
CHIP and CRISP

Cas Cremers, Moni Naor, Shahar Paz, Eyal Ronen

Password-based key exchange:
Storage hardening beyond the client-server setting

https://ia.cr/2020/529

https://ia.cr/2020/529


First, let’s get this out of the way...

No, the password is not dead

Websites, IoT, Wi-Fi, TLS 1.3, ….

2



Password use-cases 

● Authentication
○ Login to website or server

● Creating a secure channel
○ Symmetric: One-to-One

○ Asymmetric: Client-to-Server

● But what about Many-to-Many?
○ Can’t we just use multiple one-to-one connections?

3



Typical Use Case

Smart Home Network

4



Smart home network

Computer - Fully patched Linux machine

5



Smart home network

Smart lock - Open front door on command from network

6



Smart home network

Thermostat - Bricked by vendor

Will be discarded with all credentials in persistent memory

7



Smart home network

Tablet - Android 8.0, last security patch January 2019

A proud member of 8 different major botnets

8



Smart home network

Router - Will be replaced next month (new provider)

9



Smart home network

Multiple visiting smartphones

10



The Wi-Fi Solution

All devices store a copy of the password

One compromise to rule them all !

11



Challenges in the Many-to-many setting

● One password, many users/devices
○ Source authentication

○ Revocation of specific users

12



Challenges in the Many-to-many setting

● One password, many users/devices
○ Source authentication

○ Revocation of specific users 

● Dynamic network topology 
○ Bootstrapping of new devices

○ Support for replacement of existing entities (e.g., replace hardware of Wi-Fi access point)

13



Challenges in the Many-to-many setting

● One password, many users/devices
○ Source authentication

○ Revocation of specific users

● Dynamic network topology 
○ Bootstrapping of new devices

○ Support for replacement of existing entities (e.g., replace hardware of Wi-Fi access point)

● Asynchronous and offline password input
○ No communication for setup and key generation phases

○ No shared randomness 

○ No trusted third party or PKI

14



Related work

15



OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]

Password never stored qwerty123 qwerty123

16



OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]
Password never stored 
Or stored in plaintext on both sides

qwerty123 qwerty123

17



OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]
Password never stored 
Or stored in plaintext on both sides

CLIENT SERVERaPAKE: Asymmetric PAKE [BM’93]
Password not in plaintext on server

qwerty123 qwerty123

qwerty123

18



OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]
Password never stored 
Or stored in plaintext on both sides

CLIENT SERVERaPAKE: Asymmetric PAKE [BM’93]
Password not in plaintext on server

CLIENT SERVERsaPAKE: Strong asymmetric PAKE [JKX’18]
Password storage on server prevents pre-computation

E.g. OPAQUE

qwerty123 qwerty123

qwerty123

qwerty123

19



OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]
Password never stored 
Or stored in plaintext on both sides

CLIENT SERVERaPAKE: Asymmetric PAKE [BM’93]
Password not in plaintext on server

CLIENT SERVERsaPAKE: Strong asymmetric PAKE [JKX’18]
Password storage on server prevents pre-computation

E.g. OPAQUE

qwerty123 qwerty123

qwerty123

qwerty123

Problem: (s)aPAKE techniques...

- Require the password in plaintext on one 

side (the client)

- Do not work in the symmetric setting 

(eg Wifi)

20



CHIP & CRISP!

21



We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
Password in plaintext on both sides

CLIENT SERVERsaPAKE: Strong asymmetric PAKE
Password storage on server prevents pre-computation

CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

qwerty123

qwerty123qwerty123

qwerty123

22



We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
Password in plaintext on both sides

CLIENT SERVERsaPAKE: Strong asymmetric PAKE
Password storage on server prevents pre-computation

P1 P2iPAKE

Password not in plaintext at any party

Compromising P1 only allows impersonating P1, not P2!

CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

CHIP

qwerty123

qwerty123qwerty123

qwerty123

23



We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
Password in plaintext on both sides

CLIENT SERVERsaPAKE: Strong asymmetric PAKE
Password storage on server prevents pre-computation

P1 P2iPAKE

Password not in plaintext at any party

Compromising P1 only allows impersonating P1, not P2!

P1 P2siPAKE
All password storage prevents pre-computation

CRISP

CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

CHIP

qwerty123

qwerty123qwerty123

qwerty123

24



Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

25



Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

● We only use the underlying ideas

26



Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

● We only use the underlying ideas

○ We do not need a trusted key generation center or any other third party

27



Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

● We only use the underlying ideas

○ We do not need a trusted key generation center or any other third party

○ We do not need unique identities, but instead use abstract tags to bind 

the password storage to

28



Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

● We only use the underlying ideas

○ We do not need a trusted key generation center or any other third party

○ We do not need unique identities, but instead use abstract tags to bind 

the password storage to

■ Can choose to bind storage to identities, but also to roles, unique 

devices identifiers, etc.

■ Can have multiple devices sharing the same tag

29



Example: CRISP

30



Pre-Computation Resistance

● 𝐻(𝑝𝑤)

○ Vulnerable to pre-computation

○ Reverse lookup 𝐻^(−1) [⋅]

31



Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

○ Salted hash

○ Pre-computation resistant

○ Shared key without shared randomness?

■ 𝑥,𝐻(𝑝𝑤,𝑥) vs. 𝑦,𝐻(𝑝𝑤,𝑦)

■ 𝐻(⋅) is Random Oracle

■ Without 𝑝𝑤, cannot compute 𝐻(𝑝𝑤,𝑦) from 𝐻(𝑝𝑤,𝑥) 

■ Needs one way function with some kind of structure

32



Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

○ Vulnerable to pre-computation

○ Pre-compute 𝑇: 𝑔𝐻 𝑝𝑤′
↦ 𝑝𝑤′

○ T 𝑔𝐻 𝑝𝑤 ⋅𝑥 1/𝑥
= T 𝑔𝐻 𝑝𝑤 = 𝑝𝑤

○ 𝑝𝑤 and 𝑥 can be separated

33



Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝑔𝐻 𝑝𝑤 ⋅𝑥

○ Pre-computation resistant

○ Oracle Hashing [Can’97]

○ Salted Tight OWF [BJX’19]

○ Requires Pairing…

34



Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝐻 𝑝𝑤 𝑥

○ Pre-computation resistant

○ Pairing + Hash-to-Group

○ Offline brute force cost is pairing - Ƹ𝑒 𝐻 𝑝𝑤′ , 𝑔𝑥 =
?

Ƹ𝑒 𝐻 𝑝𝑤 𝑥, 𝑔

35



Password File 
Generation

Pi Pj

36



Password File
Generation

Pi Pj

37



Password File 
Generation

Pi Pj

38



CRISP Protocol
Pi Pj

PAKE

39



CRISP Protocol
Pi Pj

PAKE

40



Performance Comparison

Low overhead, suitable for Wi-Fi and IoT networks

Several suggestion for optimizing CRISP

Code available at: https://github.com/shapaz/CRISP

42



Security

● We provide a UC ideal definition for iPAKE and siPAKE

● We prove CHIP under ROM

● We prove CRISP under GGM+ROM

○ Prove cost password guess is a pairing operation

43



Open Questions

● Does siPAKE requires GGM?

● Can we have fine grained post-compromise password hardening?

● Optimal bound on the cost of brute-force attack?

● Two messages (s)iPAKE?

44



Conclusions

CHIP and CRISP:

1. provide stronger guarantees for password 

storage to all parties, and 

2. work in the symmetric setting!

CHIP and CRISP: Protecting All Parties 

Against Compromise through Identity-Binding 

PAKEs
Cas Cremers and Moni Naor and Shahar Paz and Eyal Ronen

https://ia.cr/2020/529

https://github.com/shapaz/CRISP

45

https://ia.cr/2020/529
https://github.com/shapaz/CRISP

