
Ngoc Khanh Nguyen

Joint work with Vadim Lyubashevsky and Maxime Plancon

Lattice-Based Zero-Knowledge Proofs and
Applications: Shorter, Simpler, and More General

Joint work with Vadim Lyubashevsky and Maxime Plancon

Zero-knowledge proofs

Zero-knowledge proofs
statement

“I got even funnier
lines in the full version

of the song!”

Zero-knowledge proofs

Prover Verifier

statement

“I got even funnier
lines in the full version

of the song!”

Witness

Zero-knowledge proofs

Prover Verifier

statement

“I got even funnier
lines in the full version

of the song!”

Zero-knowledge proofs

Prover Verifier
Witness

⋮

✔️/ ❌

statement

“I got even funnier
lines in the full version

of the song!”

Zero-knowledge proofs

Prover Verifier
Witness

⋮

✔️/ ❌

Completeness:
if the witness is valid,
the verifier accepts

Soundness:
if the witness is invalid, the
verifier rejects

Zero-knowledge:
the verifier does not learn
anything about the witness
from the interaction

statement

“I got even funnier
lines in the full version

of the song!”

Zero-knowledge proofs

Prover Verifier
Witness

⋮

✔️/ ❌

Completeness:
if the witness is valid,
the verifier accepts

Soundness:
if the witness is invalid, the
verifier rejects

Zero-knowledge:
the verifier does not learn
anything about the witness
from the interaction

statement

“I got even funnier
lines in the full version

of the song!”

Current state-of-the-art of Quantum-Safe ZK
Scheme Structure Asymptotic proof

size (witness size =
𝑵)

Concrete proof size
𝑵 ≈ 𝟐𝟐𝟎

Prover runtime

Ligero [AHIV17] Hash
functions

𝑂(𝑁) 9MB 38s

Aurora [BCR+19] Hash
functions

𝑂(log2𝑁) 170KB 304s

Fractal [COS20] Hash
functions

𝑂(log2𝑁) 215KB 184s

[BLNS20] Lattices 𝑂(𝑁1/𝑑) - -

Lattice Bulletproofs
[BLNS20,AL21,ACK21]

Lattices 𝑂(log2𝑁) - -

Sizes and runtimes taken from [ACMLT22,ISW21, NS22]

Current state-of-the-art of Quantum-Safe ZK
Scheme Structure Asymptotic proof

size (witness size =
𝑵)

Concrete proof size
𝑵 ≈ 𝟐𝟐𝟎

Prover runtime

Ligero [AHIV17] Hash
functions

𝑂(𝑁) 9MB 38s

Aurora [BCR+19] Hash
functions

𝑂(log2𝑁) 170KB 304s

Fractal [COS20] Hash
functions

𝑂(log2𝑁) 215KB 184s

[BLNS20] Lattices 𝑂(𝑁1/𝑑) - -

Lattice Bulletproofs
[BLNS20,AL21,ACK21]

Lattices 𝑂(log2𝑁) - -

[NS22] Lattices 𝑂(𝑁) 6MB -

[ACLMT22] Lattices 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑁) 32MB -

Sizes and runtimes taken from [ACMLT22,ISW21, NS22]

Up next!

Construct succinct (e.g.
logarithmic-sized) ZK proofs

Possible research directions (in the lattice world)

Construct succinct (e.g.
logarithmic-sized) ZK proofs

Construct practically efficient ZK proofs < 50𝐾𝐵
for interesting statements

Possible research directions (in the lattice world)

Possible research directions (in the lattice world)

In this talk

Construct practically efficient ZK proofs < 50𝐾𝐵
for interesting statements

Construct succinct (e.g.
logarithmic-sized) ZK proofs

What are the interesting statements?

𝐴𝒔 = 𝒖

What are the interesting statements?

𝐴𝒔 = 𝒖

Equation over
ring 𝑅

What are the interesting statements?

