Improving Support-Minors rank attacks: applications to GeMSS and Rainbow

Pierre Briaud, joint work with J. Baena, D. Cabarcas, R. Perlner, D. Smith-Tone and J. Verbel

Crypto 2022

Inria Paris & Sorbonne Université

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

Public key. Map $\mathcal{P} = (p_1, \dots, p_m)$ hard to invert. Secret key. Central map $\mathcal{F} = (f_1, \dots, f_{m'})$ easy to invert, linear maps \mathcal{T}, \mathcal{U} s.t.

 $\mathcal{P} = \mathcal{T} \circ \mathcal{F} \circ \mathcal{U}.$

- GeMSS (alternate) : HFE-like.
- Rainbow (finalist) : UOV-like.

Key-recovery by solving MinRank.

Input. $d \in \mathbb{N}$ and $M_1, \ldots, M_K \in \mathbb{F}_q^{n_r \times n_c}$. **Output**. $x_1, x_2, \ldots, x_K \in \mathbb{L} \supseteq \mathbb{F}_q$ not all zero s.t.

 $\operatorname{rank}\left(\sum_{i=1}^{K} x_i \boldsymbol{M}_i\right) \leq d$

Recent work on NIST candidates. "Weaker" instances:

- Rectangular MinRank attack on Rainbow. [Beu21]
- MinRank on HFE variants. [TPD21]

[TPD21] Tao, Petzoldt, and Ding. "Efficient Key Recovery for All HFE Signature Variants". Advances in Cryptology - CRYPTO 2021.

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

[[]Beu21] Beullens. "Improved Cryptanalysis of UOV and Rainbow". Advances in Cryptology - EUROCRYPT 2021.

Support-Minors ("SM") [Bar+20]

New algebraic modeling: unknowns $x_i \in \mathbb{L}$, $D \in \mathbb{L}^{n_r \times d}$, $C \in \mathbb{L}^{d \times n_c}$,

$$\boldsymbol{M} := \sum_{i=1}^{K} \mathbf{x}_i \boldsymbol{M}_i = \boldsymbol{D} \boldsymbol{C}.$$

For $1 \le j \le n_r$, $\mathbf{r}_j := \mathbf{M}_{j,*}$ j-th row of \mathbf{M} . The matrix $\mathbf{C}_j := \begin{vmatrix} \mathbf{r}_j \\ \mathbf{C} \end{vmatrix}$ is of rank $\le d$.

Maximal minors vanish

$$\mathcal{Q} := \left\{ f = 0 \ \Big| \ f \in \mathsf{MaxMinors}(\mathcal{C}_j), \ 1 \leq j \leq n_r
ight\}.$$

How to solve \mathcal{Q} ?

 \approx Linearize (or dedicated XL) \rightarrow kernel of matrix M(Q).

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

SM attack on HFE variants

Big-field: $\phi : \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ isomorphism, $f \in \mathbb{F}_{q^n}[X]$ of degree D, $\mathcal{F} = \phi^{-1} \circ f \circ \phi$.

HFE variant

GeMSS uses HFEv- : HFE with modifiers $a \ge 0$, $v \ge 0$.

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

Let $d := \left\lceil \log_q(D) \right\rceil$. Matrices $M_1, \ldots, M_{n+\nu} \in \mathbb{F}_q^{(n-a) \times (n+\nu)}$ built from public key.

"Weaker" MinRank on HFEv-

$$\exists \boldsymbol{u} \in \mathbb{F}_{q^n}^{n+\nu}, \ \boldsymbol{u} \neq \boldsymbol{0}, \ \operatorname{rank} \left(\sum_{i=1}^{n+\nu} u_i \boldsymbol{M}_i\right) \leq d.$$

Matrices over \mathbb{F}_{q} , sols over $\mathbb{F}_{q^{n}}$. Frobenius: $\forall j$, rank $\left(\sum_{i=1}^{n+\nu} u_{i}^{q^{j}} M_{i}\right) \leq d$.

Fix $u_1 = 1$? Still, #sols = $n \gg 1$! Can't apply XL !

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

Rank *d* matrix
$$\sum_{i=1}^{n+v} u_i M_i^{\mathsf{T}} := DC$$
 restricted to $m' \leq n+v$ cols.

