taken from [ENS20,LNS21]

/Permutation—based proofs \

Stern proofs (e.g. 3MB
[Ste93,LNSW13])
[Beuz20] 2 33KB

//\/TT/CRT—pack/ng proofs \

[BLS19YAZ+19] 384KB
[ALSZ20,ENS20] 47KB
[LNS21] 33KB

N /

o /

n

~xact proofs via NTT packing

» Consider the standard polynomial ring R; = Z4[X]/(X% + 1) where
d is a power-of-two and g = 1 (mod 2d).

 Then, we can write;
X2+1=X-r)X—-1,)..(X —1ry) mod q.

~xact proofs via NTT packing

» Consider the standard polynomial ring R; = Z4[X]/(X% + 1) where
d is a power-of-two and g = 1 (mod 2d).

 Then, we can write;
X2+1=X-r)X—-1,)..(X —1ry) mod q.

Given a polynomial a = ag + a; X + ..+ az_1 X% 1 € R, define
NTT(a) as the vector @ = (a(’rl), . a(rd)) S Zg.

By definition, NTT(ab) = NTT(a) o NTT(b).

~xact proofs via NTT packing

We want to prove s € {0,1}¢.

= NTT(¥)

~xact proofs via NTT packing

We want to prove s € {0,1}¢.

) = NTT(S)
Sd
s;1—1
Sy — 1
= NTT(- 1)
Sq — 1

~xact proofs via NTT packing

We want to prove s € {0,1}¢.

0

0

si—1

52—1

0

Sd—l

= NTT(¥) o NTT(E—1) =NTTGEE - 1)

~xact proofs via NTT packing

We want to prove S(s —1) = 0.

~xact proofs via NTT packing
We want to prove S(s —1) = 0.

1. Commit to §. Send t, = Com(S).

~xact proofs via NTT packing
We want to prove S(s —1) = 0.

1. Commit to §. Send t, = Com(S).

Note that § has large
coefficients.

Hence, we commit to it
using the [BDLOP18]
homomorphic commitment.

-xact proofs via NTT packing

We want to prove S(s —1) = 0.

2

1. Commit to §. Send t, = Com(S).

z=y+as

~xact proofs via NTT packing

We want to prove S(s —1) = 0.

2

1. Commit to §. Send t, = Com(S).

The verifier can thus compute:

zz—a)=y?>+a-QSy—y)+a?-5E—-1. | -yt

<

~xact proofs via NTT packing

zz—a)=y? +a- -8y —y)+a? -5 —1).
We want to prove s(s —1) = 0.

2

1. Commit to §. Send t, = Com(S).
2. Send t, = Com(y).

Z=y+as

~xact proofs via NTT packing

zz—a) =y’ +a-25y—y)+a? -5 -1).
We want to prove S(s —1) = 0.

O
1. Commit to §. Send t, = Com(S).
2. Send t, = Com(y)
3. Send commitments |
to = Com(y?) and t; = Com(23y — y). o«
z=y+a§‘
& b

~xact proofs via NTT packing

zz—a) =y’ +a-25y—y)+a? -5 -1).
We want to prove s(§ —1) = 0.

o
1. Commit to §. Send t;, = Com(S).
2. Send t, = Com(y)
3. Send commitments |
to = Com(y?) and ty = Com(23y —). _a
4. Given a challenge «a, output z =y + as. z=y+as
& y

~xact proofs via NTT packing

zz—a)=y*+a- -5y —y)+a? -5 —1).
We want to prove S(s —1) = 0.

O

1. Commit to §. Send t, = Com(S).
2. Send t, = Com(y)
3. Send commitments |

to = Com(y?) and t; = Com(23y — y). : ;
4. Given a challenge a, output z =y + as. z=y+ad
5. Prove: {(i) z—(t, + ats)} and (i) z(z — a) — (ty + atq) .
are commitments to zero. (Z J

-xact proofs via NTT packing

Proving linear relations, i.e. As = u:

-
Z=vy+as >
laEZq
Here, X = NTT (x). % z =}7+CXS
| .
Az =AYy + au 2=y +as

Bottlenecks of [BLS19VYA/+19]

* Using a BDLOP commitment is relatively expensive.

