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First, let’s get this out of the way...

No, the password is not dead

Websites, IoT, Wi-Fi, TLS 1.3, ….
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Password use-cases 

● Authentication
○ Login to website or server

● Creating a secure channel
○ Symmetric: One-to-One

○ Asymmetric: Client-to-Server

● But what about Many-to-Many?
○ Can’t we just use multiple one-to-one connections?
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Typical Use Case

Smart Home Network
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Smart home network

Computer - Fully patched Linux machine
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Smart home network

Smart lock - Open front door on command from network
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Smart home network

Thermostat - Bricked by vendor

Will be discarded with all credentials in persistent memory
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Smart home network

Tablet - Android 8.0, last security patch January 2019

A proud member of 8 different major botnets
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Smart home network

Router - Will be replaced next month (new provider)
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Smart home network

Multiple visiting smartphones
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The Wi-Fi Solution

All devices store a copy of the password

One compromise to rule them all !
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Challenges in the Many-to-many setting

● One password, many users/devices
○ Source authentication

○ Revocation of specific users
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Challenges in the Many-to-many setting

● One password, many users/devices
○ Source authentication

○ Revocation of specific users

● Dynamic network topology 
○ Bootstrapping of new devices

○ Support for replacement of existing entities (e.g., replace hardware of Wi-Fi access point)

● Asynchronous and offline password input
○ No communication for setup and key generation phases

○ No shared randomness 

○ No trusted third party or PKI
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Related work
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OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]

Password never stored qwerty123 qwerty123
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OPAQUE/saPAKE: hardening servers

[Jarecki S, Krawczyk H, Xu J ‘18]

P1 P2PAKE: Password Authenticated Key Exchange [BM’92]
Password never stored 
Or stored in plaintext on both sides

CLIENT SERVERaPAKE: Asymmetric PAKE [BM’93]
Password not in plaintext on server

CLIENT SERVERsaPAKE: Strong asymmetric PAKE [JKX’18]
Password storage on server prevents pre-computation

E.g. OPAQUE

qwerty123 qwerty123

qwerty123

qwerty123

Problem: (s)aPAKE techniques...

- Require the password in plaintext on one 

side (the client)

- Do not work in the symmetric setting 

(eg Wifi)
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CHIP & CRISP!
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We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
Password in plaintext on both sides

CLIENT SERVERsaPAKE: Strong asymmetric PAKE
Password storage on server prevents pre-computation

CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

qwerty123

qwerty123qwerty123

qwerty123
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We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
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CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

CHIP

qwerty123

qwerty123qwerty123

qwerty123
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We propose techniques to protect all parties

P1 P2PAKE: Password Authenticated Key Exchange
Password in plaintext on both sides

CLIENT SERVERsaPAKE: Strong asymmetric PAKE
Password storage on server prevents pre-computation

P1 P2iPAKE

Password not in plaintext at any party

Compromising P1 only allows impersonating P1, not P2!

P1 P2siPAKE
All password storage prevents pre-computation

CRISP

CLIENT SERVERaPAKE: Asymmetric PAKE
Password not in plaintext on server

OPAQUE

CHIP

qwerty123

qwerty123qwerty123

qwerty123
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Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement
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Realizing iPAKE and siPAKE

● We achieve iPAKE and siPAKE by using techniques from identity-

based key exchange/agreement

● We only use the underlying ideas

○ We do not need a trusted key generation center or any other third party

○ We do not need unique identities, but instead use abstract tags to bind 

the password storage to

■ Can choose to bind storage to identities, but also to roles, unique 

devices identifiers, etc.

■ Can have multiple devices sharing the same tag
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Example: CRISP
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Pre-Computation Resistance

● 𝐻(𝑝𝑤)

○ Vulnerable to pre-computation

○ Reverse lookup 𝐻^(−1) [⋅]
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Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

○ Salted hash

○ Pre-computation resistant

○ Shared key without shared randomness?

■ 𝑥,𝐻(𝑝𝑤,𝑥) vs. 𝑦,𝐻(𝑝𝑤,𝑦)

■ 𝐻(⋅) is Random Oracle

■ Without 𝑝𝑤, cannot compute 𝐻(𝑝𝑤,𝑦) from 𝐻(𝑝𝑤,𝑥) 

■ Needs one way function with some kind of structure
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Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

○ Vulnerable to pre-computation

○ Pre-compute 𝑇: 𝑔𝐻 𝑝𝑤′
↦ 𝑝𝑤′

○ T 𝑔𝐻 𝑝𝑤 ⋅𝑥 1/𝑥
= T 𝑔𝐻 𝑝𝑤 = 𝑝𝑤

○ 𝑝𝑤 and 𝑥 can be separated
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Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝑔𝐻 𝑝𝑤 ⋅𝑥

○ Pre-computation resistant

○ Oracle Hashing [Can’97]

○ Salted Tight OWF [BJX’19]

○ Requires Pairing…
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Pre-Computation Resistance

● 𝐻(𝑝𝑤)

● 𝑥,𝐻(𝑝𝑤,𝑥)

● 𝑥, 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝑔𝐻 𝑝𝑤 ⋅𝑥

● 𝑔𝑥 , 𝐻 𝑝𝑤 𝑥

○ Pre-computation resistant

○ Pairing + Hash-to-Group

○ Offline brute force cost is pairing - Ƹ𝑒 𝐻 𝑝𝑤′ , 𝑔𝑥 =
?

Ƹ𝑒 𝐻 𝑝𝑤 𝑥, 𝑔
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Password File 
Generation

Pi Pj
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Password File
Generation

Pi Pj
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Password File 
Generation

Pi Pj
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CRISP Protocol
Pi Pj

PAKE

39



CRISP Protocol
Pi Pj

PAKE
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Performance Comparison

Low overhead, suitable for Wi-Fi and IoT networks

Several suggestion for optimizing CRISP

Code available at: https://github.com/shapaz/CRISP
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Security

● We provide a UC ideal definition for iPAKE and siPAKE

● We prove CHIP under ROM

● We prove CRISP under GGM+ROM

○ Prove cost password guess is a pairing operation
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Open Questions

● Does siPAKE requires GGM?

● Can we have fine grained post-compromise password hardening?

● Optimal bound on the cost of brute-force attack?

● Two messages (s)iPAKE?

44



Conclusions

CHIP and CRISP:

1. provide stronger guarantees for password 

storage to all parties, and 

2. work in the symmetric setting!

CHIP and CRISP: Protecting All Parties 

Against Compromise through Identity-Binding 

PAKEs
Cas Cremers and Moni Naor and Shahar Paz and Eyal Ronen

https://ia.cr/2020/529

https://github.com/shapaz/CRISP
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