Moz \mathbb{Z}_{2^k} arella: Efficient Vector-OLE and Zero-Knowledge Proofs Over \mathbb{Z}_{2^k}

Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl August 18, 2022 – Crypto'22

Aarhus University

Zero-Knowledge Proofs for Arithmetic Circuits

 ${\mathcal C}$ is an arithmetic circuit over the ring ${\mathbb Z}_{2^k}$

Zero-Knowledge Proofs for Arithmetic Circuits

 ${\mathcal C}$ is an arithmetic circuit over the ring \mathbb{Z}_{2^k}

Security Properties:

- Soundness
- Zero-Knowledge
- Completeness

Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_{p^r}

•
$$\mathbb{Z}_{2^k} = \mathbb{Z}/2^k \mathbb{Z} = (\{0, \dots, 2^k - 1\}, +, \cdot)$$
 – the ring of integers modulo 2^k

Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_{p^r}

•
$$\mathbb{Z}_{2^k} = \mathbb{Z}/2^k\mathbb{Z} = (\{0,\ldots,2^k-1\},+,\cdot)$$
 – the ring of integers modulo 2^k

Advantages

- maps naturally to data types used by CPUs and programming languages
- e.g., uint32_t, uint64_t in C
- → easier to convert programs to corresponding circuits ☺
- $\stackrel{\sim \rightarrow}{\longrightarrow} \text{more efficient protocol} \\ \text{implementations} \textcircled{\bigcirc}$

Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_{p^r}

•
$$\mathbb{Z}_{2^k} = \mathbb{Z}/2^k\mathbb{Z} = (\{0,\ldots,2^k-1\},+,\cdot)$$
 – the ring of integers modulo 2^k

Advantages

- maps naturally to data types used by CPUs and programming languages
- e.g., uint32_t, uint64_t in C
- → easier to convert programs to corresponding circuits ☺
- $\stackrel{\sim}{\longrightarrow} \text{more efficient protocol} \\ \text{implementations} \textcircled{\bigcirc}$

Disadvantages

- \mathbb{Z}_{2^k} is not a field
- zero-divisors
- no division by multiples of 2
- polynomials can have lots of roots
- → common tricks don't work and protocols get more complicated ≅
- \rightsquigarrow proofs of security are harder 😁

Zero-Knowledge Proofs for Arithmetic Circuits

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Ingredients:

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Ingredients:

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$
- 2. multiplication check

- given ([a], [b], [c]), verify
$$a \cdot b \stackrel{?}{=} c$$

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Setting:

- designated verifier
- linear communication
- linear time prover and verifier
- minimal overhead compared to circuit evaluation
 - computation and memory

Linearly Homomorphic Commitments from Vector OLE

For large fields: authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$ (cf. Mac'n'Cheese [BMRS21], Wolverine [WYKW21])

Linearly Homomorphic Commitments from Vector OLE

For ring \mathbb{Z}_{2^k} : authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring $\mathbb{Z}_{2^{k+s}}$

 $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}}$ with $x = \tilde{x} \pmod{2^k}$

Prover holds value \tilde{x} and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{Z}_{2^s}$ and key $K[x] \in_R \mathbb{Z}_{2^{k+s}}$ (cf. SPD \mathbb{Z}_{2^k} [CDESX18], Appenzeller2Brie [BBMRS21])

Linearly Homomorphic Commitments from Vector OLE

For ring \mathbb{Z}_{2^k} : authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring $\mathbb{Z}_{2^{k+s}}$

 $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}}$ with $x = \tilde{x} \pmod{2^k}$

Prover holds value \tilde{x} and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{Z}_{2^s}$ and key $K[x] \in_R \mathbb{Z}_{2^{k+s}}$ (cf. SPD \mathbb{Z}_{2^k} [CDESX18], Appenzeller2Brie [BBMRS21])

Vector Oblivious Linear Evaluation:

Sender
$$S$$
 $\vec{x} \in \mathbb{Z}_{2^{\ell}}^{n}$
 \mathcal{F}_{VOLE} $\mathcal{F}_{\vec{x} \in \mathbb{Z}_{2^{\ell}}^{n}}$ Receiver \mathcal{R}
 $\vec{K} \in \mathbb{Z}_{2^{\ell}}^{n}$
such that $\vec{M} = \Delta \cdot \vec{x} + \vec{K} \pmod{2^{\ell}}$

VOLE for \mathbb{Z}_{2^k}

From Oblivious Transfer or Homomorphic Encryption

 \rightsquigarrow communication at least linear in output size

From Oblivious Transfer or Homomorphic Encryption

 \rightsquigarrow communication at least linear in output size

Via Pseudorandom Correlation Generators (PCGs)

- interactive generation of a short seed \rightarrow non-interactive expansion to long correlated string
- communication sublinear in vector length n
- based on variants of Learning Parity with Noise (LPN)
- active security only for fields [WYKW21; Boy+19]

From Oblivious Transfer or Homomorphic Encryption

 \rightsquigarrow communication at least linear in output size

Via Pseudorandom Correlation Generators (PCGs)

- interactive generation of a short seed ightarrow non-interactive expansion to long correlated string
- communication sublinear in vector length n
- based on variants of Learning Parity with Noise (LPN)
- active security only for fields [WYKW21; Boy+19]

Here: actively secure VOLE for rings \mathbb{Z}_{2^k} with sublinear communication

 \vec{s} : short, uniform seed

 \vec{s} : short, uniform seed

A: generating matrix of a random linear code

 \vec{s} : short, uniform seed

A: generating matrix of a random linear code

 \vec{e} : sparse error vector (regular error $\vec{e} = (\vec{e}_1 | \cdots | \vec{e}_t)^T$ with \vec{e}_i one-hot)

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

- 1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
- 2. generate and concatenate t single-point VOLEs of length n/t

 \rightsquigarrow obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

- 1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
- 2. generate and concatenate t single-point VOLEs of length n/t

 \rightsquigarrow obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
$$\begin{cases} \vec{x} := \vec{A} \cdot \vec{u} + \vec{e} \\ \vec{z} := \vec{A} \cdot \vec{w} + \vec{c} \end{cases} \implies \vec{z} := \Delta \cdot \vec{x} + \vec{y}$$

Receiver computes
$$\vec{y} := \vec{A} \cdot \vec{v} + \vec{b}$$

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

- 1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
- 2. generate and concatenate t single-point VOLEs of length n/t

 \rightsquigarrow obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
$$\begin{cases} \vec{x} := \vec{A} \cdot \vec{u} + \vec{e} \\ \vec{z} := \vec{A} \cdot \vec{w} + \vec{c} \\ \text{Receiver computes} \end{cases} \implies \vec{z} := \Delta \cdot \vec{x} + \vec{y}$$

4. LPN: \vec{x} looks uniformly random

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

- 1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
- 2. generate and concatenate t single-point VOLEs of length n/t

 \rightsquigarrow obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
$$\begin{cases} \vec{x} := \vec{A} \cdot \vec{u} + \vec{e} \\ \vec{z} := \vec{A} \cdot \vec{w} + \vec{c} \\ Receiver computes \end{cases} \Rightarrow \vec{z} := \Delta \cdot \vec{x} + \vec{y}$$

4. LPN: looks uniformly random
5. (save *m* VOLEs and repeat)

Goal: expand *m* seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

4. LPN: looks uniformly random
5. (save *m* VOLEs and repeat)

Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F

GGM Construction for a Punctured PRF

GGM Construction for a Punctured PRF

 $G(x) = G(x)_0 || G(x)_1$ length-doubling PRG

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - *R* samples a PRF key k and
 use log(n/t) OTs to obliviously transfer a punctured key k{α} to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - S computes $w_{\alpha} := \delta d \sum_{j \neq \alpha} w_j$

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$

a malicious receiver $\mathcal R$ can

- use inconsistent values in the OTs
- send an incorrect d
- \rightsquigarrow leakage on the noise coordinate α

