Moz\mathbb{Z}_{2^k}arella: Efficient Vector-OLE and Zero-Knowledge Proofs Over \mathbb{Z}_{2^k}

Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl
August 18, 2022 – Crypto’22

Aarhus University
Zero-Knowledge Proofs for Arithmetic Circuits

I know w s.t. $C(w) = 1$!

Prover \mathcal{P}

C is an arithmetic circuit over the ring \mathbb{Z}_{2^k}
I know w s.t. $C(w) = 1!$

C is an arithmetic circuit over the ring \mathbb{Z}_{2^k}

Security Properties:

- Soundness
- Zero-Knowledge
- Completeness
Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_p

- $\mathbb{Z}_{2^k} = \mathbb{Z}/2^k\mathbb{Z} = \{0, \ldots, 2^k - 1\}, +, \cdot$ – the ring of integers modulo 2^k

Advantages

- Maps naturally to data types used by CPUs and programming languages
 - e.g., `uint32_t`, `uint64_t` in C

 - Easier to convert programs to corresponding circuits
 - More efficient protocol implementations

Disadvantages

- \mathbb{Z}_{2^k} is not a field
 - Zero-divisors
 - No division by multiples of 2

 - Polynomials can have lots of roots
 - Common tricks don't work and protocols get more complicated
 - Proofs of security are harder
Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_p

- $\mathbb{Z}_{2^k} = \mathbb{Z}/2^k\mathbb{Z} = \{0, \ldots, 2^k - 1\}, +, \cdot$ – the ring of integers modulo 2^k

Advantages
- maps naturally to data types used by CPUs and programming languages
 - e.g., uint32_t, uint64_t in C
- easier to convert programs to corresponding circuits 😊
- more efficient protocol implementations 😊
Computation over \mathbb{Z}_{2^k} vs. Finite Fields \mathbb{F}_{p^r}

- $\mathbb{Z}_{2^k} = \mathbb{Z}/2^k\mathbb{Z} = \{0, \ldots, 2^k - 1\}, +, \cdot$ – the ring of integers modulo 2^k

Advantages
- maps naturally to data types used by CPUs and programming languages
 - e.g., `uint32_t`, `uint64_t` in C
 - easier to convert programs to corresponding circuits 😊
 - more efficient protocol implementations 😊

Disadvantages
- \mathbb{Z}_{2^k} is not a field
- zero-divisors
- no division by multiples of 2
- polynomials can have lots of roots
 - common tricks don’t work and protocols get more complicated 😞
 - proofs of security are harder 😞
I know w s.t. $C(w) = 1$!
I know w s.t. $C(w) = 1!$

Prover \mathcal{P}

Ingredients:

1. linearly homomorphic commitments [\cdot]
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$

Diagram:

- Input nodes: $[w_1], [w_2], \ldots, [w_n]$
- Intermediate node: C
- Output node: $[w_{\text{out}}]$
I know \(w \) s.t. \(C(w) = 1! \)

Ingredients:
1. linearly homomorphic commitments \([\cdot]\)
 - can compute \([z] \leftarrow a \cdot [x] + [y] + b\)
2. multiplication check
 - given \(([a], [b], [c])\), verify \(a \cdot b = c\)
I know w s.t. $C(w) = 1!$

Prover \mathcal{P}

Setting:
- designated verifier
- linear communication
- linear time prover and verifier
- minimal overhead compared to circuit evaluation
 - computation and memory
For large fields: authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$
Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$

(cf. Mac’n’Cheese [BMRS21], Wolverine [WYKW21])
For ring \mathbb{Z}_{2^k}: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^k+s}

$$M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}} \quad \text{with} \quad x = \tilde{x} \pmod{2^k}$$

Prover holds value \tilde{x} and tag $M[x]$ \quad \text{Verifier holds global key} \quad \Delta \in_R \mathbb{Z}_{2^s} \text{ and key } K[x] \in_R \mathbb{Z}_{2^{k+s}}$

(cf. SPD\mathbb{Z}_{2^k} [CDESX18], Appenzeller2Brie [BBMRS21])
For ring \mathbb{Z}_{2^k}: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring $\mathbb{Z}_{2^{k+s}}$

$$M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}} \quad \text{with } x = \tilde{x} \pmod{2^k}$$

Prover holds value \tilde{x} and tag $M[x]$
Verifier holds global key $\Delta \in \mathbb{Z}_{2^s}$ and key $K[x] \in \mathbb{Z}_{2^{k+s}}$

(cf. SPD\mathbb{Z}_{2^k} [CDESX18], Appenzeller2Brie [BBMRS21])

