MuSig-L

Lattice-based Multi-Signature with Single-Round Online Phase CRYPTO 2022

Cecilia Boschini¹ Akira Takahashi² Mehdi Tibouchi³

¹Technion and Reichman University, Israel ²Aarhus University, Denmark ³NTT Corporation, Japan

Interactive Multi-Signature

Interactive Multi-Signature

Interactive Multi-Signature

Security in the Plain Public Key Model

Lattice-based Schnorr

Lattice-based Schnorr

Naive Two-round Protocol with Passive Security (DLog)

- Key pair: $\mathsf{pk}_i = \mathsf{sk}_i \cdot G$
- Public key aggregation [MPSW19]:

$$- a_i = \mathsf{H}(\{\mathsf{pk}_1,\mathsf{pk}_2\},\mathsf{pk}_i) \in \mathbb{Z}_q$$

-
$$\mathsf{pk} := a_1 \cdot \mathsf{pk}_1 + a_2 \cdot \mathsf{pk}_2$$

• Works thanks to homomorphism of $f(\boldsymbol{x}) = \boldsymbol{x} \cdot \boldsymbol{G}$

m, (U, z)

c := H(U, m, pk)Accept iff $z \cdot G = c \cdot pk + U$

Verifier

Naive Two-round Protocol with Passive Security (Lattice)

- Key pair: $\mathsf{pk}_i = \mathbf{A} \cdot \mathsf{sk}_i \mod q$
- Public key aggregation:

$$- a_i = \mathsf{H}(\{\mathsf{pk}_1,\mathsf{pk}_2\},\mathsf{pk}_i) \in C$$

-
$$\mathsf{pk} := a_1 \cdot \mathsf{pk}_1 + a_2 \cdot \mathsf{pk}_2$$

+ Works thanks to homomorphism of $f(\mathbf{x}) = \mathbf{A} \cdot \mathbf{x}$

Naive Two-round Protocol with Passive Security (Lattice)

• Use Gaussian D_{σ} to benefit from convolution:

– Given
$$\mathbf{z}_1, \mathbf{z}_2 \sim D_\sigma$$
, $\mathbf{z}_1 + \mathbf{z}_2 \sim D_{\sqrt{2} \cdot \sigma}$

• Increase σ or parallel repetitions \rightsquigarrow Pick an instance where all signers pass

$$c := H(\mathbf{u}, m, pk)$$
Accept iff
$$\mathbf{Az} = c \cdot pk + \mathbf{u}$$

$$\wedge \|\mathbf{z}\| \le \sqrt{2} \cdot B$$
Verifier

m,

Insecurity of the Naive Two-round Protocol

How to Protect against Malicious Attackers in the DLog Setting

1. Commit&Open

- Send $C_1 = Com_{ck}(U_1)$
- Reveal U₁ only after receiving C₂
- \cdot 🙁 Requires more rounds

2. Trapdoor-Hom-Com

- Generate ck from m
- Send $C_1 = \mathsf{Com}_{\mathsf{ck}}(U_1)$
- $\cdot \ c := \mathsf{H}(\mathsf{C}_1 + \mathsf{C}_2, m, \mathsf{pk})$
- Simulator can equivocate C₁ to anything
- ③ Preserves round complexity
- 😊 Two-round online phase

3. Linear Combinations

- Exchange multiple $U_i^{(j)}$
- Take random linear combinations

 $U := \sum_{j} b^{(j)} \left(\sum_{i} U_{i}^{(j)} \right)$

• ^(C) Single-round online phase!

How to Protect against Malicious Attackers in the DLog Setting

1. Commit&Open

- Send $C_1 = Com_{ck}(U_1)$
- Reveal U₁ only after receiving C₂
- 🙁 Requires more rounds

2. Trapdoor-Hom-Com

- + Generate ck from m
- Send $C_1 = Com_{ck}(U_1)$
- $\cdot \ c := \mathsf{H}(\mathsf{C}_1 + \mathsf{C}_2, m, \mathsf{pk})$
- Simulator can equivocate C₁ to anything
- ⑦ Preserves round complexity
- 🙁 Two-round online phase

3. Linear Combinations

- Exchange multiple $U_i^{(j)}$
- Take random linear combinations

 $U := \sum_{j} b^{(j)} \left(\sum_{i} U_{i}^{(j)} \right)$

• ③ Single-round online phase!

How to Protect against Malicious Attackers in the DLog Setting

1. Commit&Open

- Send $C_1 = Com_{ck}(U_1)$
- Reveal U₁ only after receiving C₂
- \cdot 🙁 Requires more rounds

2. Trapdoor-Hom-Com

- + Generate ck from m
- Send $C_1 = Com_{ck}(U_1)$
- $\cdot \ c := \mathsf{H}(\mathsf{C}_1 + \mathsf{C}_2, m, \mathsf{pk})$
- Simulator can equivocate C₁ to anything
- ⑦ Preserves round complexity
- 🙁 Two-round online phase

3. Linear Combinations

- Exchange multiple $U_i^{(j)}$
- Take random linear combinations

$$U := \sum_{j} b^{(j)} \left(\sum_{i} U_{i}^{(j)} \right)$$

• ③ Single-round online phase!