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency
 - Wolverine's [WYKW21] approach: use a random linear combination over the field \mathbb{F}_q

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_R \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

• Wolverine's [WYKW21] approach: use a random linear combination over the field \mathbb{F}_q

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])

GGM Construction for a Punctured PRF

 $G(x) = G(x)_0 || G(x)_1$ length-doubling PRG

GGM Construction for a Punctured PRF with Consistency Check

 $G(x) = G(x)_0 \mid\mid G(x)_1$ length-doubling PRG

GGM Construction for a Punctured PRF with Consistency Check

 $G(x) = G(x)_0 || G(x)_1$ length-doubling PRG \rightarrow compute and verify <u>universal</u> hash $h(t_0, \ldots, t_7)$

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_{\alpha} = \beta \in_{R} \mathbb{Z}_{2^{\ell}} \setminus \{0\}$ and $u_{j} = 0$ for $j \neq \alpha$

- 1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and

use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S

- set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
- $\rightsquigarrow \mathcal{R}$ does not learn lpha and \mathcal{S} does not learn \textit{v}_{lpha}
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
 - use subset sum check for d with binary coefficients $\chi_1, \ldots, \chi_n \in_R \{0, 1\}$

1. distribute

• R

• set w

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ and $\vec{v} = \Delta \cdot \vec{v}$ an

– malicious ${\cal R}$ can guess χ_{lpha} with probability 1/2

- \rightsquigarrow adjust functionality to allow leakage of α with probability 1/2
- \rightsquigarrow increase noise rate of the error to compensate
- $\rightsquigarrow \mathcal{R}$ does not learn
- 2. compute $w_{\alpha} = \Delta \cdot \beta + v_{\alpha}$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma \sum_j v_j$
 - \mathcal{S} computes $w_{lpha} := \delta d \sum_{j
 eq lpha} w_j$
- 3. ensure consistency
 - use universal hashing to verify considency of the GGM tree (based on check in [Boy+19])
 - use subset sum check for d with binary coefficients $\chi_1, \ldots, \chi_n \in_R \{0, 1\}$

QuarkSilver – More Efficient Multiplication Check for \mathbb{Z}_{2^k}

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\Delta \cdot K[c] - K[a] \cdot K[b] = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot K[c] - K[a] \cdot K[b]}_{\text{known by } \mathcal{V}} = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot K[c] - K[a] \cdot K[b]}_{\text{known by } \mathcal{V}} = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

$$-p(\Delta)=0$$
, and

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot K[c] - K[a] \cdot K[b]}_{\text{known by } \mathcal{V}} = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

$$\begin{array}{l} - \quad p(\Delta) = 0, \text{ and} \\ - \quad e := \tilde{c} - \tilde{a} \cdot \tilde{b} \neq 0 \pmod{2^k} \implies p \text{ has degree } 2^k \end{array}$$

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot K[c] - K[a] \cdot K[b]}_{\text{known by } \mathcal{V}} = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

$$-p(\Delta)=0$$
, and

$$- e := \tilde{c} - \tilde{a} \cdot \tilde{b} \neq 0 \pmod{2^k} \implies p \text{ has degree } 2$$

• Field \mathbb{F}_q : polynomial p has at most two roots \rightsquigarrow soundness error of 2/q

Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot K[c] - K[a] \cdot K[b]}_{\text{known by } \mathcal{V}} = \underbrace{(M[a] \cdot M[b])}_{\text{known by } \mathcal{P}} + \underbrace{(M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a])}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(\tilde{c} - \tilde{a} \cdot \tilde{b})}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \Delta^2$$

- $-p(\Delta)=0$, and
- $e := \tilde{c} \tilde{a} \cdot \tilde{b} \neq 0 \pmod{2^k} \implies p \text{ has degree } 2$
- Field \mathbb{F}_q : polynomial p has at most two roots \rightsquigarrow soundness error of 2/q
- Ring $\mathbb{Z}_{2^{k+s}}$: polynomial p has at most $2^{s/2}$ roots in the range $\{0, \ldots, 2^s 1\}$

