
(Nondeterministic) Hardness vs. Non-
Malleability
Marshall Ball (NYU), Dana Dachman-Soled (UMD), Julian Loss (CISPA)

Error Correcting Codes

2

🧑 🧔

▪ Goal: send message m
Error Correcting Codes

2

🧑 🧔

▪ Goal: send message m
Error Correcting Codes

2

🧑 🧔
m = 01010 110 00110 0

▪ Goal: send message m
▪ Problem: what if contains errors?m

Error Correcting Codes

2

🧑 🧔
m = 01010 110 00110 0

▪ Goal: send message m
▪ Problem: what if contains errors?m

Error Correcting Codes

2

🧑 🧔
m = 01010

😈

110 0011 01

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔
m = 01010

😈

110 0011 01

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔

😈

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔

😈

01E(m) = 000101110 001 = c

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔

😈

01E(m) = 000101110 001 = c

D(c) = m

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔

😈

E(m) = 00010 110 001 =010 ̂c

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

Error Correcting Codes

2

🧑 🧔

😈

E(m) = 00010 110 001 =010 ̂c

D(̂c) ?= m

▪ Goal: send message m
▪ Problem: what if contains errors?m
▪ Solution: error correcting codes

▪ What if doesn’t decode to ?̂c m

Error Correcting Codes

2

🧑 🧔

😈

E(m) = 00010 110 001 =010 ̂c

D(̂c) ?= m

Tampering Attack

3

🧑 🧔
c = E(m)

Tampering Attack

3

🧑 🧔

😈
c = E(m)

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈
c = E(m)

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈
̂c

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
Tampering Attack

3

🧑 🧔

😈

D(̂c) = m̂

̂c

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D(̂c) = m̂

̂c

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D(̂c) = m̂= Order for dinner

̂c

m 🍕

▪ Adversary may tamper into s.t. c ̂c D(̂c) = m̂ ≠ m
▪ Potentially devastating consequences!

Tampering Attack

3

🧑 🧔

😈

D(̂c) = m̂= Order for dinner

̂c

m̂ 🍕🍍

E

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

D

E

▪ Non-Malleable Code: code that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

D

E

▪ Non-Malleable Code: code that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

E

▪ Non-Malleable Code: code that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm c

E

▪ Non-Malleable Code: code that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm c

😈

E

▪ Non-Malleable Code: code that prevents tampering(E, D)

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c

E

▪ Non-Malleable Code: code that prevents tampering(E, D)
▪ either:D

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c

E

▪ Non-Malleable Code: code that prevents tampering(E, D)
▪ either:D
▪ Decodes correctly

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c
m

E

▪ Non-Malleable Code: code that prevents tampering(E, D)
▪ either:D
▪ Decodes correctly

▪ Outputs unrelated m̂

Non-Malleable Codes (Dziembowski, Pietrzak, Wichs `10)

4

Dm

😈

̂c
m

m̂

Defining Security

5

Defining Security

5

m

Defining Security

5

E$
m c

▪ Tampering modelled as function f

Defining Security

5

E$
m c f

▪ Tampering modelled as function f

Defining Security

5

E$
m c ̂cf

▪ Tampering modelled as function f

Defining Security

5

E$ Dm c ̂cf

▪ Tampering modelled as function f

Defining Security

5

E$ Dm c ̂c m̂f

▪ Tampering modelled as function f

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂
m

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

m

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

m

m̂

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

m

m̂

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

m

m̂
Df

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

▪ Induces indistinguishable distribution over identity/constant functionsDf

Defining Security

5

E$ Dm c ̂c m̂f

𝖲𝗂𝗆
same

m̂

m

m̂
Df

▪ Tampering modelled as function f

▪ samples or independently from 𝖲𝗂𝗆 same m̂ m

▪ Induces indistinguishable distribution over identity/constant functionsDf

Defining Security

5

E$ Dm c ̂c m̂f
≈

𝖲𝗂𝗆
same

m̂

m

m̂
Df

Goals of this Work

6

▪ Efficient and explicit NMCs

Goals of this Work

6

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

Goals of this Work

6

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

Goals of this Work

6

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

m

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c D

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c D m

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c D m m ⊕ 1

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c E$D m m ⊕ 1

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$
m c E$D m m ⊕ 1 ̂c

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$ Dm c E$D m m ⊕ 1 ̂c

▪ Efficient and explicit NMCs

▪ Plain model, plausible assumptions

▪ Interesting tampering classes: arbitrary polynomial size circuits

▪ Problem: goals are inherently conflicting!

Goals of this Work

6

E$ Dm c E$D m m ⊕ 1 ̂c m ⊕ 1

Next Best Thing?

7

▪ For every , we give efficient NMC for -size circuit tamperingc ∈ O(1) nc

Next Best Thing?

7

▪ For every , we give efficient NMC for -size circuit tamperingc ∈ O(1) nc

▪ Problem: implies polynomial circuit lower bounds

Next Best Thing?

7

▪ For every , we give efficient NMC for -size circuit tamperingc ∈ O(1) nc

▪ Problem: implies polynomial circuit lower bounds

▪ Solution: assume such lower bounds!

Next Best Thing?