Landscape of Schnorr-like Multi-Signatures

# Round	Method	DLog	Lattice
3	Commit&Open	BN06, MuSig	ES16,MJ19,FH20,BK20
2	TD-Hom-Com	mBCJ, HBMS	DOTT21
1 (Off) + 1 (On)	Linear Combination	MuSig2, DWMS	

- "Usual" Schnorr–FSwA translation: $\mathsf{DLog} \mapsto \mathsf{SIS}$
- MuSig2 and DWMS rely on the AGM or (algebraic) "one-more" DLog

Q. Can we construct a scheme with single-round online phase from standard (module) LWE and SIS assumptions?

Landscape of Schnorr-like Multi-Signatures

# Round	Method	DLog	Lattice
3	Commit&Open	BN06, MuSig	ES16,MJ19,FH20,BK20
2	TD-Hom-Com	mBCJ, HBMS	DOTT21
1 (Off) + 1 (On)	Linear Combination	MuSig2, DWMS	

- "Usual" Schnorr–FSwA translation: $\mathsf{DLog} \mapsto \mathsf{SIS}$
- MuSig2 and DWMS rely on the AGM or (algebraic) "one-more" DLog

Q. Can we construct a scheme with single-round online phase from **standard** (module) LWE and SIS assumptions?

Landscape of Schnorr-like Multi-Signatures

# Round	Method	DLog	Lattice
3	Commit&Open	BN06, MuSig	ES16,MJ19,FH20,BK20
2	TD-Hom-Com	mBCJ, HBMS	DOTT21
1 (Off) + 1 (On)	Linear Combination	MuSig2, DWMS	MuSig-L

- "Usual" Schnorr–FSwA translation: $\mathsf{DLog} \mapsto \mathsf{SIS}$
- MuSig2 and DWMS rely on the AGM or (algebraic) "one-more" DLog

Q. Can we construct a scheme with single-round online phase from **standard** (module) LWE and SIS assumptions?

MuSig-L

- Assume a power-of-2 cyclotomic ring $R = \mathbb{Z}[X]/(X^N + 1)$
 - First round can be computed offline!
 - $b^{(j)}$ follows Gaussian D_{σ_k}
 - Hard to predict **u** without querving the RO
 - Signature size in the *n*-party case:

 $O(\log(N \cdot n))$ larger than a single-user FSwA

$$c := \mathsf{H}(\mathbf{u}, m, \mathsf{pk})$$

Accept iff
$$\mathbf{Az} = c \cdot \mathsf{pk} + \mathbf{u}$$
$$\land \|\mathbf{z}\| \le \sqrt{2} \cdot B'$$

Key Techniques to Simulate Honest Signer

Key Techniques to Simulate Honest Signer

Key Techniques to Simulate Honest Signer

Standard Rejection Sampling [Lyu12]

$$\begin{split} \mathbf{v} &:= c \cdot \mathsf{sk} \\ \mathbf{z} \leftarrow D_{\mathbf{v},\hat{\sigma}} \\ \text{With prob. } \min\{D_{\hat{\sigma}}(\mathbf{z})/(M \cdot D_{\mathbf{v},\hat{\sigma}}(\mathbf{z})), 1\} \\ & \text{return } \mathbf{z} \end{split}$$

Standard Rejection Sampling [Lyu12]

$$\begin{split} \mathbf{v} &:= c \cdot \mathsf{sk} \\ \mathbf{z} \leftarrow D_{\mathbf{v},\hat{\sigma}} \\ \text{With prob. } \min\{D_{\hat{\sigma}}(\mathbf{z})/(M \cdot D_{\mathbf{v},\hat{\sigma}}(\mathbf{z})), 1\} \\ & \text{return } \mathbf{z} \end{split}$$

Key Technique I: Generalized Rejection Sampling

$$\begin{split} \mathbf{v} &:= c \cdot \mathsf{sk} \\ \mathbf{z} \leftarrow D_{\mathbf{v},\sigma} \\ \text{With prob. } \min\{D_{\hat{\sigma}}(\mathbf{z})/(M \cdot D_{\mathbf{v},\sigma}(\mathbf{z})), 1\} \\ & \text{return } \mathbf{z} \end{split}$$

In MuSig-L:

- σ depends on random coefficients $b^{(j)}$
- Output $\mathbf{z} \sim D_{\hat{\sigma}}$ must be independent of $b^{(j)}$'s

Key Technique I: Generalized Rejection Sampling

$$\begin{split} \mathbf{v} &:= c \cdot \mathsf{sk} \\ \mathbf{z} \leftarrow D_{\mathbf{v},\sigma,\Lambda+\mathbf{u}} \\ \text{With prob. } \min\{D_{\hat{\sigma}}(\mathbf{z})/(M \cdot D_{\mathbf{v},\sigma}(\mathbf{z})), 1\} \\ & \text{return } \mathbf{z} \end{split}$$

In MuSig-L:

- σ depends on random coefficients $b^{(j)}$
- Output $\mathbf{z} \sim D_{\hat{\sigma}}$ must be independent of $b^{(j)}$'s

Key Technique II: Preimage Sampling with a Lattice Trapdoor [Ajt99,AP09,GPV08,MP12,...]

Key Technique II: Preimage Sampling with a Lattice Trapdoor [Ajt99,AP09,GPV08,MP12,...]

Putting Them Together: Sign Oracle Simulation

Putting Them Together: Sign Oracle Simulation

Putting Them Together: Sign Oracle Simulation

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

- Feasibility of FSwA multi-signature with single-round online phase
 - Statistical simulation of sign oracle (no "one-more" assumption!)
 - Forking lemma to show a reduction to M-SIS and M-LWE in the classical ROM
- Key observations:
 - 1. Generalized rejection sampling lemma
 - 2. Preimage sampling using a lattice trapdoor (only in the security proof)

Concurrent Work & Open Questions

- Squirrel [FSZ22]: Synchronized MS from OTS + Merkle tree
- Efficient instantiation: exploit **NTRU** or **one-more SIS** [AKSY21] to minimize the overhead in signature size & communication?
- Proof in the QROM & simulation-based security

Icons made by Freepik from Flaticon.com.
http://www.flaticon.com.