Bottlenecks of [BLS19VYA/+19]

* Using a BDLOP commitment is relatively expensive.

1

* Small challenge space, soundness error = e

Bottlenecks of [BLS19VYA/+19]

* Using a BDLOP commitment is relatively expensive.
1

* Small challenge space, soundness error = e

* Prover needs to send z in the clear, which is of the same length as s.

Bottlenecks of [BLS19VYA/+19]

* Using a BDLOP commitment is relatively expensive.
1

* Small challenge space, soundness error = e

* Prover needs to send z in the clear, which is of the same length as s.

* If one wants to prove a degree k equation, the prover sends k
garbage commitments t;.

Bottlenecks of [BLS19VYA/+19]

* Using a BDLOP commitment is relatively expensive.

* Small challenge space, soundness error zé [ALS20].

* Prover needs to send z in the clear, which is of the same length as s.
- New product proof which does not require sending z [ALS20]

* If one wants to prove a degree k equation, the prover sends k — 1
garbage commitments t; [ALS20].

Bottlenecks of [BLS19VYA/+19]

4 N
* Using a BDLOP commitment is relatively expensive.

1

* Small challenge space, soundness error = p, [ALS20].

N y

* Prover needs to send z in the clear, which is of the same length as s.
- New product proof which does not require sending z [ALS20]

- New linear proof which does not require sending z [ENS20]

* If one wants to prove a degree k equation, the prover sends k — 1
garbage commitments t; [ALS20].

Bottlenecks of [BLS19VYA/+19]

Do we really

-

N

* Using a BDLOP commitment is relatively expensive.

* Small challenge space, soundness error = % [ALS20].

need NTT
packing?
N Aoy
)
J

* Prover needs to send z in the clear, which is of the same length as s.

- New product proof which does not require sending z [ALS20]

- New linear proof which does not require sending z [ENS20]

* If one wants to prove a degree k equation, the prover sends k — 1

garbage commitments t; [ALS20].

| attice-based

ZerO-kﬂOv\/lEdge * Does not rely on NTT packing
Droofs ayel + (Almost) one-shot

* Compressing commitment

Roadmap

ABDLOP
commitment

!

* |t combines the Ajtai [Ajt96] and BDLOP [BDLOP18] commitments into one.
* It puts the long commitment to s into the "Ajtai” part of the commitment scheme.

* The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will
need to be committed to later in the protocol.

v

Roadmap

ABDLOP

commitment "are you still with

l me?”

* |t combines the Ajtai [Ajt96] and BDLOP [BDLOP18] commitments into one.
* It puts the long commitment to s into the "Ajtai” part of the commitment scheme.

* The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will
need to be committed to later in the protocol.

Roadmap

ABDLOP Product proofs
commitment over Rg

P

* Simple adaption of the [ALS20] protocol,
* It can be used to prove product relations, e.g. sTs = 0.

* Extended to also prove quadratic equations involving R, -automorphisms, e.g. sTo(s) = 0.

v

Roadmap

Inner product
arguments
over Zg

N B

ABDLOP Product proofs
commitment over Rg

* We prove inner products over Zg, e.g. {s,v) = 0 or (s,s) = B.

* Fact: There is an automorphism o such that {x,y) € Z, is the constant coefficient of the polynomial x" ().

Proving the const. coeff. of a polynomial is zero: [ENS20] + Product proof (with automorphisms) over R,

v

Roadmap

Inner product |
arguments Approximate
commitment over Rg over Z, range proofs

S N B

ABDLOP Product proofs

* We know how to prove equations modulo q.
* But how to prove relations over integers?

* ||s||? = (s,s) = B (mod q) and s approximately small coefficients = ||s||? = B over integers!

v

Roadmap

ABDLOP
commitment

!

Product proofs
over R,

!

Inner product
arguments
over Zg

!