Vector Oblivious Linear Evaluation:

\[\tilde{x} \in \mathbb{Z}_{2^\ell} \quad \Delta \in \mathbb{Z}_{2^s} \quad \tilde{K} \in \mathbb{Z}_{2^\ell} \quad \tilde{M} \in \mathbb{Z}_{2^\ell}\]

such that $\tilde{M} = \Delta \cdot \tilde{x} + \tilde{K} \pmod{2^\ell}$
VOLE for \mathbb{Z}_{2^k}
How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

~⇒ communication at least linear in output size
How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

\[\rightarrow \text{ communication at least linear in output size} \]

Via Pseudorandom Correlation Generators (PCGs)

- interactive generation of a short seed \rightarrow non-interactive expansion to long correlated string
- communication sublinear in vector length n
- based on variants of Learning Parity with Noise (LPN)
- active security only for fields [WYKW21; Boy+19]
How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

\[\Rightarrow \text{communication at least linear in output size} \]

Via Pseudorandom Correlation Generators (PCGs)

- interactive generation of a short seed \rightarrow non-interactive expansion to long correlated string
- communication sublinear in vector length n
- based on variants of Learning Parity with Noise (LPN)
- active security only for fields [WYKW21; Boy+19]

Here: actively secure VOLE for rings \mathbb{Z}_{2^k} with sublinear communication
Learning Parity with Noise (LPN) Assumption

\[\vec{s} \text{: short, uniform seed} \]
Learning Parity with Noise (LPN) Assumption

\[\vec{s} \]: short, uniform seed

\[A \]: generating matrix of a random linear code

\[\vec{e} \]: sparse error vector (regular error \[\vec{e} = (\vec{e}_1 | \cdots | \vec{e}_t)^T \] with \[\vec{e}_i \] one-hot)
Learning Parity with Noise (LPN) Assumption

\[\vec{s} \cdot A + \vec{\epsilon} \]

- \(\vec{s} \): short, uniform seed
- \(A \): generating matrix of a random linear code
- \(\vec{\epsilon} \): sparse error vector (regular error \(\vec{\epsilon} = (\vec{\epsilon}_1 \ldots |\vec{\epsilon}_t)^T \) with \(\vec{\epsilon}_i \) one-hot)
Learning Parity with Noise (LPN) Assumption

\[\vec{s} \text{: short, uniform seed} \]

\[\vec{u} \text{: long, uniform vector} \]

\[A \text{: generating matrix of a random linear code} \]

\[\vec{e} \text{: sparse error vector (regular error } \vec{e} = (\vec{e}_1 | \cdots | \vec{e}_t)^T \text{ with } \vec{e}_i \text{ one-hot}) \]
Learning Parity with Noise (LPN) Assumption

\[A \cdot \vec{s} + \vec{e} \approx C \]

- \(\vec{s} \): short, uniform seed
- \(\vec{e} \): sparse error vector (regular error \(\vec{e} = (\vec{e}_1 | \cdots | \vec{e}_t)^T \) with \(\vec{e}_i \) one-hot)
- \(\vec{u} \): long, uniform vector
- \(A \): generating matrix of a random linear code
Goal: expand \(m \) seed/base VOLEs into \(n \gg m \) VOLEs: \(\vec{z} = \Delta \cdot \vec{x} + \vec{y} \)
Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m

Based on Wolverine [WYKW21]
Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
2. generate and concatenate t single-point VOLEs of length n/t
 \leadsto obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries

based on Wolverine [WYKW21]
Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
2. generate and concatenate t single-point VOLEs of length n/t to obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries
3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

\[
\begin{align*}
\vec{x} &:= A \cdot \vec{u} + \vec{e} \\
\vec{z} &:= A \cdot \vec{w} + \vec{c} \\
\end{align*}
\Rightarrow \quad \vec{z} := \Delta \cdot \vec{x} + \vec{y}
\]

Receiver computes

$\vec{y} := A \cdot \vec{v} + \vec{b}$

based on Wolverine [WYKW21]
Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
2. generate and concatenate t single-point VOLEs of length n/t
 ~⇒ obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries
3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
\[
\begin{align*}
\vec{x} & := A \cdot \vec{u} + \vec{e} \\
\vec{z} & := A \cdot \vec{w} + \vec{c}
\end{align*}
\] \[\Rightarrow \vec{z} := \Delta \cdot \vec{x} + \vec{y}\]

Receiver computes
\[
\vec{y} := A \cdot \vec{v} + \vec{b}
\]