𝐴𝒔 = 𝒖

Equation over
ring 𝑅

Vector 𝒔 has
small

coefficients
e.g. {-1,0,1}

Exact proofs
Benchmark: prove 𝐴𝒔 = 𝒖 where 𝑠𝑖 ∈ −1,0,1 and 𝐴 ∈ ℤ𝑞

1024×2048 for
𝑞 ≈ 232.

Exact proofs
Benchmark: prove 𝐴𝒔 = 𝒖 where 𝑠𝑖 ∈ −1,0,1 and 𝐴 ∈ ℤ𝑞

1024×2048 for
𝑞 ≈ 232.

Hash-based proof systems

Scheme Proof size

Ligero [AHIV17] 157KB

Aurora
[BCR+19,BCOS20]

72KB

Sizes taken from [ENS20,LNS21]

Exact proofs
Benchmark: prove 𝐴𝒔 = 𝒖 where 𝑠𝑖 ∈ −1,0,1 and 𝐴 ∈ ℤ𝑞

1024×2048 for
𝑞 ≈ 232.

Hash-based proof systems

Scheme Proof size

Ligero [AHIV17] 157KB

Aurora
[BCR+19,BCOS20]

72KB

Permutation-based proofs

Scheme Proof size

Stern proofs (e.g.
[Ste93,LNSW13])

3MB

[Beu20] 233KB

Sizes taken from [ENS20,LNS21]

Exact proofs
Benchmark: prove 𝐴𝒔 = 𝒖 where 𝑠𝑖 ∈ −1,0,1 and 𝐴 ∈ ℤ𝑞

1024×2048 for
𝑞 ≈ 232.

Hash-based proof systems

Scheme Proof size

Ligero [AHIV17] 157KB

Aurora
[BCR+19,BCOS20]

72KB

Permutation-based proofs

Scheme Proof size

Stern proofs (e.g.
[Ste93,LNSW13])

3MB

[Beu20] 233KB

NTT/CRT-packing proofs

Scheme Proof size

[BLS19,YAZ+19] 384KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

Sizes taken from [ENS20,LNS21]

Exact proofs via NTT packing

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where
𝑑 is a power-of-two and 𝑞 = 1 (𝑚𝑜𝑑 2𝑑).

• Then, we can write:
𝑋𝑑 + 1 = 𝑋 − 𝑟1 𝑋 − 𝑟2 … 𝑋 − 𝑟𝑑 𝑚𝑜𝑑 𝑞.

Exact proofs via NTT packing

• Consider the standard polynomial ring 𝑅𝑞 = ℤ𝑞 𝑋 /(𝑋𝑑 + 1) where
𝑑 is a power-of-two and 𝑞 = 1 (𝑚𝑜𝑑 2𝑑).

• Then, we can write:
𝑋𝑑 + 1 = 𝑋 − 𝑟1 𝑋 − 𝑟2 … 𝑋 − 𝑟𝑑 𝑚𝑜𝑑 𝑞.

Given a polynomial 𝑎 = 𝑎0 + 𝑎1𝑋 + …+ 𝑎𝑑−1𝑋
𝑑−1 ∈ 𝑅𝑞 , define

NTT(𝑎) as the vector ො𝑎 = 𝑎 𝑟1 , … , 𝑎 𝑟𝑑 ∈ ℤ𝑞
𝑑 .

By definition, NTT(𝑎𝑏) = NTT(𝑎) ∘ NTT(𝑏).

Exact proofs via NTT packing

We want to prove 𝒔 ∈ 0,1 𝑑 .

𝑠1

𝑠2

⋮

𝑠𝑑

= 𝑁𝑇𝑇(Ƽ𝑠)

Exact proofs via NTT packing

We want to prove 𝒔 ∈ 0,1 𝑑 .

𝑠1

𝑠2

⋮

𝑠𝑑

= 𝑁𝑇𝑇(Ƽ𝑠)

𝑠1 − 1

𝑠2 − 1

⋮

𝑠𝑑 − 1

𝑁𝑇𝑇(Ƽ𝑠 − 1)=

Exact proofs via NTT packing

We want to prove 𝒔 ∈ 0,1 𝑑 .

