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▪ Goal: send message m
▪ Problem: what if  contains errors?m
▪ Solution: error correcting codes
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Error Correcting Codes

2

🧑 🧔

😈

E(m) = 00010 110 001 =010 ̂c

D( ̂c) ?= m



Tampering Attack

3

🧑 🧔
c = E(m)



Tampering Attack

3

🧑 🧔

😈
c = E(m)



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈
c = E(m)



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈
̂c



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈

D( ̂c) = m̂

̂c



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D( ̂c) = m̂

̂c



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D( ̂c) = m̂= Order     for dinner

̂c

m 🍕



▪ Adversary may tamper  into  s.t. c ̂c D( ̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D( ̂c) = m̂= Order     for dinner

̂c

m̂ 🍕🍍



E

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

D



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

D



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm c



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm c

😈



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)
▪  either:D

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)
▪  either:D
▪ Decodes correctly

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c
m



E

▪ Non-Malleable Code: code  that prevents tampering(E, D)
▪  either:D
▪ Decodes correctly

▪ Outputs unrelated m̂
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▪ For every , we give efficient NMC for -size circuit tamperingc ∈ O(1) nc

▪ Problem: implies polynomial circuit lower bounds

▪ Solution: assume such lower bounds!
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▪ Conjecture 1:  s.t. for almost all ,  is undecidable for non-deterministic 

circuits of size 
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

▪ Worst-Case Assumption 

▪  has complete problemsE
▪ Orthogonal to crypto (to the best of our knowledge)

▪ Theorem: Suppose that Conjecture 1 is true. Then, for all constants , there exists an (explicit) 
- NMC for -sized circuits.

c
n−c nc
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▪ Code  must be hard for -sized circuits(E, D) nc

▪ Reduction from Conjecture 1 must simulate tampering experiment

▪ Solution: Non-deterministic reduction + strong statistical tool
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▪ Main ingredient: split state tampering with bounded communication

▪ Known NMCs for this tampering class in the standard model

Bounded Communication Tampering
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▪ uniform for non-deterministic circuits of size  𝖯𝖱𝖦(s) ≈ nc

▪  s.t. E(x) = (s, cB) (𝖯𝖱𝖦(s), cB) ∈ Ẽ(x)

▪ D(s′ , c′ B) = D̃(𝖯𝖱𝖦(s′ ), c′ B)

Our Construction for -Size Circuitsnc

12



Proof Idea

13

A B



Proof Idea

13

A B
cBcA ← {0,1}n



▪ Code is secure if  is randomcA

Proof Idea

13

A B
cBcA ← {0,1}n



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

(s̃, c̃B) = f(s, cB)



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃ (s̃, c̃B) = f(s, cB)



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

▪ Leads to a distinguisher on 𝖯𝖱𝖦

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)



▪ Code is secure if  is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering    f

▪ Leads to a distinguisher on 𝖯𝖱𝖦

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB

c̃A c̃B

s

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)



Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)



▪ Protocol accepts  and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)



▪ Protocol accepts  and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)



▪ Protocol accepts  and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

▪ Arthur is efficient as tampering    is efficientf

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)



▪ Protocol accepts  and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

▪ Arthur is efficient as tampering    is efficientf

▪ Turn into a non-deterministic distinguisher for  via known techniques𝖯𝖱𝖦
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Thanks!


