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LE E ATT. ochern(19496

What if in addition to t — 1 shares, adversary
gets (arbitrary) bounded # of bits from

other shares too?

sec [Guruswami, Wooters (2016)]:
Shamir SS breaks, given 1-bit
leakage on remaining shares.
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e shares
Correctness:
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F be some function family.
For function f € F, f(shares)
gives no information about s.

vV s,
f(shares of s) ~ f(shares of s')
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Parameters

* Share Size: size of the largest share amongst the N shares.
Best share size one can hope for an LRSS: message length + p,
where p is the #leakage-bits per share.

« Leakage Family:

F : Local Leakage Family

70‘1‘; F=Ciforrti) =
‘_‘__' fl(Sl)i fZ(SZ)r "'lf(SN) l
Adversary shares of s

|
t — 1 of these are full shares,
rest arbitrary functions outputting p bits each.
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* Long line of research: [DDV10, LL12, GK18, BDIR18,GK18,
BS14,Sv1i49, ADN+19,KMS149,FV19,BFV14,
\LCG+14,0GG+20, BFO+20, CKOS21,MPSW21,MNP+21] |

|

Most of these works focus on stronger leakage models
(adaptive, joint)

However, the share size of these schemes is w(message length)!
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Shamir SS—[NS20]
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Prior Works: Local Leakage Model

1. Leakage resilience of Shamir SS [BDIR18]
For a large characteristic field, large N, and only constant number of
full share corruptions:

- If t = (N-o(logN)), Shamir allows leaking 1/4t bits of each share.

- If t < aN, Shamir allows leaking only constant bits of each share.

2. Generic Compiler [ADN+19, SV19]

-Best known for arbitrary N and t [SV14]:
Share size is (3.message length + p), with u-bits of leakage per share
(u < (1 —0(1)) .message length).
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Prior Works: Local Leakage Model

1. Leakage res:hence oF Sha

Can we get an LRSS scheme
with optimal share size and leakage?

-Best known
Shavre size is (3~

. bits of leakage per share
(< (1-0(1)). message length).
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Our Results

We build the first information-theoretic LRSS scheme for the
threshold access structures against the local leakage model
(allowing p bits of leakage per share),

with a share size of message length + u!

* Our compiler works for general access structures too.

- Application:
-We can build a non-malleable secret sharing scheme against
independent tampering with an improved share size of

(4. message length),

~Introduce and build non-malleable randomness sharing against
independent tampering with a share size of (2. message length).
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Linear Extractors

w e W source
H.(W|Z) =2 k W:m—’y
S
s <« Uy seed

RANDOMNESS EXTRACTORS
[Nisan and Zuckerman, 1996]

«  Uniformity: Ext(W;Uy),Z, Uy = U, Z, Uy

 Linearity: For each s € {0,1}%, Ext( ., s) is a linear function.

< We use invertibility of such
linear extractors!




Building Blocks

Linear Extractors: Invertibility

w < Uy source
Sich — o
S « Uy seed

LINEAR RANDOMNESS EXTRACTORS

For the above Ext, there exists efficient InvExt such that:



Building Blocks

Linear Extractors: Invertibility

w < Uy source
Sich — o
S « Uy seed

LINEAR RANDOMNESS EXTRACTORS

For the above Ext, there exists efficient InvExt such that:

1. InvExt(Ext(Uy;Uy),Uyg), Uy, Ext(Uy, Uy) = Uy, Ug, Ext(U,, Uy)

Can invert and get a “corvect”

source string w, given a seed s and
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Building Blocks

Linear Extractors: Invertibility

w < Uy source
Sich — o
S « Uy seed

LINEAR RANDOMNESS EXTRACTORS

For the above Ext, there exists efficient InvExt such that:
1. InvExt(Ext(Uy;Uy),Uyg), Uy, Ext(Uy, Uy) = Uy, Ug, Ext(U,, Uy)
2. For each (s,y) € {0,1}*x{0,1}"
* If there exists w s.t. Ext(w;s) =y, Ext(InvExt(y,s); S) = y w.p. 1.

* Else InvExt(y,s) =1L w.p. 1.
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CASE |
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for some j.
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CASE I

mq —1 InvExt(.,s) Sample s U,

Shamir
Sharing

my— InvExt(.,s)

Shamir
Sharing
Leakage part (N-(t-1) shares):

Leakages from each of the
(W, s;)’s independent of the m;’s.
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CASE I

Leakage part (N-(t-1) shares) < Uq
independent of the m;’s, ’
Remaining (t-1) of the (w;,s;)’s
independent of m by privacy of Shamir.
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