𝑠1

𝑠2

⋮

𝑠𝑑

= 𝑁𝑇𝑇(Ƽ𝑠)

𝑠1 − 1

𝑠2 − 1

⋮

𝑠𝑑 − 1

𝑁𝑇𝑇(Ƽ𝑠 − 1)

0

0

⋮

0

= = 𝑁𝑇𝑇 Ƽ𝑠(Ƽ𝑠 − 1)∘ ∘

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

Note that Ƽ𝑠 has large
coefficients.

Hence, we commit to it
using the [BDLOP18]

homomorphic commitment.

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

The verifier can thus compute:

𝑧 𝑧 − 𝛼 = 𝑦2 + 𝛼 ⋅ 2 Ƽ𝑠𝑦 − 𝑦 + 𝛼2 ⋅ Ƽ𝑠 Ƽ𝑠 − 1 . 𝑧 = 𝑦 + 𝛼 Ƽ𝑠

⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

2. Send 𝑡𝑦 = 𝐶𝑜𝑚(𝑦).

𝑧 𝑧 − 𝛼 = 𝑦2 + 𝛼 ⋅ 2 Ƽ𝑠𝑦 − 𝑦 + 𝛼2 ⋅ Ƽ𝑠 Ƽ𝑠 − 1 .

⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

2. Send 𝑡𝑦 = 𝐶𝑜𝑚(𝑦).

3. Send commitments

𝑡0 = 𝐶𝑜𝑚(𝑦2) and t1 = 𝐶𝑜𝑚(2 Ƽ𝑠𝑦 − 𝑦).

𝑧 𝑧 − 𝛼 = 𝑦2 + 𝛼 ⋅ 2 Ƽ𝑠𝑦 − 𝑦 + 𝛼2 ⋅ Ƽ𝑠 Ƽ𝑠 − 1 .

⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

2. Send 𝑡𝑦 = 𝐶𝑜𝑚(𝑦).

3. Send commitments

𝑡0 = 𝐶𝑜𝑚(𝑦2) and t1 = 𝐶𝑜𝑚(2 Ƽ𝑠𝑦 − 𝑦).

4. Given a challenge 𝛼, output 𝑧 = 𝑦 + 𝛼 Ƽ𝑠.

𝑧 𝑧 − 𝛼 = 𝑦2 + 𝛼 ⋅ 2 Ƽ𝑠𝑦 − 𝑦 + 𝛼2 ⋅ Ƽ𝑠 Ƽ𝑠 − 1 .

⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

We want to prove Ƽ𝑠(Ƽ𝑠 − 1) = 0.

1. Commit to Ƽ𝑠. Send 𝑡𝑠 = 𝐶𝑜𝑚(Ƽ𝑠).

2. Send 𝑡𝑦 = 𝐶𝑜𝑚(𝑦).

3. Send commitments

𝑡0 = 𝐶𝑜𝑚(𝑦2) and t1 = 𝐶𝑜𝑚(2 Ƽ𝑠𝑦 − 𝑦).

4. Given a challenge 𝛼, output 𝑧 = 𝑦 + 𝛼 Ƽ𝑠.

5. Prove: (i) 𝑧 − (𝑡𝑦 + 𝛼𝑡𝑠) and (ii) 𝑧 𝑧 − 𝛼 − (𝑡0 + 𝛼𝑡1)

are commitments to zero.

𝑧 𝑧 − 𝛼 = 𝑦2 + 𝛼 ⋅ 2 Ƽ𝑠𝑦 − 𝑦 + 𝛼2 ⋅ Ƽ𝑠 Ƽ𝑠 − 1 .

⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Exact proofs via NTT packing

Proving linear relations, i.e. 𝐴𝒔 = 𝒖:

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

Ƹ𝑧 = ො𝑦 + 𝛼𝒔

𝐴 Ƹ𝑧 = 𝐴ො𝑦 + 𝛼𝒖

𝛼 ∈ ℤ𝑞

Here, ො𝑥 = 𝑁𝑇𝑇(𝑥).
⋮

⋮

𝑧 = 𝑦 + 𝛼 Ƽ𝑠

𝛼

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

2𝑑
.

