CHIP and CRISP

Password-based key exchange:
Storage hardening beyond the client-server setting

to Cas Cremers, Moni Naor, Shahar Paz, Eyal Ronen

https://ia.cr/2020/529

https://ia.cr/2020/529

First, let’s get this out of the way...

. |

——

e N e

D

DE A D‘ , ' THE PASSWORD |
THE PASSWORD %l IS D EAD -
~| Ispeap _ & A ¥ &

No, the password is not dead

Websites, loT, Wi-Fi, TLS 1.3,

Password use-cases

e Authentication
o Login to website or server

e Creating a secure channel

o Symmetric: One-to-One
o Asymmetric: Client-to-Server

e But what about Many-to-Many?
o Can’t we just use multiple one-to-one connections?

Typical Use Case
Smart Home Network

Smart home network

Computer - Fully patched Linux machine

Smart home network

Smart lock - Open front door on command from network

Smart home network

Thermostat - Bricked by vendor

Will be discarded with all credentials in persistent memory

Smart home network

Tablet - Android 8.0, last security patch January 2019

A proud member of 8 different major botnets

Smart home network

Router - Will be replaced next month (new provider)

Smart home network

Multiple visiting smartphones

10

The Wi-FiI Solution

All devices store a copy of the password

One compromise to rule them all !

11

Challenges in the Many-to-many setting

e One password, many users/devices
o Source authentication
o Revocation of specific users

12

Challenges in the Many-to-many setting

e One password, many users/devices
o Source authentication
o Revocation of specific users

e Dynamic network topology

o Bootstrapping of new devices
o Support for replacement of existing entities (e.g., replace hardware of Wi-Fi access point)

13

Challenges in the Many-to-many setting

e One password, many users/devices

o Source authentication

o Revocation of specific users
e Dynamic network topology

o Bootstrapping of new devices

o Support for replacement of existing entities (e.g., replace hardware of Wi-Fi access point)
e Asynchronous and offline password input

o No communication for setup and key generation phases

o No shared randomness
o No trusted third party or PKI

14

Related work

OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

PAKE:
Password never stored

P1

qwertyl123

=

P2

qwertyl123

16

OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

PAKE:
Password never stored
Or stored in plaintext on both sides

P1

qwertyl123

P2

qwertyl123

17

OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

PAKE: PL <{——> P2

Password never stored qwerty123 querty123
Or stored in plaintext on both sides

aPAKE: CLIENT <——> SERVER
Password not in plaintext on server querty123 @

OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

PAKE:
Password never stored
Or stored in plaintext on both sides

aPAKE:
Password not in plaintext on server

saPAKE:
Password storage on serverogrevents pre-computation

o
E.g. OPAQUE

PL <{——> P2

qwertyl123 qwerty123

CLIENT <——> SERVER

qwertyl123 @

CLIENT {—— SERV

»
-
qwertyl123 @

19

OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘1Rl IEIE ERZAUG SR Clol i [ITo [T
- Require the password in plaintext on one

side (the client)
PAKE: Password Authenticated Key Exci Do not work in the symmetric setting

Password never stored (eg Wifi)
Or stored in plaintext on both sides

aPAKE: Asymmetric PAKE [BM'93] CLIENT <{——> SERVER

Password not in plaintext on server querty123 @
saPAKE: Strong asymmetric PAKE [JKX'18] CLIENT {—> SERV
Password storage on serverogrevents pre-computation querty123 %Q@

o
E.g. OPAQUE

20

CHIP & CRISP!

We propose techniques to protect all parties

'
o)

PAKE:
Password in plaintext on both sides

aPAKE:

Password not in plaintext on server
OPAQUE
saPAKE: S

Password storage on server prevents pre-computation

PL <{——> P2

qwertyl123 qwertyl123

CLIENT <{———> SERVER

qwertyl123 @
CLIENT {——> SERV

»
=
qwerty123 @

22

We propose techniques to protect all parties

PAKE:
Password in plaintext on both sides

aPAKE:

Password not in plaintext on server
OPAQUE
saPAKE: S

Password storage on server prevents pre-computation

iPAKE ooO

Password not in plaintext at any party
Compromising P1 only allows impersonating P1, not P2!

PL <{——> P2

qwerty123 qwerty123

CLIENT <{———> SERVER

qwertyl123 @
CLIENT {——> SERV

»
=
qwerty123 @

PL {——> P2

23

We propose techniques to protect all parties

PAKE: PL {— P2

Password in plaintext on both sides qerty123 awerty123

O’V aPAKE: CLIENT <~ SERVER
Password not in plaintext on server querty123 @
OPAQUE
saPAKE: .o O CLIENT <{——> SERV

Password storage on server prevents pre-computation querty123 @

N iPAKE ooO P1 ®<:> P2 @

Password not in plaintext at any party
Compromising P1 only allows impersonating P1, not P2!

