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Preliminaries - Interactive Proofs

A (binary) relation is a set R = {(x;w)} of
statement-witness pairs.

Goal of an Interactive Proof (of Knowledge):
Prove knowledge of a witness w for a
public statement x.

We only consider public-coin protocols, i.e., the
verifier’s messages ci are challenges sampled
uniformly at random.

(x;w) ∈ R

P(x;w) V(x)
a0−−−−−−→
c1←−−−−−−
a1−−−−−−→
...
cµ←−−−−−−
aµ−−−−−−→ Accept/

Reject
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Preliminaries - Security Properties

Desirable Security Properties:

Completeness: Honest provers always succeed in convincing a verifier.
Knowledge Soundness: Dishonest provers (almost) never succeed.
Zero-Knowledge: No information about the witness is revealed.
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Preliminaries - Knowledge Soundness

Knowledge soundness ⇐⇒ existence of a knowledge extractor.

Knowledge extractor
Input: Statement x and oracle access to a prover P∗ attacking the protocol.
Goal: Compute a witness w for statement x.
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Knowledge Soundness

ϵ(x,P∗): success probability of P∗ on public input x.
κ(|x|): knowledge error of the protocol.

Definition (Standard Definition - Knowledge Soundness)
If ϵ(x,P∗) > κ(|x|), knowledge extractor extracts in expected runtime

poly(|x|)
ϵ(x,P∗)− κ(|x|) .
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Knowledge Soundness - Deterministic Provers

Lemma (Informal)
It is sufficient to consider deterministic provers P∗.

Hence, P∗ always starts with the same message.
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Reducing the Knowledge Error

t-Fold Sequential Repetition:
Reduces knowledge error from κ down to κt;
Increases the number of rounds.

t-Fold Parallel Repetition:
Increases challenge set size from N to Nt;
Hope is strong knowledge error reduction from κ down to κt.

Generic (weak) result for any public-coin interactive proof:
Reduces knowledge error from κ down to κt + ν for any non-negligible ν [ACK21].

This work: Strong parallel repetition result for a rich subclass of protocols: special-sound
protocols.
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Another Notion - Special-Soundness

Easier to prove special-soundness than knowledge soundness.

Definition
2-out-of-N special-soundness: Efficient algorithm to extract a witness w from 2 ‘colliding’
protocol transcripts (a, c, z) and (a, c′, z′).

2-out-of-N special-soundness implies knowledge soundness with knowledge error 1/N.

Natural generalizations:
k-out-of-N special-soundness =⇒ knowledge error (k− 1)/N.
multi-round protocols:

Also here special-soundness tightly implies knowledge soundness (CRYPTO’21 [ACK21]).
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Knowledge Extractor - k-out-of-N Special-Sound Protocols (1/2)
Let Π be k-out-of-N special-sound,

and P∗ a deterministic prover attacking Π on input x.

P∗ : C → {0, 1}∗, c 7→ z .

P∗’s first message a is fixed;
P∗ is successful if (a, c, z) is an accepting transcript.

P∗’s behavior can be summarized by a binary vector H(P∗) indexed by the challenges ci.
1-entry corresponds to P∗ succeeding;
0-entry corresponds to P∗ failing.
ϵ(x,P∗) equals fraction of 1-entries.

c1 c2 c3 · · · cN−1 cN

( )H(P∗) = 0 1 0 · · · 0 1
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Knowledge Extractor - k-out-of-N Special-Sound Protocols (2/2)

c1 c2 c3 · · · cN−1 cN

( )H(P∗) = 0 1 0 · · · 0 1

Simple extraction algorithm:

(1) Sample entries until a 1-entry is found =⇒ Expected time 1/ϵ(x,P∗).

(2) Sample entries until second 1-entry is found =⇒ Expected time ≤ 1
ϵ(x,P∗)− 1/N .

...
(k) Sample entries until k-th 1-entry is found =⇒ Expected time ≤ 1

ϵ(x,P∗)− (k− 1)/N .

Expected runtime ≤ k
ϵ(x,P∗)− (k− 1)/N .
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2-Fold Parallel Repetition - Naive Extractor (1/4)

Consider P∗ attacking the t = 2-fold parallel repetition Πt.