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

2𝑑
.

• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

2𝑑
.

• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.

• If one wants to prove a degree 𝑘 equation, the prover sends 𝑘
garbage commitments 𝑡𝑖 .

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

𝑞
[ALS20].

• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.
- New product proof which does not require sending 𝑧 [ALS20]

• If one wants to prove a degree 𝑘 equation, the prover sends 𝑘 − 1
garbage commitments 𝑡𝑖 [ALS20].

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

𝑞
[ALS20].

• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.
- New product proof which does not require sending 𝑧 [ALS20]

- New linear proof which does not require sending 𝑧 [ENS20]

• If one wants to prove a degree 𝑘 equation, the prover sends 𝑘 − 1
garbage commitments 𝑡𝑖 [ALS20].

Bottlenecks of [BLS19,YAZ+19]

• Using a BDLOP commitment is relatively expensive.

• Small challenge space, soundness error ≈
1

𝑞
[ALS20].

• Prover needs to send 𝑧 in the clear, which is of the same length as 𝒔.
- New product proof which does not require sending 𝑧 [ALS20]

- New linear proof which does not require sending 𝑧 [ENS20]

• If one wants to prove a degree 𝑘 equation, the prover sends 𝑘 − 1
garbage commitments 𝑡𝑖 [ALS20].

Do we really
need NTT
packing?

Lattice-based
zero-knowledge

proofs aye!
• Does not rely on NTT packing

• (Almost) one-shot

• Compressing commitment

Roadmap

ABDLOP
commitment

• It combines the Ajtai [Ajt96] and BDLOP [BDLOP18] commitments into one.

• It puts the long commitment to 𝒔 into the “Ajtai” part of the commitment scheme.

• The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will
need to be committed to later in the protocol.

Roadmap

ABDLOP
commitment

• It combines the Ajtai [Ajt96] and BDLOP [BDLOP18] commitments into one.

• It puts the long commitment to 𝒔 into the “Ajtai” part of the commitment scheme.

• The BDLOP part of the commitment scheme is then used for low-dimensional auxiliary elements that will
need to be committed to later in the protocol.

“are you still with
me?”

Roadmap

ABDLOP
commitment

Product proofs
over 𝑅𝑞

• Simple adaption of the [ALS20] protocol.

• It can be used to prove product relations, e.g. 𝒔𝑇𝒔 = 𝟎.

• Extended to also prove quadratic equations involving 𝑅𝑞-automorphisms, e.g. 𝒔𝑇𝜎 𝒔 = 𝟎.

Roadmap

ABDLOP
commitment

Product proofs
over 𝑅𝑞

Inner product
arguments
over ℤ𝑞

• We prove inner products over ℤ𝑞 , e.g. 𝒔, 𝒗 = 0 or 𝒔, 𝒔 = 𝐵.

• Fact: There is an automorphism 𝜎 such that 𝒙, 𝒚 ∈ ℤ𝑞 is the constant coefficient of the polynomial 𝒙𝑇𝜎 𝒚 .

• Proving the const. coeff. of a polynomial is zero: [ENS20] + Product proof (with automorphisms) over 𝑅𝑞 .

Roadmap

ABDLOP
commitment

Product proofs
over 𝑅𝑞

Inner product
arguments
over ℤ𝑞

Approximate
range proofs

• We know how to prove equations modulo 𝑞.

• But how to prove relations over integers?

• ||𝒔||2 = 𝒔, 𝒔 = 𝐵 (𝑚𝑜𝑑 𝑞) and 𝒔 approximately small coefficients ⟹ ||𝒔||2 = 𝐵 over integers!

Roadmap

ABDLOP
commitment

Product proofs
over 𝑅𝑞

Inner product
arguments
over ℤ𝑞

Approximate
range proofs

Applications

• Proving knowledge of a Module-LWE sample

Scheme Proof size

Stern proofs (e.g. [Ste93,LNSW13]) 3MB

[Beu20] 233KB

[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BCOS20] 72KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

This work 14KB
“Proof size so

small, made my
mom impressed!”