Performance & Summary

Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell = 2^{162}$ (192 bit in implementation)

Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell=2^{162}$ (192 bit in implementation)

For $\sigma=$ 40 statistical security large batches in LAN, we achieve:

VOLE

- $\bullet~\approx 1\,\text{bit}$ per VOLE
- \approx 21 million VOLEs per second
- similar to Wolverine [WYKW21]

Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell=2^{162}$ (192 bit in implementation)

For $\sigma=$ 40 statistical security large batches in LAN, we achieve:

VOLE

- $\bullet~\approx 1\,\text{bit}$ per VOLE
- \approx 21 million VOLEs per second
- similar to
 Wolverine [WYKW21]

QuarkSilver Zero-Knowledge

- $\bullet~\approx$ one ring element per multiplication
- $\,\approx\,1.3$ million multiplications per second
- QuickSilver [YSWW21]: $\approx 5\times$ more for 64 bit field
- QuarkSilver
 - larger rings
 - \rightsquigarrow more expensive arithmetic and communication
 - but provides native 64 bit arithmetic

Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit-1.3 bit communication per VOLE for large batches

by Popo le Chien (CC BY-SA 3.0), https://commons.wikimedia.org/wiki/File: Mozzarella_di_bufala2.jpg

Summary

Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit-1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}

• one ring element communication per multiplication

by Popo le Chien (CC BY-SA 3.0), https://commons.wikimedia.org/wiki/File: Mozzarella_di_bufala2.jpg

Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit-1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}

• one ring element communication per multiplication

Open problems

- The \mathbb{Z}_{2^k} protocols need larger rings of size $2^\ell > 2^k$.
 - \implies Can we reduce the communication overhead compared to k?
- Many recent protocols for fields use very efficient checks based on polynomials.
 - \implies Can we get similar efficient alternatives over rings?

by Popo le Chien (CC BY-SA 3.0), https://commons.wikimedia.org/wiki/File: Mozzarella_di_bufala2.jpg

Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit-1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}

• one ring element communication per multiplication

Open problems

- The \mathbb{Z}_{2^k} protocols need larger rings of size $2^\ell > 2^k$.
 - \implies Can we reduce the communication overhead compared to k?
- Many recent protocols for fields use very efficient checks based on polynomials. \implies Can we get similar efficient alternatives over rings?

Full version of $Mo\mathbb{Z}_{2^k}$ zarella on ePrint: https://ia.cr/2022/819

by Popo le Chien (CC BY-SA 3.0), https://commons.wikimedia.org/wiki/File: Mozzarella_di_bufala2.jpg

References i

- [BBMRS21] C. Baum et al. "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k". In: ACM CCS 2021. Nov. 2021.
- [BMRS21] C. Baum et al. "Mac'n'Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits with Nested Disjunctions". In: <u>CRYPTO 2021</u>, Part IV. Aug. 2021.
- [Boy+19] E. Boyle et al. "Efficient Two-Round OT Extension and Silent Non-Interactive Secure Computation". In: ACM CCS 2019. Nov. 2019.
- [CDESX18] R. Cramer et al. "SPD \mathbb{Z}_{2^k} : Efficient MPC mod 2^k for Dishonest Majority". In: CRYPTO 2018, Part II. Aug. 2018.
- [WYKW21] C. Weng et al. "Wolverine: Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean and Arithmetic Circuits". In: 2021 IEEE Symposium on Security and Privacy. May 2021.

[YSWW21] K. Yang et al. "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". In: ACM CCS 2021. Nov. 2021.

