Short Leakage Resilient and Non-malleable Secret Sharing Schemes

Sruthi Sekar

Nishanth Chandran Microsoft Research

Bhavana Kanukurthi

Sai Lakshmi Bhavana Obbattu Microsoft Research

 $\frac{Correctness}{\geq t \text{ shares give s.}}$

 $\frac{Correctness}{\geq t \text{ shares give s.}}$

<u>Privacy</u>: An adversary with < t shares gets no information about s.

 $\frac{Correctness}{\geq t \text{ shares give s.}}$

<u>Privacy</u>: An adversary with < t shares gets no information about s.

 \forall s,s' (< t shares of s) ≈ (< t shares of s')

 $\frac{Correctness}{\geq t}:$ $\geq t \text{ shares give s.}$

<u>Privacy</u>: An adversary with < t shares gets no information about s.

 \forall s,s' (< t shares of s) ≈ (< t shares of s')

Statistical distance

LEAKAGE ATTACKS [Kocher(1996)]

۲

sec

 $\forall s,s'$ (< t shares of s) \approx (< t shares of s')

LEAKAGE ATTACKS [Kocher(1996)]

What if in addition to t - 1 shares, adversary gets (arbitrary) bounded # of bits from other shares too?

sec

∀ \$,\$' $(< t \text{ shares of s}) \approx (< t \text{ shares of s'})$

LEAKAGE ATTACKS [Kocher(1996)]

What if in addition to t - 1 shares, adversary gets (arbitrary) bounded # of bits from other shares too?

> [Guruswami, Wooters (2016)]: Shamir SS breaks, given 1-bit leakage on remaining shares.

sec

′کرک ∀ $(< t \text{ shares of s}) \approx (< t \text{ shares of s'})$

 $\frac{Correctness}{\geq t \text{ shares give s.}}$

 $\frac{Correctness}{\geq t}$ shares give s.

Leakage Resilience:

 $\frac{Correctness}{\geq t \text{ shares give s.}}$

<u>Leakage Resilience</u>: \mathcal{F} be some function family. For function $f \in \mathcal{F}$, f(shares) gives no information about s.

<u>Correctness</u>: $\geq t$ shares give s.

<u>Leakage Resilience</u>: \mathcal{F} be some function family. For function $f \in \mathcal{F}$, f(shares) gives no information about s.

∀ \$,\$' $f(\text{shares of s}) \approx f(\text{shares of s'})$

f(shares)

• <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.

• <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.

• <u>Leakage Family</u>:

• <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.

• <u>Leakage Family</u>:

F: Local Leakage Family

- <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.
- <u>Leakage Family</u>:

 \mathcal{F} : Local Leakage Family

$$\mathbf{f} = (f_1, f_2, \dots, f_N)$$

- <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.
- <u>Leakage Family</u>:

 \mathcal{F} : Local Leakage Family

 $\boldsymbol{f} = (f_1, f_2, \dots, f_N)$

 $f_1(s_1), f_2(s_2), \dots, f(s_N)$

- <u>Share Size</u>: size of the largest share amongst the N shares. Best share size one can hope for an LRSS: <u>message length</u> + μ , where μ is the #leakage-bits per share.
- <u>Leakage Family</u>:

 \mathcal{F} : Local Leakage Family

Adversary

 $\mathbf{f} = (f_1, f_2, \dots, f_N)$

 $f_1(s_1), f_2(s_2), \dots, f(s_N)$

shares of s

t-1 of these are full shares, rest arbitrary functions outputting μ bits each.

Leakage Resilient Secret Sharing Prior Works

Leakage Resilient Secret Sharing Prior Works

 Long line of research: [DDV10, LL12, GK18, BDIR18, GK18, BS19, SV19, ADN+19, KMS19, FV19, BFV19, LCG+19, CGG+20, BFO+20, CKOS21, MPSW21, MNP+21]

Leakage Resilient Secret Sharing Prior Works

 Long line of research: [DDV10, LL12, GK18, BDIR18, GK18, BS19, SV19, ADN+19, KMS19, FV19, BFV19, [LCG+19, CGG+20, BF0+20, CKOS21, MPSW21, MNP+21]

Most of these works focus on stronger leakage models (adaptive, joint) However, the share size of these schemes is ω(message length)!

1. Leakage resilience of Shamir SS [BDIR18]

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

- If $t \ge (N - o(\log N))$, Shamir allows leaking $1/4^{th}$ bits of each share.

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

- If $t \ge (N-o(\log N))$, Shamir allows leaking $1/4^{th}$ bits of each share.

- If $t \leq \alpha N$, Shamir allows leaking only constant bits of each share.

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

- If $t \ge (N - o(\log N))$, Shamir allows leaking $1/4^{th}$ bits of each share.

- If $t \leq \alpha N$, Shamir allows leaking only constant bits of each share.

This is the best one can hope from Shamir SS—[NS20]

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

- If $t \ge (N - o(\log N))$, Shamir allows leaking $1/4^{th}$ bits of each share.

- If $t \leq \alpha N$, Shamir allows leaking only constant bits of each share.

2. <u>Generic Compiler</u> [ADN+19, SV19]

1. <u>Leakage resilience of Shamir SS</u> [BDIR18] For a large characteristic field, large N, and only constant number of full share corruptions:

- If $t \ge (N - o(\log N))$, Shamir allows leaking $1/4^{th}$ bits of each share.

- If $t \leq \alpha N$, Shamir allows leaking only constant bits of each share.

2. <u>Generic Compiler</u> [ADN+19, SV19]

-Best known for arbitrary N and t [SV19]: Share size is (3.message length + μ), with μ -bits of leakage per share ($\mu \leq (1 - o(1))$.message length).