4. LPN: \vec{x} looks uniformly random

based on Wolverine [WYKW21]
Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
2. generate and concatenate t single-point VOLEs of length n/t
 \rightsquigarrow obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries
3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
\[
\begin{align*}
\vec{x} & := A \cdot \vec{u} + \vec{e} \\
\vec{z} & := A \cdot \vec{w} + \vec{c} \quad \Rightarrow \quad \vec{z} := \Delta \cdot \vec{x} + \vec{y}
\end{align*}
\]

Receiver computes
\[
\vec{y} := A \cdot \vec{v} + \vec{b}
\]

4. LPN: \vec{x} looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]
VOLE Extension Protocol

Goal: expand m seed/base VOLEs into $n \gg m$ VOLEs: $\vec{z} = \Delta \cdot \vec{x} + \vec{y}$

1. start with $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ base VOLEs of length m
2. generate and concatenate t single-point VOLEs of length n/t
 \leadsto obtain $\vec{c} = \Delta \cdot \vec{e} + \vec{b}$ where \vec{e} has t non-zero entries
3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes
\[
\begin{align*}
\vec{x} & := A \cdot \vec{u} + \vec{e} \\
\vec{z} & := A \cdot \vec{w} + \vec{c}
\end{align*}
\Rightarrow \vec{z} := \Delta \cdot \vec{x} + \vec{y}
\]

Receiver computes
\[
\begin{align*}
\vec{y} & := A \cdot \vec{v} + \vec{b}
\end{align*}
\]

4. LPN: \vec{x} looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
GGM Construction for a PRF

\[G(x) = G(x)_0 \parallel G(x)_1 \text{ length-doubling PRG} \]
GGM Construction for a PRF

\[G(x) = G(x)_0 \parallel G(x)_1 \] length-doubling PRG
GGM Construction for a PRF

\[G(x) = G(x)_0 \parallel G(x)_1 \text{ length-doubling PRG} \]
GGM Construction for a PRF

\[G(x) = G(x)_0 \| G(x)_1 \] length-doubling PRG
GGM Construction for a **Punctured** PRF

\[G(x) = G(x)_0 \| G(x)_1 \] length-doubling PRG
GGM Construction for a Punctured PRF

\[G(x) = G(x)_0 \| G(x)_1 \] length-doubling PRG
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
Single-Point VOLE Protocol

Goal: generate $\mathbf{w} = \Delta \cdot \mathbf{u} + \mathbf{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\mathbf{w} \approx \mathbf{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - $\leadsto \mathcal{R}$ does not learn α and S does not learn v_α
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \mathcal{R} does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$
Single-Point VOLE Protocol

Goal: generate \(\vec{w} = \Delta \cdot \vec{u} + \vec{v} \) where \(u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\} \) and \(u_j = 0 \) for \(j \neq \alpha \)

1. distribute long random vector \(\vec{w} \approx \vec{v} \) with a punctured PRF \(F \)
 - \(\mathcal{R} \) samples a PRF key \(k \) and
 - use \(\log(n/t) \) OTs to obliviously transfer a punctured key \(k\{\alpha\} \) to \(S \)
 - set \(w_i := v_i := F(k, i) \) for all \(i \neq \alpha \) and \(v_\alpha := F(k, \alpha) \)
 - \(\rightsquigarrow \) \(\mathcal{R} \) does not learn \(\alpha \) and \(S \) does not learn \(v_\alpha \)

2. compute \(w_\alpha = \Delta \cdot \beta + v_\alpha \)
 - use one base VOLE \(\delta = \Delta \cdot \beta + \gamma \)
 - \(\mathcal{R} \) sends \(d := \gamma - \sum_j v_j \)
 - \(S \) computes \(w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j \)

A malicious receiver \(\mathcal{R} \) can
 - use inconsistent values in the OTs
 - send an incorrect \(d \)
 - \(\rightsquigarrow \) leakage on the noise coordinate \(\alpha \)
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \Rightarrow \mathcal{R} does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in \mathbb{R} \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - $\Rightarrow \mathcal{R}$ does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - Wolverine’s [WYKW21] approach: use a random linear combination over the field \mathbb{F}_q
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector \vec{w} with punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - \mathcal{R} does not learn α and S does not learn v_α

2. compute
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - Wolverine’s [WYKW21] approach: use a random linear combination over the field \mathbb{F}_q

