Nova

Recursive Zero-Knowledge Arguments from Folding Schemes

Abhiram Kothapalli (CMU), Srinath Setty (MSR), Ioanna Tzialla (NYU)

eprint.iacr.org/2021/370
github.com/Microsoft/Nova
Goal: Practical zkSNARKs for Recursive Computation

Prove that (non-deterministic) function F applied n times to initial input z_0 results in z_n
Goal: Practical zkSNARKs for Recursive Computation

Prove that (non-deterministic) function F applied n times to initial input z_0 results in z_n

Applications

• Verifiable Delay Function: Let F be a delay function [BBBF19]
• ZK Virtual Machines: Let F be a step of the VM [BCTV14, GPR21]
• ZK-rollups: Let F validate new blockchain transactions
Naive Approach

Use a SNARK to monolithically prove the unrolled statement

\[z_0 \quad W_0, \ldots, W_n \]

\[
\begin{array}{cccccccc}
F & F & F & F & F & F & \cdots & F & F \\
\end{array}
\]

\[z_n \]
Naive Approach

Use a SNARK to monolithically prove the unrolled statement

\[
\begin{array}{c}
 z_0 \\
 \vdots \\
 z_n
\end{array}
\]

\[
W_0, \ldots, W_n
\]

Arithmetic Circuit

\[
F \ F \ F \ F \ F \ F \ \ldots \ F \ F
\]

Drawbacks

- Fixes \(n \) ahead of time
- \(O(n \cdot |F|) \) prover memory and verifier preprocessing time
- Verifier time may depend on \(n \)
Approach: Incrementally Verifiable Computation (IVC) [Val08]

Incrementally update a proof of i applications to a proof of $i + 1$ applications with the same size.
Approach: Incrementally Verifiable Computation (IVC) [Val08]

Incrementally update a proof of i applications to a proof of $i + 1$ applications with the same size.
Approach: Incrementally Verifiable Computation (IVC) [Val08]

Incrementally update a proof of i applications to a proof of $i + 1$ applications with the same size
Approach: Incrementally Verifiable Computation (IVC) [Val08]

Incrementally update a proof of i applications to a proof of $i + 1$ applications with the same size.
Nova: A Built zkSNARK for Recursive Computation
Nova: A Built zkSNARK for Recursive Computation

- Relaxed R1CS: A new NP-complete relation
- Folding Scheme for Relaxed R1CS
- IVC Scheme
- Nova
Nova: A Built zkSNARK for Recursive Computation

Relaxed R1CS: A new NP-complete relation

Folding Scheme for Relaxed R1CS

IVC Scheme

Efficient zkSNARK of IVC Proof

Succinctness and ZK Layer

Novo
Nova: A Built zkSNARK for Recursive Computation

Implementation and Evaluation

- Implemented in Rust [6000 LOC][github.com/Microsoft/Nova]
- Smallest per step prover time (roughly two $|F| + c$ size multi-exps) [1M gates: 1.1s]
- Smallest recursion overhead c (roughly two scalar multiplications) [20k gates]
- $O(\log |F|)$ size compressed proofs [1M gates: 8 KB]
Presented in this Talk

Relaxed R1CS: A new NP-complete relation

Folding Scheme for Relaxed R1CS

IVC Scheme

Succinctness and ZK Layer

zkSNARK for Relaxed R1CS

Efficient zkSNARK of IVC Proof

Nova

Outline

1. Show that a folding scheme for NP implies IVC
2. Develop a folding scheme for Relaxed R1CS
Valiant’s Original IVC Approach [Val08, BCTV14]
Valiant’s Original IVC Approach [Val08, BCTV14]

\[
(F')^i(z_0) = z_i
\]

SNARK Proof of

\[
Verify \Pi_i
\]

Computation \(F' \)

\[
F
\]

\[
F
\]

\[
\pi_i
\]

\[
z_i
\]

\[
z_{i+1}
\]
Valiant's Original IVC Approach [Val08, BCTV14]

\[F(z_0) = z_i \]

\[(F')^i(z_0) = z_i \]

\[(F')^{i+1}(z_0) = z_{i+1} \]
Valiant’s Original IVC Approach \cite{Val08,BCTV14}

\[
\text{SNARK Proof of } (F')^i(z_0) = z_i
\]

\[
\text{Computation } F'
\]

\[
\pi_i \rightarrow F \
\rightarrow z_{i+1}
\]

\[
\text{Verify } \Pi_i
\]

\[
\pi_{i+1} \quad \text{SNARK Proof of } (F')^{i+1}(z_0) = z_{i+1}
\]

