Parallel Repetition of (k_1, \ldots, k_μ) -Special-Sound Multi-Round Interactive Proofs

Thomas Attema and Serge Fehr

August 15, 2022

ePrint 2021/1259

Preliminaries

- Prior Knowledge Extractor Single Invocation
- Parallel Repetition Naive Extractor
- Our Solution Parallel Repetition of 3-Round Interactive Proofs
- Our Solution Parallel Repetition of Multi-Round Interactive Proofs
- Summary

A (binary) relation is a set $R = \{(x; w)\}$ of statement-witness pairs.

A (binary) relation is a set $R = \{(x; w)\}$ of statement-witness pairs.

 $(x; w) \in R$ $\mathcal{V}(x)$ $\mathcal{P}(x; w)$ **a**0 c_1 a_1 . c_{μ} a_{μ} Accept/ Reject

A (binary) relation is a set $R = \{(x; w)\}$ of statement-witness pairs.

Goal of an Interactive Proof (of Knowledge):

• Prove knowledge of a witness w for a public statement x.

A (binary) relation is a set $R = \{(x; w)\}$ of statement-witness pairs.

Goal of an Interactive Proof (of Knowledge):

• Prove knowledge of a witness w for a public statement x.

We only consider <u>public-coin</u> protocols, i.e., the verifier's messages c_i are challenges sampled uniformly at random.

 $(x; w) \in R$

Desirable Security Properties:

- Completeness: Honest provers always succeed in convincing a verifier.
- Knowledge Soundness: Dishonest provers (almost) never succeed.
- Zero-Knowledge: No information about the witness is revealed.

Knowledge soundness \iff existence of a *knowledge extractor*.

Knowledge extractor

- Input: Statement x and oracle access to a prover \mathcal{P}^* attacking the protocol.
- Goal: Compute a witness *w* for statement *x*.

- $\epsilon(x, \mathcal{P}^*)$: success probability of \mathcal{P}^* on public input x.
- $\kappa(|x|)$: knowledge error of the protocol.

- $\epsilon(x, \mathcal{P}^*)$: success probability of \mathcal{P}^* on public input x.
- $\kappa(|x|)$: knowledge error of the protocol.

Definition (Standard Definition - Knowledge Soundness)

If $\epsilon(x, \mathcal{P}^*) > \kappa(|x|)$, knowledge extractor extracts in expected runtime

 $rac{\mathsf{poly}(|x|)}{\epsilon(x,\mathcal{P}^*)-\kappa(|x|)}\,.$

Lemma (Informal)

It is sufficient to consider deterministic provers \mathcal{P}^* .

Hence, \mathcal{P}^* always starts with the same message.

t-Fold Sequential Repetition:

- Reduces knowledge error from κ down to κ^t ;
- Increases the number of rounds.

t-Fold Sequential Repetition:

- Reduces knowledge error from κ down to κ^t ;
- Increases the number of rounds.

t-Fold Parallel Repetition:

- Increases challenge set size from N to N^t ;
- Hope is *strong* knowledge error reduction from κ down to κ^t .

t-Fold Sequential Repetition:

- Reduces knowledge error from κ down to κ^t ;
- Increases the number of rounds.

t-Fold Parallel Repetition:

- Increases challenge set size from N to N^t ;
- Hope is *strong* knowledge error reduction from κ down to κ^t .

Generic (*weak*) result for any public-coin interactive proof:

• Reduces knowledge error from κ down to $\kappa^t + \nu$ for any non-negligible ν [ACK21].

t-Fold Sequential Repetition:

- Reduces knowledge error from κ down to κ^t ;
- Increases the number of rounds.

t-Fold Parallel Repetition:

- Increases challenge set size from N to N^t ;
- Hope is *strong* knowledge error reduction from κ down to κ^t .

Generic (*weak*) result for any public-coin interactive proof:

• Reduces knowledge error from κ down to $\kappa^t + \nu$ for any non-negligible ν [ACK21].

<u>This work</u>: Strong parallel repetition result for a rich subclass of protocols: *special-sound* protocols.

• Easier to prove special-soundness than knowledge soundness.

• Easier to prove special-soundness than knowledge soundness.

Definition

2-out-of-N special-soundness: Efficient algorithm to extract a witness w from 2 'colliding' protocol transcripts (a, c, z) and (a, c', z').