SM is bilinear [Bar+20]

$$\mathcal{M} := \{ u_i c_T, 1 \le i \le n + v, T, \#T = d \}, c_T := |C|_{*,T} \text{ (maximal minors)}.$$

For GeMSS we have #Q > #M: $\Rightarrow \dim_{\mathbb{F}_q} (\langle Q \rangle) < \#Q$.

As #sols = n, we assume

 $\dim_{\mathbb{F}_q} \left(\langle \mathcal{Q} \rangle \right) = \# \mathcal{M} - n.$

Baena, B., Cabarcas, Perlner, Smith-Tone, Verbel

Step 1: Linear combinations

We fix $u_1 = 1$ and $c_{\{1..d\}} = 1$. \mathcal{M} becomes $\{1\} \cup \mathcal{M}_1 \cup \mathcal{M}_2$ (affine bilinear). We have $\dim_{\mathbb{F}_q} (\langle \mathcal{Q} \rangle) > \# \mathcal{M}_2$: linear polys from ech. form !

 $\widetilde{\mathcal{L}}$ large enough to kill all $c_{\mathcal{T}}$ variables !

• Plug $\widetilde{\mathcal{L}}$ into $\widetilde{\mathcal{Q}} \rightarrow$ new system \mathcal{S} , quadratic in u_i 's, very overdefined.

Gröbner Bases on S is easy

GB found by simple Gaussian elimination, *i.e.* in deg. 2, as long as $\binom{m'}{d} \ge n$.

We can make sure that
$$\binom{m'}{d} \ge n$$
 for GeMSS.

Step 1 (find $\widetilde{\mathcal{L}}$) + Step 2 (GB of \mathcal{S}). Step 1 is dominant.

Scheme	Minors [TPD21]	SM (conj.) [TPD21]	Improved SM
GeMSS128	139	118	72
BlueG <i>e</i> MSS128	119	99	65
RedGeMSS128	86	72	49
GeMSS192	154	120	75
BlueGeMSS192	132	101	67
RedGeMSS192	95	75	51
GeMSS256	166	121	75
BlueGeMSS256	141	103	68
RedGeMSS256	101	76	62

Memory access costs for SM attacks

- Yes ... in RAM model !
- In 2D nearest neighbor model ?
 - No ... assuming random memory access patterns: Rainbow Response [The20].

But what if they are **not random** ?

[[]The20] The Rainbow Team. Response to Recent Paper by Ward Beullens.

From NTRUPrime submission, then reused by Rainbow team in [The20].

 \rightarrow Memory locations evenly distributed over 2D surface.

Memory overhead:

- \propto total distance covered by bits of data.
- + distance traveled by memory addresses.

Matrix-vector products $M(Q) \cdot v$:

- large but sparse M(Q): entries cheaply generated on the fly, not stored.
- vector \mathbf{v} stored in memory, main overhead is to store and access coefs.

Compute $M(Q) \cdot v$ via several "row $\times v$ ".

Naïve approach. For each "row $\times v$ " (sum of $\mathbb{F}_q \cdot \mathbb{F}_q$ terms), central processor ...

- finds \neq 0 coefs in row.
- sends read request to associated memory locations. Query to memory of size $|\mathbf{v}|$!

- 1. Memory broken into **local partitions** $\Pi = (\pi_i)_i$.
 - Each "row $\times \mathbf{v}$ " involves small number of π_i in Π .
 - Partial sum row_{π_i} × \boldsymbol{v}_{π_i} computed by **local processor** (short distance).
 - Central accumulator computes final "row × ν" from row_{πi} × ν_{πi}'s: few partial sums sent long distance.
- 2. Some rows with same $\neq 0$ positions \rightarrow same memory access patterns.
 - Group them in a **batch**.
 - Routing information only sent once per batch.

- Include $\mathcal{P} = 0$ eqs from [Beu21] in the model (standard way).
- Induced costs, but also neglected costs that we analyze in the paper.

Set	RAM model	2D (Naïve)	2D (Our strategy)	Security Target
Rainbow-I	127	152.3	139.5	143
Rainbow-III	177	216.2	201.2	207
Rainbow-V	226	276.2	260.9	272

New [Beu22] breaks Rainbow anyway 🥔 ...

\rightarrow Still, analysis applies to other SM-based MinRank attacks.

[[]Beu22] Beullens. Breaking Rainbow Takes a Weekend on a Laptop.