Gossiping for Communication-Efficient Broadcast

G. Tsimos, Julian Loss, Charalampos Papamanthou
Broadcast
Broadcast

- A designated sender s w. input value u_s
Broadcast

- A designated sender s w. input value u_s
- s wants to broadcast u_s to all n parties
Broadcast

- A designated sender s w. input value u_s
- s wants to broadcast u_s to all n parties
 - s might be dishonest
Broadcast

- A designated sender s with input value u_s
- s wants to broadcast u_s to all n parties
 - s might be dishonest
- Honest parties want to agree on the same value.
Authenticated Broadcast

• Authenticated Broadcast:

 • Broadcast **BUT** with Use of a Public Key Infrastructure (PKI)

 • Bulletin Board \ Trusted PKI

 • Each party can sign with a **signature** each message they send

 • P_i holds (pk_i, sk_i) and posts pk_i publicly
All honest parties output the same message

If S is honest, all honest parties output S’s message
Authenticated Broadcast
Authenticated Broadcast

• Multiple settings depending on:
Authenticated Broadcast

• Multiple settings depending on:
 • Synchronous/Asynchronous Communication
Authenticated Broadcast

• Multiple settings depending on:
 • Synchronous/Asynchronous Communication
 • Number of corruptions (Honest/dishonest majority)
Authenticated Broadcast

- Multiple settings depending on:
 - Synchronous/Asynchronous Communication
 - Number of corruptions (Honest/dishonest majority)
 - Setup assumptions
Authenticated Broadcast

- Multiple settings depending on:
 - Synchronous/Asynchronous Communication
 - Number of corruptions (Honest/dishonest majority)
 - Setup assumptions
 - static/adaptive Adversary
Metrics:
Metrics:

- Communication Complexity (CC)
Metrics:

- Communication Complexity (CC)
- Amount of bits shared by honest parties
Metrics:

- Communication Complexity (CC)
- Amount of bits shared by honest parties
- Round Complexity (RC)
Metrics:

• Communication Complexity (CC)
 • Amount of bits shared by honest parties

• Round Complexity (RC)
 • Total number of rounds until termination
Setting
Setting

• Synchronous Communication
Setting

• Synchronous Communication
• Dishonest majority
Setting

- Synchronous Communication
- Dishonest majority
- State-of-the-art (without trusted setup):
Setting

• Synchronous Communication

• Dishonest majority

• State-of-the-art (without trusted setup):
 • Dolev-Strong protocol [DS’83] with $O(n^3)$ Communication
In this work we achieve:
In this work we achieve:

Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.
In this work we achieve:

Authenticated Broadcast with $O(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce gossiping and Converge and show Parallel Broadcast with:
In this work we achieve:

Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce gossiping and Converge and show Parallel Broadcast with:

$\mathcal{O}(n^3)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.
In this work we achieve:

Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce gossiping and Converge and show Parallel Broadcast with:

$\mathcal{O}(n^3)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.

$\mathcal{O}(n^2)$ CC using trusted PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.
S sends with S’s signature to all parties
For each $r \leq t + 1$:

p checks if it received some new “valid” email.
For each $r \leq t + 1$:

p checks if it received some new “valid” money from:

- At least r from distinct parties.
- One is from S.
For each $r \leq t + 1$:

p checks if it received some new "valid" message. If so, it adds its signature and sends it to all parties.
For each $r \leq t + 1$:

p checks if it received some new "valid" message. If so, it adds its signature and sends ... to all parties.
For each $r \leq t + 1$:

p checks if it received some new “valid” message. If so, it adds its signature and sends ... to all parties.
Dolev-Strong Protocol
Dolev-Strong Protocol

• Achieves Authenticated Broadcast:
Dolev-Strong Protocol

- Achieves Authenticated Broadcast:
 - For any $t < n$ adaptive corruptions
Dolev-Strong Protocol