• Easier to prove special-soundness than knowledge soundness.

Definition

2-out-of-N special-soundness: Efficient algorithm to extract a witness w from 2 'colliding' protocol transcripts (a, c, z) and (a, c', z').

2-out-of-N special-soundness implies knowledge soundness with knowledge error 1/N.

• Easier to prove special-soundness than knowledge soundness.

Definition

2-out-of-N special-soundness: Efficient algorithm to extract a witness w from 2 'colliding' protocol transcripts (a, c, z) and (a, c', z').

2-out-of-N special-soundness implies knowledge soundness with knowledge error 1/N.

Natural generalizations:

- *k*-out-of-*N* special-soundness \implies knowledge error (k-1)/N.
- multi-round protocols:
 - Also here special-soundness tightly implies knowledge soundness (CRYPTO'21 [ACK21]).

Preliminaries

- Prior Knowledge Extractor Single Invocation
- Parallel Repetition Naive Extractor
- Our Solution Parallel Repetition of 3-Round Interactive Proofs
- Our Solution Parallel Repetition of Multi-Round Interactive Proofs
- Summary

Let Π be *k*-out-of-*N* special-sound,

• and \mathcal{P}^* a *deterministic* prover attacking Π on input *x*.

 $\mathcal{P}^* \colon \mathcal{C} \to \{0,1\}^*, \quad c \mapsto z.$

- \mathcal{P}^* 's first message *a* is fixed;
- \mathcal{P}^* is successful if (a, c, z) is an accepting transcript.

Let Π be *k*-out-of-*N* special-sound,

• and \mathcal{P}^* a *deterministic* prover attacking Π on input *x*.

 $\mathcal{P}^* \colon \mathcal{C} \to \{0,1\}^*, \quad c \mapsto z.$

- \mathcal{P}^* 's first message *a* is fixed;
- \mathcal{P}^* is successful if (a, c, z) is an accepting transcript.

 \mathcal{P}^* 's behavior can be summarized by a binary vector $H(\mathcal{P}^*)$ indexed by the challenges c_i .

- 1-entry corresponds to \mathcal{P}^* succeeding;
- \bullet 0-entry corresponds to \mathcal{P}^{\ast} failing.
- $\epsilon(x, \mathcal{P}^*)$ equals fraction of 1-entries.

$$c_1 \quad c_2 \quad c_3 \quad \cdots \quad c_{N-1} \quad c_N$$

 $\mathcal{H}(\mathcal{P}^*) = (0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 1)$

$$c_1 \quad c_2 \quad c_3 \quad \cdots \quad c_{N-1} \quad c_N$$

 $H(\mathcal{P}^*) = (0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 1)$

Simple extraction algorithm:

(1) Sample entries until a 1-entry is found \implies Expected time $1/\epsilon(x, \mathcal{P}^*)$.

$$c_1 \quad c_2 \quad c_3 \quad \cdots \quad c_{N-1} \quad c_N$$

 $H(\mathcal{P}^*) = (0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 1)$

Simple extraction algorithm:

(1) Sample entries until a 1-entry is found \implies Expected time $1/\epsilon(x, \mathcal{P}^*)$. (2) Sample entries until second 1-entry is found \implies Expected time $\leq \frac{1}{\epsilon(x, \mathcal{P}^*) - 1/N}$.

$$c_1 \quad c_2 \quad c_3 \quad \cdots \quad c_{N-1} \quad c_N$$

 $H(\mathcal{P}^*) = (0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 1)$

Simple extraction algorithm:

(1) Sample entries until a 1-entry is found \implies Expected time $1/\epsilon(x, \mathcal{P}^*)$. (2) Sample entries until second 1-entry is found \implies Expected time $\leq \frac{1}{\epsilon(x, \mathcal{P}^*) - 1/N}$.

(k) Sample entries until k-th 1-entry is found \implies Expected time $\leq \frac{1}{\epsilon(x,\mathcal{P}^*) - (k-1)/N}$.

$$c_1 \quad c_2 \quad c_3 \quad \cdots \quad c_{N-1} \quad c_N$$

 $H(\mathcal{P}^*) = (0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 1)$

Simple extraction algorithm:

(1) Sample entries until a 1-entry is found \implies Expected time $1/\epsilon(x, \mathcal{P}^*)$. (2) Sample entries until second 1-entry is found \implies Expected time $\leq \frac{1}{\epsilon(x, \mathcal{P}^*) - 1/N}$.

