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LEAKAGE ATTACKS [Kocher(1996)]
What if in addition to 𝑡 − 1 shares, adversary 

gets (arbitrary) bounded # of bits from 
other shares too?

[Guruswami, Wooters (2016)]: 
Shamir SS breaks, given 1-bit 
leakage on remaining shares.
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𝑡 − 1 of these are full shares, 
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Most of these works focus on stronger leakage models
(adaptive, joint)

However, the share size of these schemes is 𝜔(𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ)!
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Can we get an LRSS scheme
with optimal share size and leakage?
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