Random linear combinations are tricky over \mathbb{Z}_{2^k}
- need to enlarge ring by s bit to ensure consistency of lower bits! cf. SPD\mathbb{Z}_{2^k} [CDESX18]

\[\rightsquigarrow\] cannot do multiple iterations
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \mathcal{R} does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
GGM Construction for a Punctured PRF

\[G(x) = G(x)_0 \parallel G(x)_1 \] length-doubling PRG
GGM Construction for a Punctured PRF with Consistency Check

\[G(x) = G(x)_0 \parallel G(x)_1 \] length-doubling PRG
GGM Construction for a Punctured PRF with Consistency Check

\[G(x) = G(x)_0 \parallel G(x)_1 \] length-doubling PRG

\[\rightsquigarrow \text{compute and verify universal hash } h(t_0, \ldots, t_7) \]
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in_R \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \mathcal{R} does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where $u_\alpha = \beta \in \mathbb{Z}_{2^\ell} \setminus \{0\}$ and $u_j = 0$ for $j \neq \alpha$

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF F
 - \mathcal{R} samples a PRF key k and
 - use $\log(n/t)$ OTs to obliviously transfer a punctured key $k\{\alpha\}$ to S
 - set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \mathcal{R} does not learn α and S does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - S computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
 - use subset sum check for d with binary coefficients $\chi_1, \ldots, \chi_n \in \{0, 1\}$
Single-Point VOLE Protocol

Goal: generate $\vec{w} = \Delta \cdot \vec{u} + \vec{v}$ where

1. distribute long random vector $\vec{w} \approx \vec{v}$ with a punctured PRF
 - \mathcal{R} samples a PRF key k and
 - \mathcal{S} set $w_i := v_i := F(k, i)$ for all $i \neq \alpha$ and $v_\alpha := F(k, \alpha)$
 - \mathcal{R} does not learn α and \mathcal{S} does not learn v_α

2. compute $w_\alpha = \Delta \cdot \beta + v_\alpha$
 - use one base VOLE $\delta = \Delta \cdot \beta + \gamma$
 - \mathcal{R} sends $d := \gamma - \sum_j v_j$
 - \mathcal{S} computes $w_\alpha := \delta - d - \sum_{j \neq \alpha} w_j$

3. ensure consistency
 - use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
 - use subset sum check for d with binary coefficients $\chi_1, \ldots, \chi_n \in \{0, 1\}$

- malicious \mathcal{R} can guess χ_α with probability 1/2
 - adjust functionality to allow leakage of α with probability 1/2
 - increase noise rate of the error to compensate
QuarkSilver – More Efficient Multiplication Check for \mathbb{Z}_{2^k}
Goal: Given ([a], [b], [c]), verify that $\tilde{a} \cdot \tilde{b} = \tilde{c}$ (mod 2^k)
Verifying Multiplications for \mathbb{Z}_{2^k} — QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c}$ (mod 2^k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ:

\[
\Delta \cdot K[c] - K[a] \cdot K[b] = (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2
\]

- Known by \mathcal{V}
- Known by \mathcal{P}
- Known by \mathcal{P}
- $= 0$ if \mathcal{P} honest
Verifying Multiplications for \mathbb{Z}_{2^k} – QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c}$ (mod 2^k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ:

\[
\Delta \cdot K[c] - K[a] \cdot K[b] = (M[a] \cdot M[b]) + (M[c] \cdot \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2
\]

known by \mathcal{V}
known by \mathcal{P}
known by \mathcal{P}

use a random linear combination to verify many multiplications
Verifying Multiplications for \mathbb{Z}_{2^k} – QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations $M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ:

\[
\begin{align*}
\Delta \cdot K[c] - K[a] \cdot K[b] &= (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2 \\
&= 0 \text{ if } \mathcal{P} \text{ honest}
\end{align*}
\]

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that
Verifying Multiplications for \(\mathbb{Z}_{2^k} \) – QuarkSilver

Goal: Given \(([a], [b], [c])\), verify that \(\tilde{a} \cdot \tilde{b} = \tilde{c} \) (mod \(2^k \))

Observation from QuickSilver [YSWW21]: Convert the three MAC equations

\[
M[x] = K[x] + \tilde{x} \cdot \Delta \quad \text{for } x \in \{a, b, c\}
\]

into a polynomial in \(\Delta \):

\[
\Delta \cdot K[c] - K[a] \cdot K[b] = (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2
\]

- known by \(\mathcal{V} \)
- known by \(\mathcal{P} \)
- known by \(\mathcal{P} \)

\(= 0 \) if \(\mathcal{P} \) honest

Soundness: cheating \(\mathcal{P} \) needs to come up with \(p(X) = e_0 + e_1 \cdot X + e \cdot X^2 \) such that