- Achieves Authenticated Broadcast:
 - For any $t < n$ adaptive corruptions
 - Deterministic, $t + 1 = \Theta(n)$ rounds
Dolev-Strong Protocol

• Achieves Authenticated Broadcast:
 • For any $t < n$ adaptive corruptions
 • Deterministic, $t + 1 = \Theta(n)$ rounds
 • Assumes only bulletin board PKI
Dolev-Strong Protocol

• Achieves Authenticated Broadcast:
 • For any $t < n$ adaptive corruptions
 • Deterministic, $t + 1 = \mathcal{O}(n)$ rounds

• Assumes only bulletin board PKI
• With $\mathcal{O}(n^3 \kappa)$ Communication
For each $r \leq t + 1$: p checks if it received some new "valid" message. If so, it adds its signature and sends it to all parties.
Our Observation

• What do parties want to achieve with sending?

• Perhaps, sending to everyone takes more communication than what needed for the property.
"Do I send the message to party j?"
“Do I send the message to party j?”

Flip a coin with prob. \(\frac{m}{n} \)
If Heads, then I send, else I don’t
Our Idea for BC

• Gossiping:
 • Each honest party picks randomly $\sim \mathcal{O}(\log n)$ other parties to send to.
 • (Ofc, this doesn’t work single-shot.) Takes $\sim \mathcal{O}(\log n)$ rounds.
r = a \cdot t + 1
r = a + 1
r = a + 2
r = a + 3
r = a + 4
r = a + 5
Our Idea for BC

• Gossiping:
 • Each honest party picks randomly $\sim \Theta(\log n)$ other parties to send to.
 • (Ofc, this doesn’t work single-shot.) Takes $\sim \Theta(\log n)$ rounds.
BulletinBC Protocol
S sends with S’s signature to all parties
For each $r \leq t + 1$:

p checks if it received some new “valid” message.

If so, it adds its signature and gossips.
Result
Result

• Achieved Authenticated Broadcast:
Result

• Achieved Authenticated Broadcast:
 • For any $t \leq (1 - \epsilon)n$ static corruptions
Result

- Achieved Authenticated Broadcast:
 - For any $t \leq (1 - \epsilon)n$ static corruptions
 - Randomized, in $t \cdot \mathcal{O}(\log n) = \mathcal{O}(n \cdot \log n)$ rounds
Result

• Achieved Authenticated Broadcast:
 • For any $t \leq (1 - \epsilon)n$ static corruptions
 • Randomized, in $t \cdot \mathcal{O}(\log n) = \mathcal{O}(n \cdot \log n)$ rounds

★ The actual protocol achieves improved
 $t + \log(n - t) + 1 = \mathcal{O}(n)$ rounds
Result

• Achieved Authenticated Broadcast:
 • For any $t \leq (1 - \epsilon)n$ static corruptions
 • Randomized, in $t \cdot \mathcal{O}(\log n) = \mathcal{O}(n \cdot \log n)$ rounds
 ★ The actual protocol achieves improved
 $t + \log(n - t) + 1 = \mathcal{O}(n)$ rounds
 • Assumes only bulletin board PKI
Result

• Achieved Authenticated Broadcast:
 • For any \(t \leq (1 - \epsilon)n \) static corruptions
 • Randomized, in \(t \cdot \mathcal{O}(\log n) = \mathcal{O}(n \cdot \log n) \) rounds

★ The actual protocol achieves improved
 \(t + \log(n - t) + 1 = \mathcal{O}(n) \) rounds

