
MozZ2karella: Efficient Vector-OLE
and Zero-Knowledge Proofs Over Z2k

Carsten Baum, Lennart Braun, Alexander Munch-Hansen, and Peter Scholl

August 18, 2022 – Crypto’22

Aarhus University

1

Zero-Knowledge Proofs for Arithmetic Circuits

Prover P

I know w s. t. C(w) = 1!

w1 w2 · · · wn

wout

+

×CC is an arithmetic circuit over the ring Z2k

Security Properties:

• Soundness

• Zero-Knowledge

• Completeness

2

Zero-Knowledge Proofs for Arithmetic Circuits

Prover P

I know w s. t. C(w) = 1!

w1 w2 · · · wn

wout

+

×CC is an arithmetic circuit over the ring Z2k

Security Properties:

• Soundness

• Zero-Knowledge

• Completeness

2

Computation over Z2k vs. Finite Fields Fpr

• Z2k = Z/2kZ = ({0, . . . , 2k − 1},+, ·) – the ring of integers modulo 2k

Advantages

• maps naturally to data types used by
CPUs and programming languages

• e.g., uint32_t, uint64_t in C

⇝ easier to convert programs to
corresponding circuits

⇝ more efficient protocol
implementations

Disadvantages

• Z2k is not a field

• zero-divisors

• no division by multiples of 2

• polynomials can have lots of roots

⇝ common tricks don’t work and protocols
get more complicated

⇝ proofs of security are harder

3

Computation over Z2k vs. Finite Fields Fpr

• Z2k = Z/2kZ = ({0, . . . , 2k − 1},+, ·) – the ring of integers modulo 2k

Advantages

• maps naturally to data types used by
CPUs and programming languages

• e.g., uint32_t, uint64_t in C

⇝ easier to convert programs to
corresponding circuits

⇝ more efficient protocol
implementations

Disadvantages

• Z2k is not a field

• zero-divisors

• no division by multiples of 2

• polynomials can have lots of roots

⇝ common tricks don’t work and protocols
get more complicated

⇝ proofs of security are harder

3

Computation over Z2k vs. Finite Fields Fpr

• Z2k = Z/2kZ = ({0, . . . , 2k − 1},+, ·) – the ring of integers modulo 2k

Advantages

• maps naturally to data types used by
CPUs and programming languages

• e.g., uint32_t, uint64_t in C

⇝ easier to convert programs to
corresponding circuits

⇝ more efficient protocol
implementations

Disadvantages

• Z2k is not a field

• zero-divisors

• no division by multiples of 2

• polynomials can have lots of roots

⇝ common tricks don’t work and protocols
get more complicated

⇝ proofs of security are harder

3

Zero-Knowledge Proofs for Arithmetic Circuits

Prover P

I know w s. t. C(w) = 1!

w1 w2 · · · wn

wout

+

×C

4

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Prover P

I know w s. t. C(w) = 1!

[w1] [w2] · · · [wn]

[wout]

+

×C

[wi]

[wj]

Ingredients:

1. linearly homomorphic commitments [·]

– can compute [z]← a · [x] + [y] + b

2. multiplication check

– given ([a], [b], [c]), verify a · b ?
= c

4

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Prover P

I know w s. t. C(w) = 1!

[w1] [w2] · · · [wn]

[wout]

+

×C

[wi]

[wj]

Ingredients:

1. linearly homomorphic commitments [·]

– can compute [z]← a · [x] + [y] + b

2. multiplication check

– given ([a], [b], [c]), verify a · b ?
= c

4

Zero-Knowledge Proofs for Arithmetic Circuits via Commit & Prove

Prover P

I know w s. t. C(w) = 1!

[w1] [w2] · · · [wn]

[wout]

+

×C

[wi]

[wj]

Setting:

• designated verifier

• linear communication

• linear time prover and verifier

• minimal overhead compared to circuit evaluation
– computation and memory

4

Linearly Homomorphic Commitments from Vector OLE

For large fields: authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

(cf. Mac’n’Cheese [BMRS21], Wolverine [WYKW21])

Vector Oblivious Linear Evaluation:

Sender S Receiver R

FVOLE

such that M⃗ = ∆ · x⃗ + K⃗ (mod 2ℓ)

x⃗ ∈ Zn
2ℓ

M⃗ ∈ Zn
2ℓ

∆ ∈ Z2s

K⃗ ∈ Zn
2ℓ

5

Linearly Homomorphic Commitments from Vector OLE

For ring Z2k : authenticate x ∈ Z2k over the larger ring Z2k+s

M[x] = ∆ · x̃ + K [x] (mod 2k+s) with x = x̃ (mod 2k)

Prover holds value x̃ and tag M[x] Verifier holds global key ∆ ∈R Z2s and key K [x] ∈R Z2k+s

(cf. SPDZ2k [CDESX18], Appenzeller2Brie [BBMRS21])

Vector Oblivious Linear Evaluation:

Sender S Receiver R

FVOLE

such that M⃗ = ∆ · x⃗ + K⃗ (mod 2ℓ)

x⃗ ∈ Zn
2ℓ

M⃗ ∈ Zn
2ℓ

∆ ∈ Z2s

K⃗ ∈ Zn
2ℓ

5

Linearly Homomorphic Commitments from Vector OLE

For ring Z2k : authenticate x ∈ Z2k over the larger ring Z2k+s

M[x] = ∆ · x̃ + K [x] (mod 2k+s) with x = x̃ (mod 2k)