- \(p(\Delta) = 0 \), and
Verifying Multiplications for \mathbb{Z}_{2^k} – QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations

$M[x] = K[x] + \tilde{x} \cdot \Delta$ for $x \in \{a, b, c\}$ into a polynomial in Δ:

$$\Delta \cdot K[c] - K[a] \cdot K[b]$$

known by \mathcal{V}

$$= (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2$$

known by \mathcal{P}

known by \mathcal{P}

$= 0$ if \mathcal{P} honest

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

- $p(\Delta) = 0$, and
- $e := \tilde{c} - \tilde{a} \cdot \tilde{b} \not\equiv 0 \pmod{2^k} \implies p$ has degree 2
Verifying Multiplications for \mathbb{Z}_{2^k} – QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c}$ (mod 2^k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations

\[
M[x] = K[x] + \tilde{x} \cdot \Delta \quad \text{for} \quad x \in \{a, b, c\}
\]

into a polynomial in Δ:

\[
\Delta \cdot K[c] - K[a] \cdot K[b] = (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2
\]

known by V

known by P

known by P

= 0 if P honest

Soundness: cheating P needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

- $p(\Delta) = 0$, and
- $e := \tilde{c} - \tilde{a} \cdot \tilde{b} \neq 0$ (mod 2^k) \Rightarrow p has degree 2

- **Field \mathbb{F}_q:** polynomial p has at most two roots \Leftrightarrow soundness error of $2/q$
Verifying Multiplications for \mathbb{Z}_{2^k} – QuarkSilver

Goal: Given $([a], [b], [c])$, verify that $\tilde{a} \cdot \tilde{b} = \tilde{c} \pmod{2^k}$

Observation from QuickSilver [YSWW21]: Convert the three MAC equations

$$M[x] = K[x] + \tilde{x} \cdot \Delta$$

for $x \in \{a, b, c\}$ into a polynomial in Δ:

$$\Delta \cdot K[c] - K[a] \cdot K[b] = (M[a] \cdot M[b]) + (M[c] - \tilde{a} \cdot M[b] - \tilde{b} \cdot M[a]) \cdot \Delta + (\tilde{c} - \tilde{a} \cdot \tilde{b}) \cdot \Delta^2$$

known by \mathcal{V}

known by \mathcal{P}

known by \mathcal{P}

$= 0$ if \mathcal{P} honest

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_0 + e_1 \cdot X + e \cdot X^2$ such that

- $p(\Delta) = 0$, and
- $e := \tilde{c} - \tilde{a} \cdot \tilde{b} \neq 0 \pmod{2^k} \implies p$ has degree 2

• **Field \mathbb{F}_q:** polynomial p has at most two roots \Rightarrow soundness error of $2/q$

• **Ring $\mathbb{Z}_{2^{k+s}}$:** polynomial p has at most $2^{s/2}$ roots in the range $\{0, \ldots, 2^s - 1\}$
Performance & Summary
Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell = 2^{162}$ (192 bit in implementation)
Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell = 2^{162}$ (192 bit in implementation)

For $\sigma = 40$ statistical security large batches in LAN, we achieve:

VOLE

- ≈ 1 bit per VOLE
- ≈ 21 million VOLEs per second
- similar to
 - Wolverine [WYKW21]
Performance

- Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella
- For 64 bit arithmetic, use $\ell = 2^{162}$ (192 bit in implementation)

For $\sigma = 40$ statistical security large batches in LAN, we achieve:

VOLE
- ≈ 1 bit per VOLE
- ≈ 21 million VOLEs per second
- similar to Wolverine [WYKW21]

QuarkSilver Zero-Knowledge
- \approx one ring element per multiplication
- ≈ 1.3 million multiplications per second
- QuickSilver [YSWW21]: $\approx 5 \times$ more for 64 bit field
- QuarkSilver
 - larger rings
 - \Rightarrow more expensive arithmetic and communication
 - but provides native 64 bit arithmetic
Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit–1.3 bit communication per VOLE for large batches

by Popo le Chien (CC BY-SA 3.0),
https://commons.wikimedia.org/wiki/File:Mozzarella_di.bufala2.jpg
Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}

- one ring element communication per multiplication
Efficient VOLE for \mathbb{Z}_{2^k}

- practical actively secure protocol with sublinear communication
- 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}

- one ring element communication per multiplication

Open problems

- The \mathbb{Z}_{2^k} protocols need larger rings of size $2^\ell > 2^k$.
 \[\Rightarrow \quad \text{Can we reduce the communication overhead compared to } k? \]
- Many recent protocols for fields use very efficient checks based on polynomials.
 \[\Rightarrow \quad \text{Can we get similar efficient alternatives over rings?} \]
Summary

Efficient VOLE for \mathbb{Z}_{2^k}
- practical actively secure protocol with sublinear communication
- 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for \mathbb{Z}_{2^k}
- one ring element communication per multiplication

Open problems
- The \mathbb{Z}_{2^k} protocols need larger rings of size $2^\ell > 2^k$.
 \implies Can we reduce the communication overhead compared to k?
- Many recent protocols for fields use very efficient checks based on polynomials.
 \implies Can we get similar efficient alternatives over rings?

