
Overloading the Nonce:
Rugged PRPs, Nonce-Set AEAD, and Order-Resilient Channels

Jean Paul Degabriele and Vukašin Karadžić

Outline

• Defining Rugged PRPs

• The UIV Construction

• Transforming Rugged PRPs into AEAD

• Nonce-Set AEAD

• Order-Resilient Channels

2

Defining Rugged PRPs

3

Rugged Pseudorandom Permutations

• Syntactically a Rugged PRP is a (VIL) tweakable cipher over a split domain:
0,1 !× 0,1 ∗, where 𝑛 is in the range128-256 bits.

EK

XL XR

YL YR

T

4

Rugged Pseudorandom Permutations

• Syntactically a Rugged PRP is a (VIL) tweakable cipher over a split domain:
0,1 !× 0,1 ∗, where 𝑛 is in the range128-256 bits.

EK

XL XR

YL YR

T

DK

XL XR

YL YRT

4

Rugged Pseudorandom Permutations

• Syntactically a Rugged PRP is a (VIL) tweakable cipher over a split domain:
0,1 !× 0,1 ∗, where 𝑛 is in the range128-256 bits.

• Intermediate Security, between PRP and SPRP security.

• The adversary is only given partial access to the deciphering algorithm.

EK

XL XR

YL YR

T

DK

XL XR

YL YRT

4

Rugged Pseudorandom Permutations

EK

XL XR

YL YR

T

En Oracle DK

XL XR

YL YRT

De Oracle

Real World

5

Rugged Pseudorandom Permutations

EK

XL XR

YL YR

T

En Oracle DK

XL XR

YL YRT

De Oracle

Real World

FORWARD

5

Rugged Pseudorandom Permutations

EK

XL XR

YL YR

T

En Oracle DK

XL XR

YL YRT

De Oracle

Real World

FORWARD REPEAT

5

Rugged Pseudorandom Permutations

EK

XL XR

YL YR

T

En Oracle DK

XL XR

YL YRT

De Oracle

DK

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

Real World

FORWARD REPEAT

5

Rugged Pseudorandom Permutations

• Deciphering can be accessed via two
separate oracles:

• De - restricted queries, full output.

• Gu – unrestricted queries, 1-bit output.

EK

XL XR

YL YR

T

En Oracle DK

XL XR

YL YRT

De Oracle

DK

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

Real World

FORWARD REPEAT

5

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

Π

XL XR

YL YR

T

En Oracle
Π%&

XL XR

YL YRT

De Oracle

Π%&

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

Ideal World

FORWARD REPEAT

6

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.

Π

XL XR

YL YR

T

En Oracle
Π%&

XL XR

YL YRT

De Oracle

Π%&

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

Ideal World

FORWARD REPEAT

6

Gu Oracle

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.

Π

XL XR

YL YR

T

En Oracle
Π%&

XL XR

YL YRT

De Oracle

Π%&

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

Ideal World

FORWARD REPEAT

False

X’L
Gu Oracle

6

Gu Oracle

Rugged Pseudorandom Permutations

• Replace EK with an ideal cipher Π.

• Gu always returns false.

• For satisfiability Gu queries must
not be trivial to guess.

Π

XL XR

YL YR

T

En Oracle
Π%&

XL XR

YL YRT

De Oracle

Π%&

XL XR

YL YRT

X’L
?
=

True/False

Gu Oracle

USED

Ideal World

FORWARD REPEAT

False

X’L
Gu Oracle

6

Notes on the Definition

• The term rugged is meant to reflect the intermediate overall security and
the asymmetry in security between enciphering and deciphering.

7

Notes on the Definition

• The term rugged is meant to reflect the intermediate overall security and
the asymmetry in security between enciphering and deciphering.

• It is mainly intended for variable-length ciphers (not blockciphers) in the
context of the encode-then-encipher paradigm.

• RPRPs are variable-length tweakable ciphers that can be easily transformed
into AEAD with varying security properties.

7

Notes on the Definition

• The term rugged is meant to reflect the intermediate overall security and
the asymmetry in security between enciphering and deciphering.

• It is mainly intended for variable-length ciphers (not blockciphers) in the
context of the encode-then-encipher paradigm.