• Assumes only bulletin board PKI

• With \(\tilde{\mathcal{O}}(n^2 \kappa^2) \) Communication
Comparison

- Bulletin-Board PKI (**NO trusted setup**)
- State-of-the-art **Communication Complexity** for \(t > n/2 \)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model</th>
<th>CC</th>
<th>RC</th>
<th>Adversary</th>
<th>Corruptions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolev-Strong</td>
<td>Bulletin</td>
<td>(O(n^3\kappa))</td>
<td>(O(n))</td>
<td>Adaptive</td>
<td>(< n)</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinBC</td>
<td>Bulletin</td>
<td>(\tilde{O}(n^2\kappa^2))</td>
<td>(O(n))</td>
<td>Static</td>
<td>(< (1 - \epsilon)n)</td>
<td>BC</td>
</tr>
<tr>
<td>Abraham et al.</td>
<td>Trusted</td>
<td>(\tilde{O}(n\kappa))</td>
<td>(O(1))</td>
<td>Adaptive</td>
<td>(< n/2)</td>
<td>BC</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Trusted</td>
<td>(O(n^2\kappa^2))</td>
<td>(O(\kappa))</td>
<td>Adaptive</td>
<td>(< (1 - \epsilon)n)</td>
<td>BC</td>
</tr>
<tr>
<td>Momose and Ren</td>
<td>Bulletin</td>
<td>(\tilde{O}(n^2\kappa))</td>
<td>(O(n))</td>
<td>Adaptive</td>
<td>(< n/2)</td>
<td>BC</td>
</tr>
</tbody>
</table>
Comparison

- Bulletin-Board PKI (NO trusted setup)
- State-of-the-art Communication Complexity for $t > n/2$

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model</th>
<th>CC</th>
<th>RC</th>
<th>Adversary</th>
<th>Corruptions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolev-Strong</td>
<td>Bulletin</td>
<td>$O(n^3\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)$</td>
<td>$O(n)$</td>
<td>Static</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Abraham et al.</td>
<td>Trusted</td>
<td>$\tilde{O}(n\kappa)$</td>
<td>$O(1)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Trusted</td>
<td>$O(n^2\kappa^2)$</td>
<td>$O(\kappa)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Momose and Ren</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
</tbody>
</table>
Limitations so far

- **Static** vs **Adaptive** adversary:
- An adaptive adversary can break the security of the process.
- Any ideas how?
But... Broadcast?

• Back to our motivation:
 • Many times in practical uses of Broadcast, we require **all parties to broadcast** values.
 • (E.g. MPC, VSS applications)
Parallel Broadcast
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i
- Each party p_i defines a “slot” s_i
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i
- Each party p_i defines a “slot” s_i
- Each party p_i outputs a vector of n bits $B_i = (b_{i1}, \ldots, b_{in})$
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i
- Each party p_i defines a “slot” s_i
- Each party p_i outputs a vector of n bits $B_i = (b_1^i, \ldots, b_n^i)$
- Properties:
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i

- Each party p_i defines a “slot” s_i

- Each party p_i outputs a vector of n bits $B_i = (b_1^i, \ldots, b_n^i)$

- Properties:
 - Validity: For each “honest slot” s_i all honest parties agree on b_i
Parallel Broadcast

- n parties, t corrupted, each party p_i has input bit b_i
- Each party p_i defines a “slot” s_i
- Each party p_i outputs a vector of n bits $B_i = (b_1^i, \ldots, b_n^i)$
- Properties:
 - Validity: For each “honest slot” s_i all honest parties agree on b_i
 - Consistency: For each slot s_i, all honest parties output the same bit
1. Caesar

[\(b_1, \text{sig}_1(b_1)\)]

2. Washington

[\(b_2, \text{sig}_2(b_2)\)]

3. Charlemagne

[\(b_3, \text{sig}_3(b_3)\)]

4. Napoleon

[\(b_4, \text{sig}_4(b_4)\)]

5. Alexander

[\(b_5, \text{sig}_5(b_5)\)]
Parallel Broadcast

• Trivial solution: Use the best Broadcast protocol for the underlying assumptions \(n \) times in parallel.
Parallel Broadcast

- Trivial solution: Use the best Broadcast protocol for the underlying assumptions \(n \) times in parallel.