Full version of Mozzarella on ePrint: https://ia.cr/2022/819

Emoji graphics licensed under CC-BY 4.0: https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other contributors
Commitments

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$
Verifier holds global key $\Delta \in R \mathbb{F}$ and key $K[x] \in R \mathbb{F}$

breaking binding \implies guessing Δ
Commitments for \mathbb{Z}_{2^k}

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$
Verifier holds global key $\Delta \in R \mathbb{F}$ and key $K[x] \in R \mathbb{F}$

breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors
Commitments for \mathbb{Z}_{2^k} – SPD\mathbb{Z}_{2^k}-style

[BBMRS21]

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$
Verifier holds global key $\Delta \in R \mathbb{F}$ and key $K[x] \in R \mathbb{F}$
breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \geq k + s$ for security parameter s
Commitments for \mathbb{Z}_{2^k} – SPD\mathbb{Z}_{2^k}-style [BBMRS21]

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$

Verifier holds global key $\Delta \in_R \mathbb{F}$ and key $K[x] \in_R \mathbb{F}$

breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \geq k + s$ for security parameter s

- represent x by $\tilde{x} \in \mathbb{Z}_{2^{k+s}}$ such that $x = \tilde{x} \pmod{2^k}$
- sample keys $\Delta \in_R \mathbb{Z}_{2^s}$, $K[x] \in_R \mathbb{Z}_{2^{k+s}}$
- compute tag $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^{k+s}}$
Commitments for \mathbb{Z}_{2^k} – SPD\mathbb{Z}_{2^k}-style \[\text{[BBMRS21]}\]

Over large fields: Authenticate $x \in \mathbb{F}$ with information-theoretic MAC:

$$M[x] = \Delta \cdot x + K[x] \in \mathbb{F}$$

Prover holds value x and tag $M[x]$ Verifier holds global key $\Delta \in R \mathbb{F}$ and key $K[x] \in R \mathbb{F}$

breaking binding \implies guessing Δ

Issue: \mathbb{Z}_{2^k} is not a field and contains zero divisors

Idea: authenticate $x \in \mathbb{Z}_{2^k}$ over the larger ring \mathbb{Z}_{2^ℓ} with $\ell \geq k + s$ for security parameter s

- represent x by $\tilde{x} \in \mathbb{Z}_{2^{k+s}}$ such that $x = \tilde{x} \pmod{2^k}$
- sample keys $\Delta \in R \mathbb{Z}_{2^s}$, $K[x] \in R \mathbb{Z}_{2^{k+s}}$
- compute tag $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^k}$

- authenticates the lower k bits
- increases storage and communication costs 😞
Linear Operations: to compute $[z] \leftarrow \alpha \cdot [x] + [y] + c$, set

- $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^\ell}$
- $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^\ell}$
- $K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^\ell}$

P publishes \tilde{x}, $M[x]$
V checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^\ell}$
Upper bits of \tilde{x} leak information about intermediate values

\Rightarrow use random $[r]$ to mask upper bits before opening:
- $[z] \leftarrow [x] + 2^k \cdot [r]$
Linear Operations: to compute $[z] \leftarrow \alpha \cdot [x] + [y] + c$, set

- $\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^\ell}$
- $M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^\ell}$

Open:

- P publishes $\tilde{x}, M[x]$
- V checks $M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^\ell}$

- $K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^\ell}$
Linear Operations and Openings

Linear Operations: to compute \(z \leftarrow \alpha \cdot [x] + [y] + c \), set

- \(\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^\ell} \)
- \(M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^\ell} \)

Open:

- \(\mathcal{P} \) publishes \(\tilde{x}, M[x] \)
- \(\mathcal{V} \) checks \(M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^\ell} \)

- \(K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^\ell} \)

upper bits of \(\tilde{x} \) leak information about intermediate values
Linear Operations:

To compute \([z] \leftarrow \alpha \cdot [x] + [y] + c \), set

- \(\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \) (mod \(2^\ell \))
- \(M[z] \leftarrow \alpha \cdot M[x] + M[y] \) (mod \(2^\ell \))
- \(K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \) (mod \(2^\ell \))

Open:

- \(\mathcal{P} \) publishes \(\tilde{x}, M[x] \)
- \(\mathcal{V} \) checks \(M[x] = \Delta \cdot \tilde{x} + K[x] \) (mod \(2^\ell \))

⚠️ upper bits of \(\tilde{x} \) leak information about intermediate values

〜 use random \([r]\) to mask upper bits before opening: \([z] \leftarrow [x] + 2^k \cdot [r] \)
Linear Operations and Openings

Linear Operations: to compute \([z] \leftarrow \alpha \cdot [x] + [y] + c\), set

- \(\tilde{z} \leftarrow \alpha \cdot \tilde{x} + \tilde{y} + c \pmod{2^\ell}\)
- \(M[z] \leftarrow \alpha \cdot M[x] + M[y] \pmod{2^\ell}\)
- \(K[z] \leftarrow \alpha \cdot K[x] + K[y] - \Delta \cdot c \pmod{2^\ell}\)

Open:

- \(P\) publishes \(\tilde{x}, M[x]\)
- \(V\) checks \(M[x] = \Delta \cdot \tilde{x} + K[x] \pmod{2^\ell}\)

\(\Rightarrow\) use random \([r]\) to mask upper bits before opening: \([z] \leftarrow [x] + 2^k \cdot [r]\)

Batched Open: e.g., send \(H(M[x_1], \ldots, M[x_n])\) instead of all \(M[x_1], \ldots, M[x_n]\)
Task: Given ([a], [b], [c]), verify that \(a \cdot b = c \) (mod \(2^k \)).
Verifying Multiplications for \mathbb{Z}_{2^k}

Task: Given $([a], [b], [c])$, verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine’s [WYKW21] check

- bucketing with untrusted multiplication triples \leadsto Beaver multiplication
Verifying Multiplications for \mathbb{Z}_{2^k}

Task: Given ([a], [b], [c]), verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine’s [WYKW21] check

- bucketing with untrusted multiplication triples \rightsquigarrow Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

- needs large message space \rightsquigarrow authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$
Verifying Multiplications for \mathbb{Z}_{2^k}

Task: Given $([a], [b], [c])$, verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine’s [WYKW21] check
- bucketing with untrusted multiplication triples \leadsto Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check
- needs large message space \leadsto authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

<table>
<thead>
<tr>
<th>Prover \mathcal{P}</th>
<th>Random() $\rightarrow [x]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input($x \cdot b$)</td>
<td>$\rightarrow [z]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verifier \mathcal{V}</th>
<th></th>
</tr>
</thead>
</table>
Task: Given ([a], [b], [c]), verify that \(a \cdot b = c \) (mod \(2^k \)).

Variant 1: Adaption of Wolverine's [WYKW21] check
- bucketing with untrusted multiplication triples \(\leadsto \) Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check
- needs large message space \(\leadsto \) authenticate \(\mathbb{Z}_{2^k+s} \) elements over \(\mathbb{Z}_{2^{k+2s}} \)

Diagram:

\[
\begin{align*}
\text{Prover } \mathcal{P} & \quad \text{Random()} \rightarrow [x] \quad \text{Verifier } \mathcal{V} \\
& \quad \text{Input}(x \cdot b) \rightarrow [z] \\
& \quad \eta \in_R \mathbb{Z}_{2^s}
\end{align*}
\]
Verifying Multiplications for \mathbb{Z}_{2^k}

Task: Given $([a], [b], [c])$, verify that $a \cdot b = c \pmod{2^k}$.

Variant 1: Adaption of Wolverine’s [WYKW21] check

- bucketing with untrusted multiplication triples \leadsto Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

- needs large message space \leadsto authenticate $\mathbb{Z}_{2^{k+s}}$ elements over $\mathbb{Z}_{2^{k+2s}}$

\[
\begin{align*}
\text{Prover } & \mathcal{P} \\
\text{Verifier } & \mathcal{V} \\
\text{Random()} & \rightarrow [x] \\
\text{Input}(x \cdot b) & \rightarrow [z] \\
\eta & \in_R \mathbb{Z}_{2^s} \\
\text{Open}(\eta \cdot [a] - [x]) & \rightarrow \epsilon \\
\text{CheckZero}(\eta \cdot [c] - [z] - \epsilon \cdot [b]) &
\end{align*}
\]
Table 1: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The benchmarks are parametrized by the ring size ℓ (i.e., using \mathbb{Z}_{2^ℓ}). The computational security parameter is set to $\kappa = 128$. For statistical security $\sigma \in \{40, 80\}$, we target batch sizes of $n_o = 10^7$ and $n_o = 10^8$, and use LPN parameters (m, t, n).