SiPAKE P1L. {——> P2 _

s

All password storage prevents pre-computation @ @

24

Realizing IPAKE and siPAKE

e \We achieve IPAKE and siPAKE by using techniques from identity-
based key exchange/agreement

25

Realizing IPAKE and siPAKE

e We achieve IPAKE and siPAKE by using techniques from identity-
based key exchange/agreement
e \We only use the underlying ideas

26

Realizing IPAKE and siPAKE

e We achieve IPAKE and siPAKE by using techniques from identity-
based key exchange/agreement

e \We only use the underlying ideas
o We do not need a trusted key generation center or any other third party

27

Realizing IPAKE and siPAKE

e We achieve IPAKE and siPAKE by using techniques from identity-
based key exchange/agreement

e \We only use the underlying ideas
o We do not need a trusted key generation center or any other third party
o We do not need unique identities, but instead use abstract tags to bind
the password storage to

28

Realizing IPAKE and siPAKE

e We achieve IPAKE and siPAKE by using techniques from identity-
based key exchange/agreement

e \We only use the underlying ideas
o We do not need a trusted key generation center or any other third party
o We do not need unique identities, but instead use abstract tags to bind
the password storage to
m Can choose to bind storage to identities, but also to roles, unique
devices identifiers, etc.
m Can have multiple devices sharing the same tag

29

Example: CRISP

Pre-Computation Resistance

* H(pw)
O Vulnerable to pre-computation
O Reverse lookup HA-1) [‘]

31

Pre-Computation Resistance

o H(pw)

e x,H(pw,x)
O Salted hash
O Pre-computation resistant
O Shared key without shared randomness?

x,H(pw,x) vs. y,H(pw,y)

H(:) is Random Oracle

Without pw, cannot compute H(pw,y) from H(pw,x)
Needs one way function with some kind of structure

32

Pre-Computation Resistance

o H(pw)
e x,H(pw,x)
O Vulnerable to pre-computation
O Pre-compute T: gH(pW') - pw’
o T l(gH(pw).x)l/x] = T[gH®W)] = pw
O pw and x can be separated

33

Pre-Computation Resistance

e H(pw)
e x,H(pw,x)
o x gH(pw)-x

° gx, gH(pw)-x

Pre-computation resistant
Oracle Hashing [Can’97]
Salted Tight OWF [BJX’19]
Requires Pairing...

O O O O

34

Pre-Computation Resistance

o H(pw)

e x,H(pw,x)

o x gH(pw)-x
x ,H(pw)x

e g%, H(pw)*
o Pre-computation resistant
o Pairing + Hash-to-Group

o Offline brute force cost is pairing - é(H(pw"), g*) s e(H(pw)*, g)

35

Password File °
Generation .

Xi <—Z£1,F

X

j_‘fli <0

B; « Hi(pw)™

C; « H,("Alice") i
("Alice",Ai,Bi, Ct)

H R

Xj «— Z;x .

Aj < «21]

B; « Hy (pw)™
C] «— ﬁz("BOb")xj
("Bob", A}, B}, C;)

36

Password File °
Generation :

Xi < Zg

A< gy

B, « Hy(pw)™
C; « H,("Alice") i
("Alice",Ai,Bi, Ct)

H R

% <Zq

Aj < €1J

Bj « Hy(pw)™
C] — ﬁz("BOb")xj
("Bob", 4}, B}, C;)

37

Password File °
Generation .

Xi < Zg

Ai < gy

B; « Hy(pw)™

C; « ﬁz ("Alice")*:
("Alice",Ai,Bi, Ct)

H R

% <Zq

Aj < {{1J

Bj « Hy(pw)™
Cj < Hy("Bob")"
("Bob", 4;, Bj, C;)

38

CRISP Protocol

R
Xi<Zg
Xj
:fli <9
B; < Hy(pw)™
C; < H,("Alice™)*i
("Alice",Ai,Bi, Cl)

&(C; g;) = e(A,("Bob"), A;)

A 4

(llBobll, Kl)

HR

.
Aj < {{1]
Bj « Hy (pw)*i
C; « H,("Bob")*i
("Bob", 4, B}, C;)

a

&(Ci,g,) = e(By(Alice), A;)

("Alice", K]-)

39

CRISP Protocol

X
Aj < g;
B; « ﬁ1 (pw)™
C; « ﬁz("Alice")xf
("Alice", A;, B;, C;)

R *
Xi < Zg

A 4

&(C; g2) = e(A,("Bob"), 4;)

(llBobll, Kl)

HR

Xj Z;

A < g,

B « ﬁ1 (pw)*i
Ci « H,("Bob™")*
("Bob", 4;, B}, C;)

Y i = T
B; <—Bj ,C] <—Cj

a

&(Ci,g,) = (B, ("Alice”), 4;)

("Alice", K]-)

40

Performance Comparison

CPace SAE CHIP OPAQUE CRISP
CPU time (ms) 0.2 >13 06 0.6 4.1
Communication rounds 1 2 2 2 2
Security notion PAKE none iPAKE saPAKE siPAKE

Low overhead, suitable for Wi-Fi and 10T networks
Several suggestion for optimizing CRISP

Code available at: https://github.com/shapaz/CRISP

42

Security

e We provide a UC ideal definition for iPAKE and siPAKE
e We prove CHIP under ROM
e We prove CRISP under GGM+ROM

O Prove cost password guess is a pairing operation

Open Questions

e Does siPAKE requires GGM?

e Can we have fine grained post-compromise password hardening?
e Optimal bound on the cost of brute-force attack?

e Two messages (S)IPAKE?

44

https://ia.cr/2020/529

COﬂCIUSlonS https://qgithub.com/shapaz/CRISP

CRisp

1. provide stronger guarantees for password
storage to all parties, and
2. work in the symmetric setting!

CHIP and CRISP: Protecting All Parties
Against Compromise through Identity-Binding
PAKES PAKES ’s”,% Saitto

Cas Cremers and Moni Naor and Shahar Paz and Eyal Ronen

45

https://ia.cr/2020/529
https://github.com/shapaz/CRISP