Approximate
range proofs

!

v

Applications

* Proving knowledge of a Module-LWE sample

Stern proofs (e.g. [Ste93,LNSW13]) 3MB
[BeuZ0] 233KB
[BLS19,YAZ+19] 384KB
Ligero [AHIV17] 157KB
Aurora [BCR+19,BCOS20] /2KB
[ALS20,ENS20] 4 7KB
[LNS21] 33KB

This work 14KB ‘Proof size so

small, made my
mom impressed!”

Applications

* Proving knowledge of a Module-LWE sample

Stern proofs (e.g. [Ste93,LNSW13]) 3MB
[Beu20] 233KB
[BLS19YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BCOS20] 72KB
[ALS20,ENS20] 47KB

[LNS21] 33KB

This work 14KB

More applications in the paper.

ETHziirich IBM Research | Zurich

ﬁ‘ﬁw

o “: e ¥ “ T

Thank you!

that's the end of my slides, turn-cfithe-prejecter

References

[Ajt96] Miklés Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract).ln STOC 1996.

[ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, Sri AravindaKrishnan Thyagarajan. Lattice-Based SNARKSs: Publicly Verifiable, Preprocessing, and
Recursively Composable. In CRYPTO 2022,

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup.. In ACM CCS 2017.
[AL21] Martin R. Albrecht and Russell W. F. Lai. Subtractive Sets over Cyclotomic Rings: Limits of Schnorr-like Arguments over Lattices. In CRYPTO 2021

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical Product Proofs for Lattice Commitments. In CRYPTO 2020.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM CCS 2017.
[ACK21] A Compressed Z-Protocol Theory for Lattices. Thomas Attema, Ronald Cramer, and Lisa Kohl. In CRYPTO 2021.

[AKSY21] Shweta Agrawal and Elena Kirshanova and Damien Stehle and Anshu Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. IACR Cryptol. ePrint Arch,,
2021:1565

[BCOS20] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner . Efficient Post-Quantum SNARKs for RSIS and RLWE and their Applications to Privacy. In PQCrypto
2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In
EUROCRYPT 20109.

[Beu20] Ward Beullens. Sigma protocols for mg, PKP and sis, and fishy signature schemes. In EUROCRYPT 2020.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices. In ASIACRYPT 2020.
[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-PCP approach to succinct quantum-safe zero-knowledge. In CRYPTO 2020.
[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact lattice- based zero-knowledge proofs. In CRYPTO 2019.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive proofs from holography. In EUROCRYPT 2020.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings. In ASIACRYPT 2020.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+: More Efficient Post-Quantum Private Blockchain Payments. In IEEE S&P 2022

References

[ISW21] Yuval Ishai and Hang Su and David J. Wu. Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices. In ACM CCS 2021.
[LN17] Vadim Lyubashevsky and Gregory Neven. One-Shot Verifiable Encryption from Lattices.

[LNPS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon, Gregor Seiler. Shorter Lattice-Based Group Signatures via "Almost Free" Encryption and Other Optimizations.
In ASIACRYPT 2021.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. Practical Lattice-Based Zero-Knowledge Proofs for Integer Relations. In ACM CCS 2020.
[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. Shorter Lattice-Based Zero-Knowledge Proofs via One-Time Commitments. In PKC 2021.

[LNS21b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions. In
CRYPTO 2021.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehle, and Huaxiong Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In PKC 2013.
[LyuO9] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In ASIACRYPT 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012.

[NS22] Ngoc Khanh Nguyen and Gregor Seiler. Practical Sublinear Proofs for R1CS from Lattices. In CRYPTO 2022.

[PLS18] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-Based Group Signatures and Zero-Knowledge Proofs of Automorphism Stability. In ACM CCS 2018.
[Sta21] StarkWare Team. ethSTARK documentation. IACR Cryptol. ePrint Arch., 2021:582, 2021

[Ste931] Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO 1993.

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient lattice- based zero-knowledge arguments with standard soundness:
Construction and applications. In CRYPTO 2019.