• RPRPs are variable-length tweakable ciphers that can be easily transformed
into AEAD with varying security properties.

• The definition is itself motivated by the encode-then-encipher paradigm
and features common to variable-length cipher constructions.

7

The UIV Construction

8

Protected IV [ShrTer13]

• PIV is a (VIL) tweakable cipher construction
that is SPRP secure.

EK1

FK2

EK1

T

T

XL XR

YL YR
9

Protected IV [ShrTer13]

• PIV is a (VIL) tweakable cipher construction
that is SPRP secure.

• Shown here as consisting of a VOL-PRF FK2
and two FIL tweakable cipher instancesEK1.

• A typical instantiation of FK2 is AES-CTR
where the IV acts as the VOL-PRF input.

EK1

FK2

EK1

T

T

XL XR

YL YR
9

Unilaterally-Protected IV

• UIV is obtained simply by dropping the third
layer and it can be shown to be RPRP secure.

EK1

FK2

T

XL XR

YL YR

10

Unilaterally-Protected IV

• UIV is obtained simply by dropping the third
layer and it can be shown to be RPRP secure.

• It can be instantiated with GCM components
leading to a performance similar to GCM-SIV.

• It is closely related to MiniCTR [Min15] and
GCM-RUP [ADL17].

EK1

FK2

T

XL XR

YL YR

10

Transforming RPRPs into AEAD

11

The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00,
ShrTer13] in the context of RPRPs.

EK

0n M

C1 C2

N,H
Enc(N,H,M)

EK

XL XR

YL YR

T

25

The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00,
ShrTer13] in the context of RPRPs.

EK

0n M

C1 C2

N,H
Enc(N,H,M)

EK

YL YR

26

The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00,
ShrTer13] in the context of RPRPs.

EtE instantiation

EK

0n M

C1 C2

N,H
Enc(N,H,M)

DK

X’L M’

C1 C2N,H

0n
?
=

Dec(N,H,C)
EK

YL YR

27

The EtE Transform

• We revisit and adapt the Encode-then-Encipher paradigm [BelRog00,
ShrTer13] in the context of RPRPs.

• EtE is slightly more general, the above is a specific instantiation of it.

• (EK, DK) is RPRP secure ⟹ EtE is Misuse-Resistant AEAD.

EtE instantiation

EK

0n M

C1 C2

N,H
Enc(N,H,M)

DK

X’L M’

C1 C2N,H

0n
?
=

Dec(N,H,C)
EK

YL YR

28

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EtD instantiation 1

Enc(N,H,M)

29

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H
EtD instantiation 1

Enc(N,H,M)
M’ ∥ 𝑍 0n

?
=

Dec(H,C)

30

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H
EtD instantiation 1

Enc(N,H,M)
M’ ∥ 𝑍 0n

?
=

Dec(H,C)

31

• (EK, DK) is RPRP secure ⟹ EtD yields a RUPAE nonce-hiding AEAD.

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H
EtD instantiation 1

Enc(N,H,M)
M’ ∥ 𝑍 0n

?
=

Dec(H,C)

32

• (EK, DK) is RPRP secure ⟹ EtD yields a RUPAE nonce-hiding AEAD.

• When the tweakable cipher is GCM-UIV this instantiation of EtD
corresponds to GCM-RUP [ADL17].

• However we can instantiate it differently to reduce the ciphertext expansion
by using the nonce to authenticate the ciphertext.

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H
EtD instantiation 1

Enc(N,H,M)
M’ ∥ 𝑍 0n

?
=

Dec(H,C)

33

EtD instantiation 2

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H

N
?
=

Enc(N,H,M) Dec(N,H,C)

N,H

N,H M

34

• However we can instantiate it differently to reduce the ciphertext expansion
by using the nonce to authenticate the ciphertext.

• However we can instantiate it differently to reduce the ciphertext expansion
by using the nonce to authenticate the ciphertext.

• (EK, DK) is RPRP secure ⟹ EtD is a (standard) AEAD that is RUPAE secure.

EtD instantiation 2

The EtD Transform

DK

N M ∥ 0n

C1 C2

H

EK

N’ M’

C1 C2H

N
?
=

Enc(N,H,M) Dec(N,H,C)

N,H

N,H M

35

Nonce-Set AEAD

14

The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).