Emoji graphics licensed under CC-BY 4.0: https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other contributors

Commitments

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$

breaking binding \implies guessing Δ

Commitments for \mathbb{Z}_{2^k}

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$

breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$

breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \ge k + s$ for security parameter s

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$ breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \ge k + s$ for security parameter s

- represent x by $\tilde{x} \in \mathbb{Z}_{2^{k+s}}$ such that $x = \tilde{x} \pmod{2^k}$
- sample keys $\Delta \in_R \mathbb{Z}_{2^s}$, $K[x] \in_R \mathbb{Z}_{2^{k+s}}$
- compute tag $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}}$

[BBMRS21]

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

 $M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$

Prover holds value x and tag M[x] Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$ breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \ge k + s$ for security parameter s

- represent x by $\tilde{x} \in \mathbb{Z}_{2^{k+s}}$ such that $x = \tilde{x} \pmod{2}$
- sample keys $\Delta \in_R \mathbb{Z}_{2^s}$, $K[x] \in_R \mathbb{Z}_{2^{k+s}}$
- compute tag $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^k}$

- authenticates the lower k bits
- increases storage and communication costs 😄

•
$$\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^{\ell}}$$

•
$$K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^{\ell}}$$

• $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^{\ell}}$

• $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^{\ell}}$

•
$$K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^{\ell}}$$

[BBMRS21]

• $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^{\ell}}$

Open:

- \mathcal{P} publishes $\tilde{x}, M[x]$
- \mathcal{V} checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{\ell}}$

- $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^{\ell}}$
- $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^{\ell}}$

•
$$K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^{\ell}}$$

Open:

- \mathcal{P} publishes $\tilde{x}, M[x]$
- \mathcal{V} checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{\ell}}$

upper bits of \tilde{x} leak information about intermediate values

[BBMRS21]

• $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^{\ell}}$

•
$$K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c$$

• $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^{\ell}}$

Open:

- \mathcal{P} publishes $\tilde{x}, M[x]$
- \mathcal{V} checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{\ell}}$

upper bits of \tilde{x} leak information about intermediate values

 \rightsquigarrow use random [r] to mask upper bits before opening: $[z] \leftarrow [x] + 2^k \cdot [r]$

(mod 2^{ℓ})

• $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^{\ell}}$

•
$$K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^{\ell}}$$

• $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^{\ell}}$

Open:

- \mathcal{P} publishes $\tilde{x}, M[x]$
- \mathcal{V} checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{\ell}}$

upper bits of \tilde{x} leak information about intermediate values

 \rightsquigarrow use random [r] to mask upper bits before opening: $[z] \leftarrow [x] + 2^k \cdot [r]$

Batched Open: e.g., send $H(M[x_1], \ldots, M[x_n])$ instead of all $M[x_1], \ldots, M[x_n]$

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

[BBMRS21]

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine's [WYKW21] check

 \bullet bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

[BBMRS21]

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine's [WYKW21] check

- bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

Variant 2: Adaption of the Mac'n'Cheese [BMRS21] check

• needs large message space \rightsquigarrow authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

[BBMRS21]

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine's [WYKW21] check

- bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

Variant 2: Adaption of the Mac'n'Cheese [BMRS21] check

- needs large message space \rightsquigarrow authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

Prover
$$\mathcal{P}$$
 Random() \rightarrow [x] Verifier \mathcal{V}
Input(x \cdot b) \rightarrow [z]

[BBMRS21]

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine's [WYKW21] check

- bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

Variant 2: Adaption of the Mac'n'Cheese [BMRS21] check

- needs large message space \rightsquigarrow authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

[BBMRS21]

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine's [WYKW21] check

- bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

Variant 2: Adaption of the Mac'n'Cheese [BMRS21] check

• needs large message space \rightsquigarrow authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

Prover \mathcal{P}	$Random() \to [x]$	Verifier $\mathcal V$	
	$Input(x \cdot b) \to [z]$		
	4	$\eta \in_{\mathcal{R}} \mathbb{Z}_{2^s}$	
	$Open(\eta \cdot [a] - [x]) \to \epsilon$		
	$CheckZero(\eta \cdot [c] - [z] - \epsilon \cdot [b])$	ŗ	

VOLE Performace ($\sigma = 40$)

Table 1: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The benchmarks are parametrized by the ring size ℓ (i.e., using $\mathbb{Z}_{2^{\ell}}$). The computational security parameter is set to $\kappa = 128$. For statistical security $\sigma \in \{40, 80\}$, we target batch sizes of $n_o = 10^7$ and $n_o = 10^8$, and use LPN parameters (m, t, n).

