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Rugged Pseudorandom Permutations

• Syntactically a Rugged PRP is a (VIL) tweakable cipher over a split domain: 
0,1 !× 0,1 ∗, where 𝑛 is in the range128-256 bits.
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Rugged Pseudorandom Permutations

• Syntactically a Rugged PRP is a (VIL) tweakable cipher over a split domain: 
0,1 !× 0,1 ∗, where 𝑛 is in the range128-256 bits.

• Intermediate Security, between PRP and SPRP security.

• The adversary is only given partial access to the deciphering algorithm.
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Rugged Pseudorandom Permutations
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Rugged Pseudorandom Permutations

• Deciphering can be accessed via two 
separate oracles:

• De - restricted queries, full output.

• Gu – unrestricted queries, 1-bit  output. 
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Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.
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Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.
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Gu Oracle

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.
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Gu Oracle

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.

• For satisfiability Gu queries must 
not be trivial to guess.
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Notes on the Definition

• The term rugged is meant to reflect the intermediate overall security and 
the asymmetry in security between enciphering and deciphering.
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• RPRPs are variable-length tweakable ciphers that can be easily transformed 
into AEAD with varying security properties.
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Notes on the Definition

• The term rugged is meant to reflect the intermediate overall security and 
the asymmetry in security between enciphering and deciphering.

• It is mainly intended for variable-length ciphers (not blockciphers) in the 
context of the encode-then-encipher paradigm.

• RPRPs are variable-length tweakable ciphers that can be easily transformed 
into AEAD with varying security properties.

• The definition is itself motivated by the encode-then-encipher paradigm 
and features common to variable-length cipher constructions.
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The UIV Construction
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Protected IV [ShrTer13]

• PIV is a (VIL) tweakable cipher construction 
that is SPRP secure.
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Protected IV [ShrTer13]

• PIV is a (VIL) tweakable cipher construction 
that is SPRP secure.

• Shown here as consisting of a VOL-PRF FK2
and two FIL tweakable cipher instancesEK1.

• A typical instantiation of FK2 is AES-CTR 
where the IV acts as the VOL-PRF input.
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Unilaterally-Protected IV

• UIV is obtained simply by dropping the third 
layer and it can be shown to be RPRP secure.
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Unilaterally-Protected IV

• UIV is obtained simply by dropping the third 
layer and it can be shown to be RPRP secure.

• It can be instantiated with GCM components 
leading to a performance similar to GCM-SIV.

• It is closely related to MiniCTR [Min15] and 
GCM-RUP [ADL17].
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Transforming RPRPs into AEAD
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The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00, 
ShrTer13] in the context of  RPRPs.
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The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00, 
ShrTer13] in the context of  RPRPs.

EtE instantiation
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The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00, 
ShrTer13] in the context of  RPRPs.

• EtE is slightly more general, the above is a specific instantiation of it.

• (EK, DK) is RPRP secure ⟹ EtE is Misuse-Resistant AEAD.
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The EtD Transform
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• (EK, DK) is RPRP secure ⟹ EtD yields a RUPAE nonce-hiding AEAD.

• When the tweakable cipher is GCM-UIV this instantiation of EtD
corresponds to GCM-RUP [ADL17].



• However we can instantiate it differently to reduce the ciphertext expansion 
by using the nonce to authenticate the ciphertext.
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EtD instantiation 2
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• However we can instantiate it differently to reduce the ciphertext expansion 
by using the nonce to authenticate the ciphertext.

• (EK, DK) is RPRP secure ⟹ EtD is a (standard) AEAD that is RUPAE secure.
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Nonce-Set AEAD
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The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain 
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).
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The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain 
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).

• We can generalize this further by testing the nonce for set membership
instead of equality, yielding the AwN transform.

AwN transform
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The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain 
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).

• We can generalize this further by testing the nonce for set membership
instead of equality, yielding the AwN transform.

• AwN transforms an RPRP into a Nonce-Set AEAD that is Misuse-Resistant.

AwN transform
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Nonce-Set AEAD Formally

• Syntactically the difference is in the decryption algorithm:
(𝑁′,𝑀′)/(⊥, ⊥) ← Dec* 𝑾,𝐻, 𝐶 where 𝑁′ ∈ 𝑾
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Nonce-Set AEAD Formally

• Syntactically the difference is in the decryption algorithm:
(𝑁′,𝑀′)/(⊥, ⊥) ← Dec* 𝑾,𝐻, 𝐶 where 𝑁′ ∈ 𝑾

• Correctness requires that for all 𝐾,𝑁,𝐻,𝑀,𝑾 such that 𝑁 ∈ 𝑾,
If 𝐶 ← Enc+ 𝑁,𝐻,𝑀 then (𝑁,𝑀) ← Dec+ 𝑾,𝐻, 𝐶 .