P∗ is a (deterministic) function:

P∗ : C × C → {0, 1}∗, (c1, c2) 7→ (z1, z2) .
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2-Fold Parallel Repetition - Naive Extractor (2/4)

P∗ defines two provers attacking a single invocation of Π:
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2-Fold Parallel Repetition - Naive Extractor (3/3)

Knowledge extractor:
Run the “simple” knowledge extractor for both P∗

1 and P∗
2 .

The same analysis holds, even though P∗
1 and P∗

2 are not deterministic.

This does not work:
Gives the same knowledge error (k− 1)/N;
Goal is to reduce knowledge error down to (k− 1)2/N2.
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Our Solution - Parallel Repetition of 3-Round Interactive Proofs

Technical Overview:

1 Introduce more fine-grained quality measure δk(x,P∗) (instead of ϵ(x,P∗)).

2 Extractor for single invocations actually runs in time

≤ k
δk(x,P∗)

.

3 Parallel repetition: At least one of the δ’s is large enough, i.e., δk(x,P∗
1 ) or δk(x,P∗

2 ).
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More Fine-Grained Analysis

Currently, the figure of merit is ϵ(x,P∗), i.e.,
the quality of the extractor is expressed in terms of ϵ(x,P∗).

We define a ‘punctured’ success probability:

δℓ(x,P∗) = min
S⊂C:|S|<ℓ

Pr
(
P∗(C) succeeds | C /∈ S

)
.

δℓ(x,P∗) lower bounds the success probability of P∗ when “removing” ℓ− 1 challenges.
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Knowledge Extractor - Single Invocation and Probabilistic P∗

Probabilistic P∗ attacking a single invocation of a k-out-of-N special-sound protocol Π.

Simple extraction algorithm EP∗ :

(1) Sample entries until a 1-entry is found =⇒ Expected time 1/ϵ(x,P∗) = 1/δ1(x,P∗).
(2) Sample entries until second 1-entry is found =⇒ Expected time ≤ 1/δ2(x,P∗).

...
(k) Sample entries until k-th 1-entry is found =⇒ Expected time ≤ 1/δk(x,P∗).

Expected runtime ≤ k
δk(x,P∗)

.
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Why does this refinement help?

P∗ attacking the t = 2-fold parallel repetition Πt.

H(P∗) =

c1 c2 · · · cN−1 cN


0 1 · · · 0 1 c1
1 0 · · · 1 1 c2
... ... . . . ... ... ...
1 1 · · · 0 1 cN
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Why does this refinement help?
W.l.o.g. assume H(P∗)’s rows and columns are sorted based on fraction of 1-entries.

δk(x,P∗
1 ) = fraction of 1-entries in blue region.

δk(x,P∗
2 ) = fraction of 1-entries in red region.
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Why does this refinement help?

δk(x,P∗
1 ) + δk(x,P∗

2 ) ≥ ϵ(x,P∗)− (k− 1)2

N2

=⇒ max
(
δk(x,P∗

1 ), δk(x,P∗
2 )
)
≥

(
ϵ(x,P∗)− (k− 1)2

N2

)
/2
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Strong Parallel Repetition Results for k-out-of-N Special-Sound Protocols

Theorem (3-Round Protocols)
The t-fold parallel repetition of a k-out-of-N special-sound interactive proof is knowledge
sound with knowledge error

(k− 1)t

Nt .
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Our Solution - Parallel Repetition of Multi-Round Interactive Proofs

Natural recursive strategy from 3-round to 2µ+ 1-round extraction [ACK21].

However, for the above extractor this gives runtime exponential in the number of rounds.

Solution: New extractor for 3-round protocols properties making it amenable for this
recursive strategy (see paper).
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Summary

New figure of merit δ capturing “how well we can extract”.

=⇒ strong parallel repetition result for 3-round special-sound protocols.

Novel 3-round extractor to handle multi-round protocols.

=⇒ strong parallel repetition for multi-round special-sound protocols.

Also works for threshold parallel repetition.
Allowing to decrease completeness and knowledge error simultaneously.
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Thanks!
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