- If \(C \) is the Communication of the Broadcast protocol:
Parallel Broadcast

- Trivial solution: Use the best Broadcast protocol for the underlying assumptions n times in parallel.

 - If C is the Communication of the Broadcast protocol:

 - Then, overall Communication: $\mathcal{O}(n \cdot C)$
Parallel Broadcast

• Trivial solution: Use the best Broadcast protocol for the underlying assumptions \(n \) times in parallel.

• If \(C \) is the Communication of the Broadcast protocol:

 • Then, overall Communication: \(\mathcal{O}(n \cdot C) \)

• Can we do better?
Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.
Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce **gossiping** and Converge and show Parallel Broadcast with:
Authenticated Broadcast with $\Theta(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce gossiping and Converge and show Parallel Broadcast with:

$\Theta(n^3)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.
Authenticated Broadcast with $\mathcal{O}(n^2)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ static corruptions.

We introduce gossiping and Converge and show Parallel Broadcast with:

$\mathcal{O}(n^3)$ CC using bulletin board PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.

$\mathcal{O}(n^2)$ CC using trusted PKI, against $t < (1 - \epsilon)n$ adaptive corruptions.
Converge
Converge

• In PBC, parties have to propagate at least $O(n)$ messages total (1 message per party)
Converge

• In PBC, parties have to propagate at least $O(n)$ messages total (1 message per party)

• We can combine this inherent amount of messages with gossiping to achieve PBC:
Converge

• In PBC, parties have to propagate at least $O(n)$ messages total (1 message per party)

• We can combine this inherent amount of messages with gossiping to achieve PBC:

 • Efficiently
Converge

• In PBC, parties have to propagate at least $O(n)$ messages total (1 message per party)

• We can combine this inherent amount of messages with gossiping to achieve PBC:
 • Efficiently
 • Against adaptive adversaries
Converge

• Before: Party gossips a specific message to a few other parties randomly
Converge
Converge

- Now: Party has to send many ($\Omega(n)$) messages in worst case
Converge

- Now: Party has to send many $\Omega(n)$ messages in worst case

- Like in gossiping, for each message, randomly select a few parties to send it to
• Now: Party has to send many ($\Omega(n)$) messages in worst case

• Like in gossiping, for each message, randomly select a few parties to send it to

• With high prob. all parties receive ~ the same amount of messages
Converge

• Now: Party has to send many ($\Omega(n)$) messages in worst case

• Like in gossiping, for each message, randomly select a few parties to send it to

• With high prob. all parties receive ~ the same amount of messages

• The adversary doesn’t gain any advantage by observing the execution of the protocol
Our Bulletin PBC Protocol
Each party S sends a message with S's signature to all parties.
Stage 1:

For each \(r \leq t + 1 \):

\(p \) checks if it received some new “valid” bit. For such bit \(b \) and slot \(s \), add \(\text{sig}_p([b, s]) \).
Stage 1:

For each $r \leq t + 1$: p checks if it received some new "valid" bit. For such bit b and slot s, add $\text{sig}_p([b, s]) \star$.
Stage 2:

For each $r \leq t + 1$:

p calls **Converge** on M_p : received signatures
PBC without trusted setup
PBC without trusted setup

- Communication: $O(n)$ rounds, each round calls Converge
PBC without trusted setup

- Communication: $O(n)$ rounds, each round calls Converge
- Message space M: signatures on $[b,s]$, $|M| = O(n^2)$
PBC without trusted setup

• Communication: $O(n)$ rounds, each round calls Converge

• Message space \mathcal{M}: signatures on $[b, s], |\mathcal{M}| = O(n^2)$

• Optimization: p propagates each signature in $O(1)$ rounds
PBC without trusted setup