• (MR)AE security translates in a straightforward manner, we only need to 
adapt the prohibited queries:

If 𝐶 ← Enc+ 𝑁,𝐻,𝑀 then no queries Dec+ 𝑾,𝐻, 𝐶 where 𝑁 ∈ 𝑾 can be made 
by the adversary.
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Why Nonce-Set AEAD?

• It is a natural primitive in the context of order-resilient channels such as 
QUIC and DTLS which employ window mechanisms.

• Nonce-Set AEAD serves as a stepping stone from which a variety of secure 
channel functionalities can be easily realized.
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Why Nonce-Set AEAD?

• It is a natural primitive in the context of order-resilient channels such as 
QUIC and DTLS which employ window mechanisms.

• Nonce-Set AEAD serves as a stepping stone from which a variety of secure 
channel functionalities can be easily realized.

• Nonce-Set AEAD can also be constructed from any nonce-hiding AEAD via 
a straightforward generic transform.

• However AwN realizes Nonce-Set AEAD directly resulting in more compact 
ciphertexts than this generic transform.
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Order-Resilient Channels
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Order-Resilient Channels

• QUIC and DTLS realize secure channels over UDP and need to handle out-
of-order delivery.

• Several possibilities arise for handling reorderings, replays, modifications, 
and deletions, and how much of each to tolerate.
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Order-Resilient Channels

• QUIC and DTLS realize secure channels over UDP and need to handle out-
of-order delivery.

• Several possibilities arise for handling reorderings, replays, modifications, 
and deletions, and how much of each to tolerate.

• Typical constructions employ one or more window mechanisms, which 
add complexity—making them hard to understand and analyze.

• In general, it is unclear how these additional mechanisms interact with 
AEAD and what the overall security of the channel is.
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The Support Predicate

• The various functionalities of such channels can be formally characterized 
by a support predicate:

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕 ← 𝒔𝒖𝒑𝒑(𝑪, 𝑪𝑺, 𝑫𝑪𝑹)
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The Support Predicate

• The various functionalities of such channels can be formally characterized 
by a support predicate:

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕 ← 𝒔𝒖𝒑𝒑(𝑪, 𝑪𝑺, 𝑫𝑪𝑹)

• It was developed in [Bac19, FGJ20] as a generalization of the silencing 
approach by [RogZha18].  

• The support predicate permeates into all aspects of the secure channel 
correctness, security, and robustness [FGJ20].
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Order-Resilient Channels from NS-AEAD

• We present a universal and generic channel construction from Nonce-Set 
AEAD for any desired support predicate!

Init()

(sts, str) $ StInit()

K  $ {0, 1}k

stks  (sts, K)

stkr  (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K) stks

(st
0
s, N) NonceExtract(sts)

if N = ? then

return (st
0
s,?)

C  Enc(K,N,A,M)

stk
0
s  (st

0
s, K)

return (stk
0
s, C)

Recv(stkr, A, C)

(str, K) stkr

W  NonceSetPolicy(str)

(N,M) Dec(K,W , A, C)

if (N,M) = (?,?) then

mn ?
else

(st
0
r,mn) StUpdate(str, N)

stk
0
r  (st

0
r, K)

return (stk
0
r,mn,M)

Fig. 10: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce-set processing scheme.

used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf ]

described in Fig. 27.

References
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to securely release unverified plaintext in authenticated encryption. In P. Sarkar
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for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf ]

described in Fig. 27.
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Order-Resilient Channels from NS-AEAD

• We prove this channel construction correct, robust, and secure in a 
generic way for any support predicate.

• We only require that the Nonce-Set AEAD is secure and that the NSP 
scheme satisfy a functionality property called faithfulness.
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Order-Resilient Channels from NS-AEAD

• We prove this channel construction correct, robust, and secure in a 
generic way for any support predicate.

• We only require that the Nonce-Set AEAD is secure and that the NSP 
scheme satisfy a functionality property called faithfulness.

• Informally, faithfulness says that the NSP scheme accurately reproduces 
the support predicate logic over the nonces.

• One can simply tune the NSP to the desired functionality and plug in their 
favourite Nonce-Set AEAD and security/robustness will be automatic.
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Summary

• Rugged PRPs strike a new tradeoff between security and performance.

• In particular, we have shown that the Encode-then-Encipher paradigm can 
be made to work with weaker variable-length ciphers than SPRPs.  
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Summary

• Rugged PRPs strike a new tradeoff between security and performance.

• In particular, we have shown that the Encode-then-Encipher paradigm can 
be made to work with weaker variable-length ciphers than SPRPs.  

• The new notion allowed a systematic exploration of the different AEAD
and NS-AEAD schemes that can be realized from UIV.

• We can look for alternative RPRP constructions and plug them into our 
template constructions.

• NS-AEAD draws a clean abstraction boundary for understanding order-
resilient channels, separating security from channel functionality.
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