EK

N M

C1 C2

H
Enc(N,H,M)

DK

N’ M’

C1 C2H

N
?
=

Dec(N,H,C)

EtE variant

15

The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).

• We can generalize this further by testing the nonce for set membership
instead of equality, yielding the AwN transform.

AwN transform

EK

N M

C1 C2

H
Enc(N,H,M)

DK

N’ M’

C1 C2H

W
?
∋

Dec(W,H,C)

15

The AwN Transform

• We can also use the nonce to authenticate in the EtE transform and obtain
a nonce-hiding AEAD (EK =UIV⥲MiniCTR [Min15]).

• We can generalize this further by testing the nonce for set membership
instead of equality, yielding the AwN transform.

• AwN transforms an RPRP into a Nonce-Set AEAD that is Misuse-Resistant.

AwN transform

EK

N M

C1 C2

H
Enc(N,H,M)

DK

N’ M’

C1 C2H

W
?
∋

Dec(W,H,C)

15

Nonce-Set AEAD Formally

• Syntactically the difference is in the decryption algorithm:
(𝑁′,𝑀′)/(⊥, ⊥) ← Dec* 𝑾,𝐻, 𝐶 where 𝑁′ ∈ 𝑾

40

Nonce-Set AEAD Formally

• Syntactically the difference is in the decryption algorithm:
(𝑁′,𝑀′)/(⊥, ⊥) ← Dec* 𝑾,𝐻, 𝐶 where 𝑁′ ∈ 𝑾

• Correctness requires that for all 𝐾,𝑁,𝐻,𝑀,𝑾 such that 𝑁 ∈ 𝑾,
If 𝐶 ← Enc+ 𝑁,𝐻,𝑀 then (𝑁,𝑀) ← Dec+ 𝑾,𝐻, 𝐶 .

41

Nonce-Set AEAD Formally

• Syntactically the difference is in the decryption algorithm:
(𝑁′,𝑀′)/(⊥, ⊥) ← Dec* 𝑾,𝐻, 𝐶 where 𝑁′ ∈ 𝑾

• Correctness requires that for all 𝐾,𝑁,𝐻,𝑀,𝑾 such that 𝑁 ∈ 𝑾,
If 𝐶 ← Enc+ 𝑁,𝐻,𝑀 then (𝑁,𝑀) ← Dec+ 𝑾,𝐻, 𝐶 .

• (MR)AE security translates in a straightforward manner, we only need to
adapt the prohibited queries:

If 𝐶 ← Enc+ 𝑁,𝐻,𝑀 then no queries Dec+ 𝑾,𝐻, 𝐶 where 𝑁 ∈ 𝑾 can be made
by the adversary.

42

Why Nonce-Set AEAD?

• It is a natural primitive in the context of order-resilient channels such as
QUIC and DTLS which employ window mechanisms.

• Nonce-Set AEAD serves as a stepping stone from which a variety of secure
channel functionalities can be easily realized.

17

Why Nonce-Set AEAD?

• It is a natural primitive in the context of order-resilient channels such as
QUIC and DTLS which employ window mechanisms.

• Nonce-Set AEAD serves as a stepping stone from which a variety of secure
channel functionalities can be easily realized.

• Nonce-Set AEAD can also be constructed from any nonce-hiding AEAD via
a straightforward generic transform.

• However AwN realizes Nonce-Set AEAD directly resulting in more compact
ciphertexts than this generic transform.

17

Order-Resilient Channels

18

Order-Resilient Channels

• QUIC and DTLS realize secure channels over UDP and need to handle out-
of-order delivery.

• Several possibilities arise for handling reorderings, replays, modifications,
and deletions, and how much of each to tolerate.

19

Order-Resilient Channels

• QUIC and DTLS realize secure channels over UDP and need to handle out-
of-order delivery.

• Several possibilities arise for handling reorderings, replays, modifications,
and deletions, and how much of each to tolerate.

• Typical constructions employ one or more window mechanisms, which
add complexity—making them hard to understand and analyze.

• In general, it is unclear how these additional mechanisms interact with
AEAD and what the overall security of the channel is.