- Communication: $O(n)$ rounds, each round calls `Converge`
- Message space \mathcal{M}: signatures on $[b,s]$, $|\mathcal{M}| = O(n^2)$
- Optimization: p propagates each signature in $O(1)$ rounds
- Total CC: $\tilde{O}(n^3)$ (Amortized $\tilde{O}(n^2)$ per broadcast)
Our bulletin board PBC Result
Our bulletin board PBC Result

- Achieved Authenticated Parallel Broadcast:
Our bulletin board PBC Result

• Achieved Authenticated Parallel Broadcast:

 • For any $t \leq (1 - \epsilon)n$ adaptive corruptions
Our bulletin board PBC Result

- Achieved Authenticated Parallel Broadcast:
 - For any $t \leq (1 - \epsilon)n$ adaptive corruptions
 - Randomized, $\mathcal{O}(n \log n)$ rounds
Our bulletin board PBC Result

- Achieved Authenticated Parallel Broadcast:
 - For any $t \leq (1 - \epsilon)n$ adaptive corruptions
 - Randomized, $\Theta(n \log n)$ rounds
 - Only bulletin board PKI
Our bulletin board PBC Result

- Achieved Authenticated Parallel Broadcast:
 - For any $t \leq (1 - \epsilon)n$ adaptive corruptions
 - Randomized, $\Theta(n \log n)$ rounds
 - Only bulletin board PKI
 - With $\tilde{\Theta}(n^3 \kappa^2)$ Communication
Our trusted PBC Result
Our trusted PBC Result

• Modified a single-sender Broadcast protocol by Chan et al.[PKC’20]
Our trusted PBC Result

• Modified a single-sender Broadcast protocol by Chan et al.[PKC’20]
• Committee-based
Our trusted PBC Result

• Modified a single-sender Broadcast protocol by Chan et al.[PKC’20]

• Committee-based

• In each round, message propagation follows Converge instead of Send-to-all
Our trusted PBC Result
Our trusted PBC Result

• Achieved Authenticated Parallel Broadcast:
Our trusted PBC Result

- Achieved Authenticated Parallel Broadcast:
 - For any $t \leq (1 - \epsilon)n$ adaptive corruptions
Our trusted PBC Result

- Achieved Authenticated Parallel Broadcast:
 - For any $t \leq (1 - \epsilon)n$ adaptive corruptions
 - Randomized, $\Theta(\kappa \log n)$ rounds
Our trusted PBC Result

• Achieved Authenticated Parallel Broadcast:
 • For any $t \leq (1 - \varepsilon)n$ adaptive corruptions
 • Randomized, $\mathcal{O}(\kappa \log n)$ rounds
 • Assumes trusted PKI
Our trusted PBC Result

• Achieved Authenticated Parallel Broadcast:
 • For any $t \leq (1 - \epsilon)n$ adaptive corruptions
 • Randomized, $\Theta(\kappa \log n)$ rounds
 • Assumes trusted PKI
 • With $\tilde{\Theta}(n^2 \kappa^4)$ Communication
Comparison

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model</th>
<th>CC</th>
<th>RC</th>
<th>Adversary</th>
<th>Corruptions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolev-Strong</td>
<td>Bulletin</td>
<td>$O(n^3\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)$</td>
<td>$O(n)$</td>
<td>Static</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Abraham et al.</td>
<td>Trusted</td>
<td>$\tilde{O}(nk)$</td>
<td>$O(1)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Trusted</td>
<td>$O(n^2\kappa^2)$</td>
<td>$O(\kappa)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Momose and Ren</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinPBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)^*$</td>
<td>$O(n \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
<tr>
<td>TrustedPBC</td>
<td>Trusted</td>
<td>$\tilde{O}(nk^4)^*$</td>
<td>$O(\kappa \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
</tbody>
</table>