Drawbacks

- SNARKs in \cite{BCTV14} require expensive cycles of pairing-friendly curves and trusted-setup
- Utilizing SNARKs without trusted setup require much larger verifier circuits
Halo’s Approach: Partially Verify Proofs \cite{BGH19,BCLMS20,BDFG20}

\[F'(z_i - 1) = z_i \]

Proof of \(F'(z_{i-1}) = z_i \)

Computation \(F' \)

\(z_i \) \rightarrow \(F \) \rightarrow \(z_{i+1} \)

\(\pi_i \) \rightarrow \text{Partially Verify } \Pi_i
Halo’s Approach: Partially Verify Proofs \cite{BGH19,BCLMS20,BDFG20}

Proof of $F'(z_{i-1}) = z_i$

Computation F'

\begin{align*}
F(z_i - 1) & = z_{i+1} \\
\text{Partially Verify } \Pi_i & \\
\text{Defe the rest into } \text{acc}_i & \\
\text{acc}_i & = \text{acc}_{i+1}
\end{align*}
Halo’s Approach: Partially Verify Proofs \([\text{BGH19, BCLMS20, BDFG20}]\)
Halo’s Approach: Partially Verify Proofs \cite{BGH19, BCLMS20, BDFG20}

Drawbacks

- Partially checking π_i in-circuit is still expensive
- Generating π_i is concretely and asymptotically expensive
Nova: Reduce Claims rather than Verify Proofs

Fold reduces the task of checking two instances to the task of checking a single instance

\[
F'(z_{i-1}) = z_i
\]

\[
(F')^{i-1}(z_0) = z_{i-1}
\]
Nova: Reduce Claims rather than Verify Proofs

Fold reduces the task of checking two instances to the task of checking a single instance.

Claim of $F'(z_{i-1}) = z_i$
Claim of $(F')^{-1}(z_0) = z_{i-1}$

Claim of $(F')^i(z_0) = z_i$

Fold reduces the task of checking two instances to the task of checking a single instance.
How do we implement Fold?

$$z_i \rightarrow F \rightarrow z_{i+1}$$

$$u_i \rightarrow \text{Fold} \rightarrow U_{i+1}$$

$$U_i \rightarrow \text{Computation } F' \rightarrow U_{i+1}$$
Solution: Folding Schemes

A folding scheme interactively reduces the claims \((u_1, w_1), (u_2, w_2) \in R\) to a claim \((u, w) \in R\)
Solution: Folding Schemes

A folding scheme interactively reduces the claims \((u_1, w_1), (u_2, w_2) \in R\) to a claim \((u, w) \in R\)

Completeness

If \(u_1, u_2\) are satisfiable then \(u\) is satisfiable
Solution: Folding Schemes

A folding scheme interactively reduces the claims \((u_1, w_1), (u_2, w_2) \in R\) to a claim \((u, w) \in R\)

Completeness

If \(u_1, u_2\) are satisfiable then \(u\) is satisfiable

Knowledge Soundness

If prover outputs satisfying \(w\) then it must know satisfying \(w_1, w_2\)
Solution: Folding Schemes

A folding scheme interactively reduces the claims \((u_1, w_1), (u_2, w_2) \in R\) to a claim \((u, w) \in R\)

Completeness
If \(u_1, u_2\) are satisfiable then \(u\) is satisfiable

Efficiency
Folding should be much cheaper for the verifier than checking an instance

Knowledge Soundness
If prover outputs satisfying \(w\) then it must know satisfying \(w_1, w_2\)
Non-Interactive Folding Schemes

A public-coin folding scheme can be made non-interactive via the Fiat-Shamir Transform.
Given a non-interactive folding scheme for NP, F' can verifiably fold u_i and U_i by running the folding verifier.
Given a non-interactive folding scheme for NP, F' can verifiably fold u_i and U_i by running the folding verifier.

Witness w_i consists of a trace of the execution of $F(z_{i-1}) = z_i$.