<) Sample entries until k-th 1-entry is found \implies Expected time $\leq \frac{1}{\epsilon(x,\mathcal{P}^*)-(k-1)/N}$.

Expected runtime
$$\leq \frac{k}{\epsilon(x, \mathcal{P}^*) - (k-1)/N}$$
.

Preliminaries

- Prior Knowledge Extractor Single Invocation
- Parallel Repetition Naive Extractor
- Our Solution Parallel Repetition of 3-Round Interactive Proofs
- Our Solution Parallel Repetition of Multi-Round Interactive Proofs
- Summary

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t .

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t .

 \mathcal{P}^* is a (deterministic) function:

$$\mathcal{P}^*\colon \mathcal{C} imes \mathcal{C} o \{0,1\}^*, \quad (c_1,c_2) \mapsto (z_1,z_2).$$

2-Fold Parallel Repetition - Naive Extractor (2/4)

 \mathcal{P}^* defines two provers attacking a single invocation of $\Pi:$

$$\mathcal{P}_1^*: c_1 \longrightarrow \begin{array}{c} c_2 \leftarrow_R \mathcal{C} \\ c_1, c_2 \longrightarrow \mathcal{P}^* \longrightarrow z_1, z_2 \end{array} \xrightarrow{} z_1$$

$$\mathcal{P}_{2}^{*}: c_{2} \longrightarrow \begin{array}{c} c_{1} \leftarrow_{R} \mathcal{C} \\ c_{1}, c_{2} \longrightarrow \mathcal{P}^{*} \longrightarrow z_{1}, z_{2} \end{array} \xrightarrow{} z_{2}$$

Knowledge extractor:

• Run the "simple" knowledge extractor for both \mathcal{P}_1^* and \mathcal{P}_2^* .

Knowledge extractor:

- Run the "simple" knowledge extractor for both \mathcal{P}_1^* and \mathcal{P}_2^* .
- \bullet The same analysis holds, even though \mathcal{P}_1^* and \mathcal{P}_2^* are not deterministic.

Knowledge extractor:

- Run the "simple" knowledge extractor for both \mathcal{P}_1^* and \mathcal{P}_2^* .
- \bullet The same analysis holds, even though \mathcal{P}_1^* and \mathcal{P}_2^* are not deterministic.

This does not work:

- Gives the same knowledge error (k-1)/N;
- Goal is to reduce knowledge error down to $(k-1)^2/N^2$.

Preliminaries

- Prior Knowledge Extractor Single Invocation
- Parallel Repetition Naive Extractor
- Our Solution Parallel Repetition of 3-Round Interactive Proofs
- Our Solution Parallel Repetition of Multi-Round Interactive Proofs
- Summary

Technical Overview:

• Introduce more fine-grained quality measure $\delta_k(x, \mathcal{P}^*)$ (instead of $\epsilon(x, \mathcal{P}^*)$).

Technical Overview:

- **(1)** Introduce more fine-grained quality measure $\delta_k(x, \mathcal{P}^*)$ (instead of $\epsilon(x, \mathcal{P}^*)$).
- Stractor for single invocations actually runs in time

$$\leq rac{k}{\delta_k(x,\mathcal{P}^*)}$$
.

Technical Overview:

- **(1)** Introduce more fine-grained quality measure $\delta_k(x, \mathcal{P}^*)$ (instead of $\epsilon(x, \mathcal{P}^*)$).
- Stractor for single invocations actually runs in time

$$\leq rac{k}{\delta_k(x,\mathcal{P}^*)}$$
 .

Or Parallel repetition: At least one of the δ 's is large enough, i.e., $\delta_k(x, \mathcal{P}_1^*)$ or $\delta_k(x, \mathcal{P}_2^*)$.

Currently, the figure of merit is $\epsilon(x, \mathcal{P}^*)$, i.e.,

• the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$.

Currently, the figure of merit is $\epsilon(x, \mathcal{P}^*)$, i.e.,

• the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$.