* refers to amortized Complexity per sender
Comparison

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model</th>
<th>CC</th>
<th>RC</th>
<th>Adversary</th>
<th>Corruptions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolev-Strong</td>
<td>Bulletin</td>
<td>$O(n^3\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)$</td>
<td>$O(n)$</td>
<td>Static</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Abraham et al.</td>
<td>Trusted</td>
<td>$\tilde{O}(n\kappa)$</td>
<td>$O(1)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Trusted</td>
<td>$O(n^2\kappa^2)$</td>
<td>$O(\kappa)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Momose and Ren</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinPBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)^*$</td>
<td>$O(n \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
<tr>
<td>TrustedPBC</td>
<td>Trusted</td>
<td>$\tilde{O}(n\kappa^4)^*$</td>
<td>$O(\kappa \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
</tbody>
</table>

* refers to amortized Complexity per sender
Comparison

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Model</th>
<th>CC</th>
<th>RC</th>
<th>Adversary</th>
<th>Corruptions</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolev-Strong</td>
<td>Bulletin</td>
<td>$O(n^3\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)$</td>
<td>$O(n)$</td>
<td>Static</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Abraham et al.</td>
<td>Trusted</td>
<td>$\tilde{O}(n\kappa)$</td>
<td>$O(1)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Trusted</td>
<td>$O(n^2\kappa^2)$</td>
<td>$O(\kappa)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>BC</td>
</tr>
<tr>
<td>Momose and Ren</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa)$</td>
<td>$O(n)$</td>
<td>Adaptive</td>
<td>$< n/2$</td>
<td>BC</td>
</tr>
<tr>
<td>BulletinPBC</td>
<td>Bulletin</td>
<td>$\tilde{O}(n^2\kappa^2)$*</td>
<td>$O(n \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
<tr>
<td>TrustedPBC</td>
<td>Trusted</td>
<td>$\tilde{O}(n\kappa^4)$*</td>
<td>$O(\kappa \log n)$</td>
<td>Adaptive</td>
<td>$< (1 - \epsilon)n$</td>
<td>PBC</td>
</tr>
</tbody>
</table>

* refers to amortized Complexity per sender
Contributions
Contributions

Introduced gossiping, Converge & 3 SOA protocols:
Contributions

Introduced gossiping, Converge & 3 SOA protocols:

\[\tilde{O}(n^2 \kappa^4) \] Parallel Broadcast using trusted PKI, against
\[t < (1 - \epsilon)n \] adaptive corruptions
Contributions

Introduced gossiping, Converge & 3 SOA protocols:

\[\tilde{O}(n^2 \kappa^4) \] Parallel Broadcast using trusted PKI, against
\[t < (1 - \epsilon)n \] adaptive corruptions

\[\tilde{O}(n^3 \kappa^2) \] Parallel Broadcast using bulletin board PKI, against
\[t < (1 - \epsilon)n \] adaptive corruptions
Contributions

Introduced gossiping, Converge & 3 SOA protocols:

\[\tilde{O}(n^2 \kappa^4) \text{ Parallel Broadcast using trusted PKI, against } t < (1 - \epsilon)n \text{ adaptive corruptions} \]

\[\tilde{O}(n^3 \kappa^2) \text{ Parallel Broadcast using bulletin board PKI, against } t < (1 - \epsilon)n \text{ adaptive corruptions} \]

\[\tilde{O}(n^2 \kappa^2) \text{ single sender Broadcast using bulletin board PKI, against } t < (1 - \epsilon)n \text{ static corruptions} \]
Contributions

Introduced gossiping, Converge & 3 SOA protocols:

\[\tilde{O}(n^2 \kappa^4) \] Parallel Broadcast using trusted PKI, against
\(t < (1 - \epsilon)n \) adaptive corruptions

\[\tilde{O}(n^3 \kappa^2) \] Parallel Broadcast using bulletin board PKI, against
\(t < (1 - \epsilon)n \) adaptive corruptions

\[\tilde{O}(n^2 \kappa^2) \] single sender Broadcast using bulletin board PKI, against
\(t < (1 - \epsilon)n \) static corruptions

Interested in our paper? eprint.iacr.org/2020/894