Diagram:
- **Computation F'**
 - Input: z_i
 - Output: z_{i+1}
 - u_i is input to the folding verifier.
- **Folding Verifier**
 - Input: u_i, U_i
 - Output: U_{i+1}
- **Folding Prover**
 - Input: w_i, W_i
 - Output: W_{i+1}

The diagram illustrates the flow of information through the folding scheme, with the folding verifier and prover exchanging information to verify the folding process.
Folding an NP-Complete Relation

We start with R1CS a popular algebraic constraint system for NP

An R1CS statement consists of constraint matrices $A, B, C,$ and vector x. A witness vector W is satisfying if for $Z = (W, x, 1)$
Attempt to Fold R1CS Instances

\[W_1 \quad (A, B, C, x_1) \]
\[W_2 \quad (A, B, C, x_2) \]
Attempt to Fold R1CS Instances

\[W_1, W_2 \]
\[(A, B, C, x_1) \]
\[(A, B, C, x_2) \]

Challenge \(r \)
Attempt to Fold R1CS Instances

\[W_1 \quad (A, B, C, x_1) \]
\[W_2 \quad (A, B, C, x_2) \]

\[x \leftarrow x_1 + r \cdot x_2 \]

Take a random linear combination

\[x \leftarrow x_1 + r \cdot x_2 \]
Attempt to Fold R1CS Instances

$$W_1 \leftarrow (A, B, C, x_1)$$

$$W_2 \leftarrow (A, B, C, x_2)$$

$$x \leftarrow x_1 + r \cdot x_2$$

$$W \leftarrow W_1 + r \cdot W_2$$

Challenge r

Take a random linear combination

$x \leftarrow x_1 + r \cdot x_2$
Attempt to Fold R1CS Instances

\[
\begin{align*}
W_1 & \leftarrow (A, B, C, x_1) \\
W_2 & \leftarrow (A, B, C, x_2) \\
P & \leftarrow \text{Challenge } r \\
V & \leftarrow \text{Take a random linear combination} \\
x & \leftarrow x_1 + r \cdot x_2 \\
W & \leftarrow W_1 + r \cdot W_2 \\
W & \leftarrow (A, B, C, x)
\end{align*}
\]
Attempt to Fold R1CS Instances

Unfortunately, letting $Z_i = (W_i, x_i, 1)$ and $Z = Z_1 + r \cdot Z_2$, we have that $AZ \cdot BZ \neq CZ$.
Attempt to Fold R1CS Instances

Unfortunately, letting $Z_i = (W_i, x_i, 1)$ and $Z = Z_1 + r \cdot Z_2$, we have that $AZ \cdot BZ \neq CZ$

\[CZ = AZ_1 \circ BZ_1 + r \cdot AZ_2 \circ BZ_2 \]
Attempt to Fold R1CS Instances

Unfortunately, letting $Z_i = (W_i, x_i, 1)$ and $Z = Z_1 + r \cdot Z_2$, we have that $AZ \cdot BZ \neq CZ$

$$CZ = AZ_1 \circ BZ_1 + r \cdot AZ_2 \circ BZ_2$$

$$AZ \cdot BZ = AZ_1 \circ BZ_1 + r \cdot (AZ_1 \circ BZ_2 + AZ_2 \circ BZ_1) + r^2 \cdot (AZ_2 \circ BZ_2)$$
Attempt to Fold R1CS Instances

Unfortunately, letting $Z_i = (W_i, x_i, 1)$ and $Z = Z_1 + r \cdot Z_2$, we have that $AZ \cdot BZ \neq CZ$

$$CZ = AZ_1 \cdot BZ_1 + r \cdot AZ_2 \cdot BZ_2$$

$$AZ \cdot BZ = AZ_1 \cdot BZ_1 + r \cdot (AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1) + r^2 \cdot (AZ_2 \cdot BZ_2)$$

To absorb the error terms we introduce an error vector E in the statement
Attempt to Fold R1CS Instances

Unfortunately, letting $Z_i = (W_i, x_i, 1)$ and $Z = Z_1 + r \cdot Z_2$, we have that $AZ \cdot BZ \neq CZ$

\[CZ = AZ_1 \cdot BZ_1 + r \cdot AZ_2 \cdot BZ_2 \]

To absorb the extra r factor we introduce scalar u in the statement

\[AZ \cdot BZ = AZ_1 \cdot BZ_1 + r \cdot (AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1) + r^2 \cdot (AZ_2 \cdot BZ_2) \]