7

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

▪ Cheraghchi Guruswami `14

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

▪ Cheraghchi Guruswami `14

▪ Faust Mukherjee Venturi Wichs `14

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

▪ Cheraghchi Guruswami `14

▪ Faust Mukherjee Venturi Wichs `14

▪ Computationally-secure constructions from strong crypto (currently requires ROM):

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

▪ Cheraghchi Guruswami `14

▪ Faust Mukherjee Venturi Wichs `14

▪ Computationally-secure constructions from strong crypto (currently requires ROM):

▪ Ball Dachman-Soled Kulkarni Lin Malkin `19

Limitations of Prior Works

8

▪ Non-explicit monte-carlo constructions:

▪ Cheraghchi Guruswami `14

▪ Faust Mukherjee Venturi Wichs `14

▪ Computationally-secure constructions from strong crypto (currently requires ROM):

▪ Ball Dachman-Soled Kulkarni Lin Malkin `19

▪ Dachman-Soled Komargodski Pass `20

Limitations of Prior Works

8

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

▪ Worst-Case Assumption

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

▪ Worst-Case Assumption

▪ has complete problemsE

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

▪ Worst-Case Assumption

▪ has complete problemsE
▪ Orthogonal to crypto (to the best of our knowledge)

Main Hardness Assumption and Theorem

9

▪ Define E = 𝖣𝖳𝖨𝖬𝖤 [𝟤𝖮(𝗇)]
▪ Conjecture 1: s.t. for almost all , is undecidable for non-deterministic

circuits of size
∃γ ∈ (0,1), L ∈ E n L
2γ⋅n

▪ Properties:

▪ Worst-Case Assumption

▪ has complete problemsE
▪ Orthogonal to crypto (to the best of our knowledge)

▪ Theorem: Suppose that Conjecture 1 is true. Then, for all constants , there exists an (explicit)
- NMC for -sized circuits.

c
n−c nc

Main Hardness Assumption and Theorem

9

Key Obstacle

10

▪ Code must be hard for -sized circuits(E, D) nc

Key Obstacle

10

▪ Code must be hard for -sized circuits(E, D) nc

▪ Reduction from Conjecture 1 must simulate tampering experiment

Key Obstacle

10

▪ Code must be hard for -sized circuits(E, D) nc

▪ Reduction from Conjecture 1 must simulate tampering experiment

▪ Solution: Non-deterministic reduction + strong statistical tool

Key Obstacle

10

Bounded Communication Tampering

11

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

E(m)

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

A B

E(m)
cA cB

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

A B

E(m)
cA cB

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

A B

E(m)
cA cB

T ≪ |cA | , |cB |

▪ Main ingredient: split state tampering with bounded communication

Bounded Communication Tampering

11

A B

E(m)
cA cB

T ≪ |cA | , |cB |

c̃A c̃B

▪ Main ingredient: split state tampering with bounded communication

▪ Known NMCs for this tampering class in the standard model

Bounded Communication Tampering

11

A B

E(m)
cA cB

T ≪ |cA | , |cB |

c̃A c̃B

Our Construction for -Size Circuitsnc

12

▪ Start from:

Our Construction for -Size Circuitsnc

12

▪ Start from:

▪ NMC for split-state bounded communication tampering(Ẽ, D̃)

Our Construction for -Size Circuitsnc

12

▪ Start from:

▪ NMC for split-state bounded communication tampering(Ẽ, D̃)

▪ uniform for non-deterministic circuits of size 𝖯𝖱𝖦(s) ≈ nc

Our Construction for -Size Circuitsnc

12

▪ Start from:

▪ NMC for split-state bounded communication tampering(Ẽ, D̃)

▪ uniform for non-deterministic circuits of size 𝖯𝖱𝖦(s) ≈ nc

▪ s.t. E(x) = (s, cB) (𝖯𝖱𝖦(s), cB) ∈ Ẽ(x)

Our Construction for -Size Circuitsnc

12

▪ Start from:

▪ NMC for split-state bounded communication tampering(Ẽ, D̃)

▪ uniform for non-deterministic circuits of size 𝖯𝖱𝖦(s) ≈ nc

▪ s.t. E(x) = (s, cB) (𝖯𝖱𝖦(s), cB) ∈ Ẽ(x)

▪ D(s′ , c′ B) = D̃(𝖯𝖱𝖦(s′), c′ B)

Our Construction for -Size Circuitsnc

12

Proof Idea

13

A B

Proof Idea

13

A B
cBcA ← {0,1}n

▪ Code is secure if is randomcA

Proof Idea

13

A B
cBcA ← {0,1}n

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

(s̃, c̃B) = f(s, cB)

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃ (s̃, c̃B) = f(s, cB)

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

▪ Leads to a distinguisher on 𝖯𝖱𝖦

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cBs

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)

▪ Code is secure if is randomcA

▪ Assume that code is broken if cA = 𝖯𝖱𝖦(s)

▪ Then there exists efficient tampering f

▪ Leads to a distinguisher on 𝖯𝖱𝖦

Proof Idea

13

A B
cA = 𝖯𝖱𝖦(s) cB

c̃A c̃B

s

s̃
c̃A = 𝖯𝖱𝖦(s̃)

(s̃, c̃B) = f(s, cB)

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)

▪ Protocol accepts and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)

▪ Protocol accepts and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)

▪ Protocol accepts and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

▪ Arthur is efficient as tampering is efficientf

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)

▪ Protocol accepts and rejects (s, 𝖯𝖱𝖦(s)) (s, U)

▪ Merlin is unbounded, can evaluate 𝖯𝖱𝖦

▪ Arthur is efficient as tampering is efficientf

▪ Turn into a non-deterministic distinguisher for via known techniques𝖯𝖱𝖦

Merlin-Arthur Protocol

14

🧙 🧔
y = 𝖯𝖱𝖦(s)

Thanks!