Leakage Resilient Secret Sharing Our Results

Leakage Resilient Secret Sharing Our Results

• We build the first information-theoretic LRSS scheme for the threshold access structures against the local leakage model (allowing μ bits of leakage per share), with a share size of message length + μ !
- We build the first information-theoretic LRSS scheme for the threshold access structures against the local leakage model (allowing μ bits of leakage per share), with a share size of message length + μ !
- Our compiler works for general access structures too.

- We build the first information-theoretic LRSS scheme for the threshold access structures against the local leakage model (allowing μ bits of leakage per share), with a share size of message length + μ!
- Our compiler works for general access structures too.
- <u>Application</u>:

 We can build a non-malleable secret sharing scheme against independent tampering with an improved share size of (4. message length),

- We build the first information-theoretic LRSS scheme for the threshold access structures against the local leakage model (allowing μ bits of leakage per share), with a share size of message length + μ !
- Our compiler works for general access structures too.
- <u>Application</u>:

 -We can build a non-malleable secret sharing scheme against independent tampering with an improved share size of (4. message length),

-Introduce and build non-malleable randomness sharing against independent tampering with a share size of (2. message length).

• We build the first information-theoretic LRSS scheme for the threshold access structures against the local leakage model (allowing μ bits of leakage per share), with a share size of message length + μ !

• Our compiler works for general access structures too.

<u>Application</u>:

 -We can build a non-malleable secret sharing scheme against independent tampering with an improved share size of (4. message length),

-Introduce and build non-malleable randomness sharing against independent tampering with a share size of (2. message length).

OUR CONSTRUCTION

RANDOMNESS EXTRACTORS [Nisan and Zuckerman, 1996]

• Uniformity: $Ext(W; U_d), Z, U_d \approx U_l, Z, U_d$

- Uniformity: $Ext(W; U_d), Z, U_d \approx U_l, Z, U_d$
- Linearity: For each $s \in \{0,1\}^d$, Ext(., s) is a linear function.

RANDOMNESS EXTRACTORS [Nisan and Zuckerman, 1996]

• Uniformity: $Ext(W; U_d), Z, U_d \approx U_l, Z, U_d$

• Linearity: For each $s \in \{0,1\}^d$, Ext(., s) is a linear function.

We use invertibility of such linear extractors!

LINEAR RANDOMNESS EXTRACTORS

For the above *Ext*, there exists efficient *InvExt* such that:

LINEAR RANDOMNESS EXTRACTORS

For the above *Ext*, there exists efficient *InvExt* such that:

1. $InvExt(Ext(U_{\eta}; U_d), U_d), U_d, Ext(U_{\eta}, U_d) \equiv U_{\eta}, U_d, Ext(U_{\eta}, U_d)$

Can invert and get a "correct" source string w, given a seed s and an extractor output y.

LINEAR RANDOMNESS EXTRACTORS

For the above *Ext*, there exists efficient *InvExt* such that:

- 1. $InvExt(Ext(U_{\eta}; U_{d}), U_{d}), U_{d}, Ext(U_{\eta}, U_{d}) \equiv U_{\eta}, U_{d}, Ext(U_{\eta}, U_{d})$
- 2. For each $(s,y) \in \{0,1\}^d \times \{0,1\}^l$:
 - If there exists w s.t. Ext(w;s) =y,

LINEAR RANDOMNESS EXTRACTORS

For the above Ext, there exists efficient InvExt such that:

1. $InvExt(Ext(U_{\eta}; U_{d}), U_{d}), U_{d}, Ext(U_{\eta}, U_{d}) \equiv U_{\eta}, U_{d}, Ext(U_{\eta}, U_{d})$

2. For each $(s,y) \in \{0,1\}^d \times \{0,1\}^l$:

• If there exists w s.t. Ext(w;s) = y, Ext(InvExt(y;s); s) = y w.p. 1.

LINEAR RANDOMNESS EXTRACTORS

For the above Ext, there exists efficient InvExt such that:

1. $InvExt(Ext(U_{\eta}; U_d), U_d), U_d, Ext(U_{\eta}, U_d) \equiv U_{\eta}, U_d, Ext(U_{\eta}, U_d)$

2. For each $(s,y) \in \{0,1\}^d \times \{0,1\}^l$:

- If there exists w s.t. Ext(w;s) = y, Ext(InvExt(y;s); s) = y w.p. 1.
- Else $InvExt(y,s) = \perp w.p. 1$.

m secret

Sample $s \leftarrow U_d$

Sample $s \leftarrow U_d$

Sample $s \leftarrow U_d$

Our Construction Optimal Threshold LRSS: Leakage Resilience CASE II Sample $s \leftarrow U_d$ (w_1, s_1) InvExt(.,**s)** m_1 Shamir f_2 Sharing (w_2, s_2) m_2 InvExt(.,s) Shamir Sharing m secret Leakage part (N-(t-1) shares): Leakages from each of the (w_i, s_i) 's independent of the m_i 's. Shares

• LRSS for threshold access structure in local leakage model with optimal share size!

- LRSS for threshold access structure in local leakage model with optimal share size!
- Our compiler preserves the rate for general access structures too.

- LRSS for threshold access structure in local leakage model with optimal share size!
- Our compiler preserves the rate for general access structures too.
- We show applications to non-malleable secret sharing schemes with improved share size.

Summary

- LRSS for threshold access structure in local leakage model with optimal share size!
- Our compiler preserves the rate for general access structures too.
- We show applications to non-malleable secret sharing schemes with improved share size.
- Open- Can we get this for stronger leakage models?

Summary

- LRSS for threshold access structure in local leakage model with optimal share size!
- Our compiler preserves the rate for general access structures too.
- We show applications to non-malleable secret sharing schemes with improved share size.
- Open- Can we get this for stronger leakage models?

THANK YOU eprint/2022/216