To absorb the error terms we introduce an error vector E in the statement
A relaxed R1CS statement additionally contains an error vector E and scalar u. A witness vector W is satisfying if for $Z = (W, x, u)$

\[
A Z \odot B Z = u \cdot C Z + E
\]
Folding Scheme for Relaxed R1CS (Almost)

W_1 (A, B, C, E_1, u_1, x_1)

W_2 (A, B, C, E_2, u_2, x_2)
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow A Z_1 \cdot B Z_2 + A Z_2 \cdot B Z_1 - u_1 \cdot C Z_2 - u_2 \cdot C Z_1 \]

\[W_1 \quad (A, B, C, E_1, u_1, x_1) \]

\[W_2 \quad (A, B, C, E_2, u_2, x_2) \]
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 \]
\[-u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]

\[W_1 \quad \text{(A, B, C, } E_1, u_1, x_1) \]
\[W_2 \quad \text{(A, B, C, } E_2, u_2, x_2) \]

\[T \]
\[u \leftarrow u_1 + r \cdot u_2 \]
\[x \leftarrow x_1 + r \cdot x_2 \]
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]

\[W \leftarrow W_1 + r \cdot W_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]

\[(A, B, C, E_1, u_1, x_1) \]

\[(A, B, C, E_2, u_2, x_2) \]

\[u \leftarrow u_1 + r \cdot u_2 \]

\[x \leftarrow x_1 + r \cdot x_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]
Folding Scheme for Relaxed R1CS (Almost)

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]

\[W \leftarrow W_1 + r \cdot W_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]

\[T \leftarrow \begin{array}{c}
W_1 \\
W_2
\end{array} \quad (A, B, C, E_1, u_1, x_1) \]

\[(A, B, C, E_2, u_2, x_2) \]

\[u \leftarrow u_1 + r \cdot u_2 \]

\[x \leftarrow x_1 + r \cdot x_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]

\[(A, B, C, E, u, x) \]
Folding Scheme for Relaxed R1CS (Almost)

- $T \leftarrow A \mathbf{Z}_1 \cdot B \mathbf{Z}_2 + A \mathbf{Z}_2 \cdot B \mathbf{Z}_1 - u_1 \cdot C \mathbf{Z}_2 - u_2 \cdot C \mathbf{Z}_1$
- $W \leftarrow W_1 + r \cdot W_2$
- $E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2$

Problem: Verifier cannot enforce that prover folds W correctly.

$u \leftarrow u_1 + r \cdot u_2$
$x \leftarrow x_1 + r \cdot x_2$

$E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2$
Folding Scheme for Relaxed R1CS (Almost)

Problem: Verifier cannot enforce that prover folds correctly

\[T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \]

\[W \leftarrow W_1 + r \cdot W_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]

Problem: Because \(|E| = O(|W|) \) the verifier is not succinct

\[u \leftarrow u_1 + r \cdot u_2 \]

\[x \leftarrow x_1 + r \cdot x_2 \]

\[E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2 \]

\[W_1 \]

\[(A, B, C, E_1, u_1, x_1) \]

\[W_2 \]

\[(A, B, C, E_2, u_2, x_2) \]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement:

\[\begin{align*}
(E_1, W_1) & \quad (A, B, C, \overline{E}_1, u_1, \overline{W}_1, x_1) \\
(E_2, W_2) & \quad (A, B, C, \overline{E}_2, u_2, \overline{W}_2, x_2)
\end{align*}\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement

\[
T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1
\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement

\[
T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1
\]

\[
\begin{align*}
(E_1, W_1) &\quad (A, B, C, E_1, u_1, W_1, x_1) \\
(E_2, W_2) &\quad (A, B, C, E_2, u_2, W_2, x_2)
\end{align*}
\]

\[
\bar{T} = \text{com}(T)
\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement

\[
E_1, W_1, (A, B, C, E_2, u_1, W_1, x_1)
\]

\[
E_2, W_2, (A, B, C, E_2, u_2, W_2, x_2)
\]

\[
T = \text{com}(T)
\]

\[
T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1
\]

\[
- u_1 \cdot CZ_2 - u_2 \cdot CZ_1
\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat (E, W) as part of the witness and store their commitments in the statement

$$(E_1, W_1) \quad (A, B, C, E_1, u_1, W_1, x_1)$$
$$(E_2, W_2) \quad (A, B, C, E_2, u_2, W_2, x_2)$$

$$T \leftarrow AZ_1 \odot BZ_2 + AZ_2 \odot BZ_1$$
$$-u_1 \cdot CZ_2 - u_2 \cdot CZ_1$$