We define a 'punctured' success probability:

$$\delta_{\ell}(x, \mathcal{P}^*) = \min_{S \subset \mathcal{C}: |S| < \ell} \Pr(\mathcal{P}^*(C) \text{ succeeds } | C \notin S).$$

Currently, the figure of merit is $\epsilon(x, \mathcal{P}^*)$, i.e.,

• the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$.

We define a 'punctured' success probability:

$$\delta_{\ell}(x, \mathcal{P}^*) = \min_{S \subset \mathcal{C}: |S| < \ell} \Pr(\mathcal{P}^*(C) \text{ succeeds } | C \notin S).$$

 $\delta_{\ell}(x, \mathcal{P}^*)$ lower bounds the success probability of \mathcal{P}^* when "removing" $\ell - 1$ challenges.

Probabilistic \mathcal{P}^* attacking a single invocation of a *k*-out-of-*N* special-sound protocol Π .

Simple extraction algorithm $\mathcal{E}^{\mathcal{P}^*}$:

(1) Sample entries until a 1-entry is found \implies Expected time $1/\epsilon(x, \mathcal{P}^*) = 1/\delta_1(x, \mathcal{P}^*)$. (2) Sample entries until second 1-entry is found \implies Expected time $\leq 1/\delta_2(x, \mathcal{P}^*)$.

(k) Sample entries until k-th 1-entry is found \implies Expected time $\leq 1/\delta_k(x, \mathcal{P}^*)$.

Expected runtime
$$\leq \frac{k}{\delta_k(x, \mathcal{P}^*)}$$
.

 \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t .

 \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t .

$$H(\mathcal{P}^*) = \begin{pmatrix} c_1 & c_2 & \cdots & c_{N-1} & c_N \\ 0 & 1 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix}$$

W.l.o.g. assume $H(\mathcal{P}^*)$'s rows and columns are sorted based on fraction of 1-entries.

W.l.o.g. assume $H(\mathcal{P}^*)$'s rows and columns are sorted based on fraction of 1-entries.

- $\delta_k(x, \mathcal{P}_1^*) =$ fraction of 1-entries in blue region.
- $\delta_k(x, \mathcal{P}_2^*) =$ fraction of 1-entries in red region.

$$\delta_k(x, \mathcal{P}_1^*) + \delta_k(x, \mathcal{P}_2^*) \ge \epsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}$$
$$\implies \max(\delta_k(x, \mathcal{P}_1^*), \delta_k(x, \mathcal{P}_2^*)) \ge \left(\epsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}\right)/2$$

Theorem (3-Round Protocols)

The t-fold parallel repetition of a k-out-of-N special-sound interactive proof is knowledge sound with knowledge error

$$rac{(k-1)^t}{N^t}$$

Preliminaries

- Prior Knowledge Extractor Single Invocation
- Parallel Repetition Naive Extractor
- Our Solution Parallel Repetition of 3-Round Interactive Proofs
- Our Solution Parallel Repetition of Multi-Round Interactive Proofs
- Summary

Our Solution - Parallel Repetition of Multi-Round Interactive Proofs

• Natural recursive strategy from 3-round to $2\mu + 1$ -round extraction [ACK21].

- Natural recursive strategy from 3-round to $2\mu + 1$ -round extraction [ACK21].
- However, for the above extractor this gives runtime exponential in the number of rounds.

- Natural recursive strategy from 3-round to $2\mu + 1$ -round extraction [ACK21].
- However, for the above extractor this gives runtime exponential in the number of rounds.
- **Solution:** New extractor for 3-round protocols properties making it amenable for this recursive strategy (see paper).

- $\bullet\,$ New figure of merit δ capturing "how well we can extract".
 - \implies strong parallel repetition result for 3-round special-sound protocols.
- Novel 3-round extractor to handle multi-round protocols.
 - \implies strong parallel repetition for multi-round special-sound protocols.
- Also works for threshold parallel repetition.
 - Allowing to decrease completeness and knowledge error simultaneously.

Thanks!

🔋 Thomas Attema, Ronald Cramer, and Lisa Kohl.

A compressed Σ -protocol theory for lattices. In Tal Malkin and Chris Peikert, editors, *CRYPTO 2021, Part II*, volume 12826 of *LNCS*, pages 549–579, Virtual Event, August 2021. Springer, Heidelberg.