Applications

• Proving knowledge of a Module-LWE sample

Scheme Proof size

Stern proofs (e.g. [Ste93,LNSW13]) 3MB

[Beu20] 233KB

[BLS19,YAZ+19] 384KB

Ligero [AHIV17] 157KB

Aurora [BCR+19,BCOS20] 72KB

[ALS20,ENS20] 47KB

[LNS21] 33KB

This work 14KB

More applications in the paper…

Ngoc Khanh Nguyen

Joint work with Vadim Lyubashevsky and Maxime Plancon

Thank you!

References

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems (Extended Abstract).In STOC 1996.

[ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, Sri AravindaKrishnan Thyagarajan. Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and
Recursively Composable. In CRYPTO 2022.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup.. In ACM CCS 2017.

[AL21] Martin R. Albrecht and Russell W. F. Lai. Subtractive Sets over Cyclotomic Rings: Limits of Schnorr-like Arguments over Lattices. In CRYPTO 2021.

[ALS20] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical Product Proofs for Lattice Commitments. In CRYPTO 2020.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM CCS 2017.

[ACK21] A Compressed Σ-Protocol Theory for Lattices. Thomas Attema, Ronald Cramer, and Lisa Kohl. In CRYPTO 2021.

[AKSY21] Shweta Agrawal and Elena Kirshanova and Damien Stehle and Anshu Yadav. Practical, Round-Optimal Lattice-Based Blind Signatures. IACR Cryptol. ePrint Arch.,
2021:1565

[BCOS20] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner . Efficient Post-Quantum SNARKs for RSIS and RLWE and their Applications to Privacy. In PQCrypto
2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In
EUROCRYPT 2019.

[Beu20] Ward Beullens. Sigma protocols for mq, PKP and sis, and fishy signature schemes. In EUROCRYPT 2020.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices. In ASIACRYPT 2020.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-PCP approach to succinct quantum-safe zero-knowledge. In CRYPTO 2020.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) exact lattice- based zero-knowledge proofs. In CRYPTO 2019.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent recursive proofs from holography. In EUROCRYPT 2020.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical Exact Proofs from Lattices: New Techniques to Exploit Fully-Splitting Rings. In ASIACRYPT 2020.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. MatRiCT+: More Efficient Post-Quantum Private Blockchain Payments. In IEEE S&P 2022.

References

[ISW21] Yuval Ishai and Hang Su and David J. Wu. Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices. In ACM CCS 2021.

[LN17] Vadim Lyubashevsky and Gregory Neven. One-Shot Verifiable Encryption from Lattices.

[LNPS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon, Gregor Seiler. Shorter Lattice-Based Group Signatures via "Almost Free'' Encryption and Other Optimizations.
In ASIACRYPT 2021.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. Practical Lattice-Based Zero-Knowledge Proofs for Integer Relations. In ACM CCS 2020.

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. Shorter Lattice-Based Zero-Knowledge Proofs via One-Time Commitments. In PKC 2021.

[LNS21b] Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler. SMILE: Set Membership from Ideal Lattices with Applications to Ring Signatures and Confidential Transactions. In
CRYPTO 2021.

[LNSW13] San Ling, Khoa Nguyen, Damien Stehle, and Huaxiong Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In PKC 2013.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In ASIACRYPT 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012.

[NS22] Ngoc Khanh Nguyen and Gregor Seiler. Practical Sublinear Proofs for R1CS from Lattices. In CRYPTO 2022.

[PLS18] Rafael del Pino, Vadim Lyubashevsky, and Gregor Seiler. Lattice-Based Group Signatures and Zero-Knowledge Proofs of Automorphism Stability. In ACM CCS 2018.

[Sta21] StarkWare Team. ethSTARK documentation. IACR Cryptol. ePrint Arch., 2021:582, 2021

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO 1993.

[YAZ+19] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William Whyte. Efficient lattice- based zero-knowledge arguments with standard soundness:
Construction and applications. In CRYPTO 2019.