<table>
<thead>
<tr>
<th>σ</th>
<th>ℓ</th>
<th>Run-time</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LAN</td>
<td>WAN</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>244</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$m = 553 600, \ t = 2 186, \ n = 10 558 380$

$m = 773 200, \ t = 15 045, \ n = 100 816 545$
Table 2: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The benchmarks are parametrized by the ring size ℓ (i.e., using \mathbb{Z}_{2^ℓ}). The computational security parameter is set to $\kappa = 128$. For statistical security $\sigma \in \{40, 80\}$, we target batch sizes of $n_o = 10^7$ and $n_o = 10^8$, and use LPN parameters (m, t, n).

<table>
<thead>
<tr>
<th>σ</th>
<th>ℓ</th>
<th>Run-time</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LAN</td>
<td>WAN</td>
</tr>
<tr>
<td>$m = 830800$, $t = 2013$, $n = 10,835,979$</td>
<td>64</td>
<td>27.6</td>
<td>171.9</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>42.6</td>
<td>194.1</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>59.4</td>
<td>217.1</td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>89.3</td>
<td>277.4</td>
</tr>
<tr>
<td>$m = 866800$, $t = 18,114$, $n = 100,913,094$</td>
<td>64</td>
<td>21.4</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>34.3</td>
<td>61.0</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>49.2</td>
<td>76.0</td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>79.8</td>
<td>106.8</td>
</tr>
</tbody>
</table>
Table 3: Run-times in ns per VOLE in different bandwidth settings, when generating ca. 10^7 VOLEs with 5 threads and statistical security $\sigma \geq 40$. The parameter ℓ denotes the size of a ring or field element. The numbers for Wolverine are taken from [WYKW21].

<table>
<thead>
<tr>
<th>ℓ</th>
<th>20 Mbit/s</th>
<th>50 Mbit/s</th>
<th>100 Mbit/s</th>
<th>500 Mbit/s</th>
<th>1 Gbit/s</th>
<th>10 Gbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>110.0</td>
<td>68.7</td>
<td>55.0</td>
<td>50.2</td>
<td>50.6</td>
<td>50.4</td>
</tr>
<tr>
<td>104</td>
<td>142.0</td>
<td>95.2</td>
<td>80.1</td>
<td>73.2</td>
<td>71.5</td>
<td>73.6</td>
</tr>
<tr>
<td>144</td>
<td>178.6</td>
<td>134.7</td>
<td>119.3</td>
<td>111.6</td>
<td>112.6</td>
<td>113.3</td>
</tr>
<tr>
<td>244</td>
<td>266.3</td>
<td>219.1</td>
<td>201.7</td>
<td>194.5</td>
<td>193.7</td>
<td>196.5</td>
</tr>
<tr>
<td>Wolverine</td>
<td>61</td>
<td>101.0</td>
<td>87.0</td>
<td>85.0</td>
<td>85.0</td>
<td>85.0</td>
</tr>
</tbody>
</table>
Table 4: We measure the run-time of a batch of $\approx 10^7$ multiplications and their verification in ns per multiplication and the communication cost in bit per multiplication. The benchmarks are parametrized by the statistical security parameter σ, and the computational security parameter is set to $\kappa = 128$. For $\sigma = 40$, we use the ring of size $\ell = 162$, for $\sigma = 80$, we use $\ell = 244$.

<table>
<thead>
<tr>
<th>σ</th>
<th>Run-time</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAN</td>
<td>WAN</td>
</tr>
<tr>
<td>vole</td>
<td>78.5</td>
<td>265.5</td>
</tr>
<tr>
<td>mult</td>
<td>663.2</td>
<td>2101.5</td>
</tr>
<tr>
<td>check</td>
<td>28.2</td>
<td>38.2</td>
</tr>
<tr>
<td>total</td>
<td>769.9</td>
<td>2405.2</td>
</tr>
<tr>
<td>vole</td>
<td>125.3</td>
<td>345.6</td>
</tr>
<tr>
<td>mult</td>
<td>680.7</td>
<td>2767.2</td>
</tr>
<tr>
<td>check</td>
<td>42.3</td>
<td>52.4</td>
</tr>
<tr>
<td>total</td>
<td>848.3</td>
<td>3165.2</td>
</tr>
</tbody>
</table>