19

The Support Predicate

• The various functionalities of such channels can be formally characterized
by a support predicate:

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕 ← 𝒔𝒖𝒑𝒑(𝑪, 𝑪𝑺, 𝑫𝑪𝑹)

20

The Support Predicate

• The various functionalities of such channels can be formally characterized
by a support predicate:

𝒂𝒄𝒄𝒆𝒑𝒕/𝒓𝒆𝒋𝒆𝒄𝒕 ← 𝒔𝒖𝒑𝒑(𝑪, 𝑪𝑺, 𝑫𝑪𝑹)

• It was developed in [Bac19, FGJ20] as a generalization of the silencing
approach by [RogZha18].

• The support predicate permeates into all aspects of the secure channel
correctness, security, and robustness [FGJ20].

20

Order-Resilient Channels from NS-AEAD

• We present a universal and generic channel construction from Nonce-Set
AEAD for any desired support predicate!

Init()

(sts, str) $ StInit()

K $ {0, 1}k

stks (sts, K)

stkr (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K) stks

(st
0
s, N) NonceExtract(sts)

if N = ? then

return (st
0
s,?)

C Enc(K,N,A,M)

stk
0
s (st

0
s, K)

return (stk
0
s, C)

Recv(stkr, A, C)

(str, K) stkr

W NonceSetPolicy(str)

(N,M) Dec(K,W , A, C)

if (N,M) = (?,?) then

mn ?
else

(st
0
r,mn) StUpdate(str, N)

stk
0
r (st

0
r, K)

return (stk
0
r,mn,M)

Fig. 10: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce-set processing scheme.

used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf]

described in Fig. 27.

References

1. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How
to securely release unverified plaintext in authenticated encryption. In P. Sarkar

28

21

Order-Resilient Channels from NS-AEAD

• We present a universal and generic channel construction from Nonce-Set
AEAD for any desired support predicate!

• The construction consists of a Nonce-Set AEAD (blue) scheme and a
Nonce-Set Processing (NSP) scheme (red).

Init()

(sts, str) $ StInit()

K $ {0, 1}k

stks (sts, K)

stkr (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K) stks

(st
0
s, N) NonceExtract(sts)

if N = ? then

return (st
0
s,?)

C Enc(K,N,A,M)

stk
0
s (st

0
s, K)

return (stk
0
s, C)

Recv(stkr, A, C)

(str, K) stkr

W NonceSetPolicy(str)

(N,M) Dec(K,W , A, C)

if (N,M) = (?,?) then

mn ?
else

(st
0
r,mn) StUpdate(str, N)

stk
0
r (st

0
r, K)

return (stk
0
r,mn,M)

Fig. 10: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce-set processing scheme.

used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf]

described in Fig. 27.

References

1. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How
to securely release unverified plaintext in authenticated encryption. In P. Sarkar

28

21

Order-Resilient Channels from NS-AEAD

• We present a universal and generic channel construction from Nonce-Set
AEAD for any desired support predicate!

• The construction consists of a Nonce-Set AEAD (blue) scheme and a
Nonce-Set Processing (NSP) scheme (red).

Init()

(sts, str) $ StInit()

K $ {0, 1}k

stks (sts, K)

stkr (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K) stks

(st
0
s, N) NonceExtract(sts)

if N = ? then

return (st
0
s,?)

C Enc(K,N,A,M)

stk
0
s (st

0
s, K)

return (stk
0
s, C)

Recv(stkr, A, C)

(str, K) stkr

W NonceSetPolicy(str)

(N,M) Dec(K,W , A, C)

if (N,M) = (?,?) then

mn ?
else

(st
0
r,mn) StUpdate(str, N)

stk
0
r (st

0
r, K)

return (stk
0
r,mn,M)

Fig. 10: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce-set processing scheme.

used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf]

described in Fig. 27.

References

1. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How
to securely release unverified plaintext in authenticated encryption. In P. Sarkar

28

21

Order-Resilient Channels from NS-AEAD

• We present a universal and generic channel construction from Nonce-Set
AEAD for any desired support predicate!

• The construction consists of a Nonce-Set AEAD (blue) scheme and a
Nonce-Set Processing (NSP) scheme (red).