$u \leftarrow u_1 + r \cdot u_2$
$x \leftarrow x_1 + r \cdot x_2$
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement:

\[
\begin{align*}
(E_1, W_1) & \quad \quad \quad \quad (A, B, C, \bar{E}_1, u_1, \bar{W}_1, x_1) \\
(E_2, W_2) & \quad \quad \quad \quad (A, B, C, \bar{E}_2, u_2, \bar{W}_2, x_2)
\end{align*}
\]

\[
T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 \\
- u_1 \cdot CZ_2 - u_2 \cdot CZ_1
\]

\[
\begin{align*}
\bar{W} & \leftarrow \bar{W}_1 + r \cdot \bar{W}_2 \\
\bar{E} & \leftarrow \bar{E}_1 + r \cdot \bar{T} + r^2 \cdot \bar{E}_2 \\
u & \leftarrow u_1 + r \cdot u_2 \\
x & \leftarrow x_1 + r \cdot x_2
\end{align*}
\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement

\[
\begin{align*}
(E_1, W_1) &\quad (A, B, C, E_1, u_1, W_1, x_1) \\
(E_2, W_2) &\quad (A, B, C, E_2, u_2, W_2, x_2)
\end{align*}
\]

\[
T \leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \\
W \leftarrow W_1 + r \cdot W_2 \\
E \leftarrow E_1 + r \cdot T + r^2 \cdot E_2
\]

Challenge \(r\)

\[
E \leftarrow \overline{E}_1 + r \cdot \overline{T} + r^2 \cdot \overline{E}_2 \\
W \leftarrow \overline{W}_1 + r \cdot \overline{W}_2 \\
u \leftarrow u_1 + r \cdot u_2 \\
x \leftarrow x_1 + r \cdot x_2
\]
Folding Scheme for Relaxed R1CS from Additive Commitments

Treat \((E, W)\) as part of the witness and store their commitments in the statement

\[
\begin{align*}
T &\leftarrow AZ_1 \cdot BZ_2 + AZ_2 \cdot BZ_1 \\
&\quad - u_1 \cdot CZ_2 - u_2 \cdot CZ_1 \\
W &\leftarrow W_1 + r \cdot W_2 \\
E &\leftarrow E_1 + r \cdot T + r^2 \cdot E_2
\end{align*}
\]

\[
\begin{align*}
(E, W) &\leftarrow (E_1, W_1) \quad (A, B, C, E_2, u_1, W_1, x_1) \\
(E, W) &\leftarrow (E_2, W_2) \quad (A, B, C, E_2, u_2, W_2, x_2)
\end{align*}
\]

\[
\begin{align*}
\overline{E} &\leftarrow \overline{E}_1 + r \cdot \overline{T} + r^2 \cdot \overline{E}_2 \\
\overline{W} &\leftarrow \overline{W}_1 + r \cdot \overline{W}_2 \\
u &\leftarrow u_1 + r \cdot u_2 \\
x &\leftarrow x_1 + r \cdot x_2
\end{align*}
\]
Summary

We design a folding-friendly variant of R1CS, Relaxed R1CS

We construct a folding scheme for Relaxed R1CS

We construct IVC using our folding scheme for Relaxed R1CS

Our techniques result in a recursive zkSNARK with state-of-the-art efficiency

eprint.iacr.org/2021/370

github.com/Microsoft/Nova

akothapalli@cmu.edu
References

[Val08] Valiant. Incrementally Verifiable Computation or Proofs of Knowledge imply Time/Space Efficiency

[BGH19] Bowe, Green, Hopwood. Halo: Recursive Proof Composition without a Trusted Setup

[BDFG20] Boneh, Drake, Fisch, Gabizon. Halo Infinite: Recursive zkSNARKs from any Additive Polynomial Commitment Scheme

[BBBF19] Boneh, Bonneau, Bünz, Fisch. Verifiable Delay Functions