σ	l	Run-time		Communication		
		LAN	WAN	$\mathcal{S} \to \mathcal{R}$	$\mathcal{R} \to \mathcal{S}$	total
	<i>m</i> = 55	3 600,	t = 2186, r	n = 10558	380	
	64	27.3	190.8	0.467	0.927	1.394
	104	40.7	186.7	0.509	0.955	1.464
	144	55.2	212.6	0.551	0.983	1.534
40	244	80.7	255.0	0.593	1.011	1.604
	<i>m</i> = 77	3 200,	t = 15045,	n = 1008	316 545	
	64	20.1	46.0	0.318	0.636	0.954
	104	33.2	58.9	0.347	0.655	1.002
	144	46.7	75.1	0.376	0.674	1.050
	244	76.7	102.8	0.405	0.694	1.098

VOLE Performace ($\sigma = 80$)

Table 2: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The benchmarks are parametrized by the ring size ℓ (i.e., using $\mathbb{Z}_{2\ell}$). The computational security parameter is set to $\kappa = 128$. For statistical security $\sigma \in \{40, 80\}$, we target batch sizes of $n_o = 10^7$ and $n_o = 10^8$, and use LPN parameters (m, t, n).

σ	l	Run-time		Communication			
		LAN	WAN	$\mathcal{S} ightarrow \mathcal{R}$	$\mathcal{R} \to \mathcal{S}$	total	
	m = 83	80 800,	t = 2013,	n = 10835	5 979		
	64	27.6	171.9	0.431	0.853	1.284	
	104	42.6	194.1	0.469	0.879	1.349	
	144	59.4	217.1	0.508	0.905	1.413	
80	244	89.3	277.4	0.547	0.931	1.477	
	$m = 866800, \ t = 18114, \ n = 100913094$						
	64	21.4	48.2	0.383	0.765	1.148	
	104	34.3	61.0	0.418	0.789	1.206	
	144	49.2	76.0	0.453	0.812	1.264	
	244	79.8	106.8	0.487	0.835	1.322	

Table 3: Run-times in ns per VOLE in different bandwidth settings, when generating ca. 10^7 VOLEs with 5 threads and statistical security $\sigma \ge 40$. The parameter ℓ denotes the size of a ring or field element. The numbers for Wolverine are taken from [WYKW21].

	ℓ	$20\mathrm{Mbit/s}$	$50\mathrm{Mbit/s}$	$100{\rm Mbit/s}$	$500{\rm Mbit/s}$	$1{ m Gbit/s}$	$10{ m Gbit/s}$
this work	64	110.0	68.7	55.0	50.2	50.6	50.4
	104	142.0	95.2	80.1	73.2	71.5	73.6
	144	178.6	134.7	119.3	111.6	112.6	113.3
	244	266.3	219.1	201.7	194.5	193.7	196.5
Wolverine	61	101.0	87.0	85.0	85.0	85.0	_

QuarkSilver Performance

Table 4: We measure the run-time of a batch of $\approx 10^7$ multiplications and their verification in ns per multiplication and the communication cost in bit per multiplication. The benchmarks are parametrized by the statistical security parameter σ , and the computational security parameter is set to $\kappa = 128$. For $\sigma = 40$, we use the ring of size $\ell = 162$, for $\sigma = 80$, we use $\ell = 244$.

σ		Ru	Run-time		Communication		
0		LAN	WAN	-	$\mathcal{S} ightarrow \mathcal{R}$	$\mathcal{R} \to \mathcal{S}$	total
40	vole	78.5	265.5		0.5	1.0	1.5
	mult	663.2	2101.5		192.0	0.0	192.0
	check	28.2	38.2		0.0	0.0	0.0
	total	769.9	2 405.2		192.5	1.0	193.5
80	vole	125.3	345.6		0.5	0.9	1.5
	mult	680.7	2767.2		256.0	0.0	256.0
	check	42.3	52.4		0.0	0.0	0.0
	total	848.3	3 165.2		256.5	0.9	257.5