Init()

(sts, str) $ StInit()

K $ {0, 1}k

stks (sts, K)

stkr (str, K)

return (stks, stkr)

Send(stks, A,M)

(sts, K) stks

(st
0
s, N) NonceExtract(sts)

if N = ? then

return (st
0
s,?)

C Enc(K,N,A,M)

stk
0
s (st

0
s, K)

return (stk
0
s, C)

Recv(stkr, A, C)

(str, K) stkr

W NonceSetPolicy(str)

(N,M) Dec(K,W , A, C)

if (N,M) = (?,?) then

mn ?
else

(st
0
r,mn) StUpdate(str, N)

stk
0
r (st

0
r, K)

return (stk
0
r,mn,M)

Fig. 10: A generic construction of an order-resilient secure channel ChNS from a
nonce-set AEAD scheme and a nonce-set processing scheme.

used to generate supported ciphertexts will be included in the nonce set. Then, by
the nsAE security of NSE, decryption can only succeed as long as the ciphertext
was produced by the sender under one of the nonces contained in the nonce
set—otherwise, it would constitute a forgery. Thus decryption will always fail
for unsupported ciphertexts, and by construction, the state is never updated
(StUpdate is not called) when decryption fails.

Channel Security The security of ChNS is formally stated in the following
theorem whose proof can be found in Supplementary Material E.4

Theorem 6 (Security of ChNS). Let ChNS be the generic channel construction
described in Fig. 10, composed from a nonce-set AEAD scheme NSE with asso-
ciated ciphertext space {0, 1}�` and a nonce-set processing scheme NSP. Then,
for any support predicate supp there exists a stateless simulator S, such that for
every INT-SIM-CCA adversary A making qs send queries and qr receive queries,
there exist adversaries B and C such that

Advint-sim-cca
ChNS,supp

(A, S)  Advnsae

NSE (B) +Advfaithful

NSP,supp(C) +
qs(qs � 1)

2`
.

Furthermore, B makes qs encryption queries and at most qr decryption queries,
whereas C makes qs send queries and at most qr receive queries. Both adversaries
run in time similar to that of A.

Concrete Nonce-Set Processing Scheme. In Supplementary Material E.5
we present a concrete realization of NSP that faithfully reproduces the example
support predicate supprr[wr,wf]

described in Fig. 27.

References

1. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How
to securely release unverified plaintext in authenticated encryption. In P. Sarkar

28

21

Order-Resilient Channels from NS-AEAD

• We prove this channel construction correct, robust, and secure in a
generic way for any support predicate.

• We only require that the Nonce-Set AEAD is secure and that the NSP
scheme satisfy a functionality property called faithfulness.

22

Order-Resilient Channels from NS-AEAD

• We prove this channel construction correct, robust, and secure in a
generic way for any support predicate.

• We only require that the Nonce-Set AEAD is secure and that the NSP
scheme satisfy a functionality property called faithfulness.

• Informally, faithfulness says that the NSP scheme accurately reproduces
the support predicate logic over the nonces.

• One can simply tune the NSP to the desired functionality and plug in their
favourite Nonce-Set AEAD and security/robustness will be automatic.

22

Concluding Remarks

23

Summary

• Rugged PRPs strike a new tradeoff between security and performance.

• In particular, we have shown that the Encode-then-Encipher paradigm can
be made to work with weaker variable-length ciphers than SPRPs.

24

Summary

• Rugged PRPs strike a new tradeoff between security and performance.

• In particular, we have shown that the Encode-then-Encipher paradigm can
be made to work with weaker variable-length ciphers than SPRPs.

• The new notion allowed a systematic exploration of the different AEAD
and NS-AEAD schemes that can be realized from UIV.

• We can look for alternative RPRP constructions and plug them into our
template constructions.

24

Summary

• Rugged PRPs strike a new tradeoff between security and performance.

• In particular, we have shown that the Encode-then-Encipher paradigm can
be made to work with weaker variable-length ciphers than SPRPs.

• The new notion allowed a systematic exploration of the different AEAD
and NS-AEAD schemes that can be realized from UIV.

• We can look for alternative RPRP constructions and plug them into our
template constructions.

• NS-AEAD draws a clean abstraction boundary for understanding order-
resilient channels, separating security from channel functionality.

24