Prover holds value x̃ and tag M[x] Verifier holds global key ∆ ∈R Z2s and key K [x] ∈R Z2k+s

(cf. SPDZ2k [CDESX18], Appenzeller2Brie [BBMRS21])

Vector Oblivious Linear Evaluation:

Sender S Receiver R

FVOLE

such that M⃗ = ∆ · x⃗ + K⃗ (mod 2ℓ)

x⃗ ∈ Zn
2ℓ

M⃗ ∈ Zn
2ℓ

∆ ∈ Z2s

K⃗ ∈ Zn
2ℓ

5

VOLE for Z2k

How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

⇝ communication at least linear in output size

Via Pseudorandom Correlation Generators (PCGs)

• interactive generation of a short seed → non-interactive expansion to long correlated string

• communication sublinear in vector length n

• based on variants of Learning Parity with Noise (LPN)

• active security only for fields [WYKW21; Boy+19]

Here: actively secure VOLE for rings Z2k with sublinear communication

6

How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

⇝ communication at least linear in output size

Via Pseudorandom Correlation Generators (PCGs)

• interactive generation of a short seed → non-interactive expansion to long correlated string

• communication sublinear in vector length n

• based on variants of Learning Parity with Noise (LPN)

• active security only for fields [WYKW21; Boy+19]

Here: actively secure VOLE for rings Z2k with sublinear communication

6

How to instantiate VOLE?

From Oblivious Transfer or Homomorphic Encryption

⇝ communication at least linear in output size

Via Pseudorandom Correlation Generators (PCGs)

• interactive generation of a short seed → non-interactive expansion to long correlated string

• communication sublinear in vector length n

• based on variants of Learning Parity with Noise (LPN)

• active security only for fields [WYKW21; Boy+19]

Here: actively secure VOLE for rings Z2k with sublinear communication

6

Learning Parity with Noise (LPN) Assumption

s⃗

s⃗: short, uniform seed

·

A

A: generating matrix of a random linear code

+

e⃗

e⃗: sparse error vector (regular error e⃗ = (e⃗1| · · · |e⃗t)T with e⃗i one-hot)

A

 ,
≈C

A

 ,

u⃗

u⃗: long, uniform vector

7

Learning Parity with Noise (LPN) Assumption

s⃗

s⃗: short, uniform seed

·

A

A: generating matrix of a random linear code

+

e⃗

e⃗: sparse error vector (regular error e⃗ = (e⃗1| · · · |e⃗t)T with e⃗i one-hot)

A

 ,
≈C

A

 ,

u⃗

u⃗: long, uniform vector

7

Learning Parity with Noise (LPN) Assumption

s⃗

s⃗: short, uniform seed

·

A

A: generating matrix of a random linear code

+

e⃗

e⃗: sparse error vector (regular error e⃗ = (e⃗1| · · · |e⃗t)T with e⃗i one-hot)

A

 ,
≈C

A

 ,

u⃗

u⃗: long, uniform vector

7

Learning Parity with Noise (LPN) Assumption

s⃗

s⃗: short, uniform seed

·

A

A: generating matrix of a random linear code

+

e⃗

e⃗: sparse error vector (regular error e⃗ = (e⃗1| · · · |e⃗t)T with e⃗i one-hot)

A

 ,
≈C

A

 ,

u⃗

u⃗: long, uniform vector

7

Learning Parity with Noise (LPN) Assumption

s⃗

s⃗: short, uniform seed

·

A

A: generating matrix of a random linear code

+

e⃗

e⃗: sparse error vector (regular error e⃗ = (e⃗1| · · · |e⃗t)T with e⃗i one-hot)

A

 ,
≈C

A

 ,

u⃗

u⃗: long, uniform vector

7

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random

5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

8

VOLE Extension Protocol

Goal: expand m seed/base VOLEs into n≫ m VOLEs: z⃗ = ∆ · x⃗ + y⃗

1. start with w⃗ = ∆ · u⃗ + v⃗ base VOLEs of length m

2. generate and concatenate t single-point VOLEs of length n/t

⇝ obtain c⃗ = ∆ · e⃗ + b⃗ where e⃗ has t non-zero entries

3. apply the generating matrix A to all seed VOLEs and add the error VOLEs

Sender computes

 x⃗ := A · u⃗ + e⃗

z⃗ := A · w⃗ + c⃗

Receiver computes y⃗ := A · v⃗ + b⃗

=⇒ z⃗ := ∆ · x⃗ + y⃗

4. LPN: x⃗ looks uniformly random
5. (save m VOLEs and repeat)

based on Wolverine [WYKW21]

crucial step: need communication sublinear in n

8

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

9

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

9

GGM Construction for a PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

GGM Construction for a PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

GGM Construction for a PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

GGM Construction for a PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

GGM Construction for a Punctured PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

GGM Construction for a Punctured PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

10

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

a malicious receiver R can

• use inconsistent values in the OTs

• send an incorrect d

⇝ leakage on the noise coordinate α

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• Wolverine’s [WYKW21] approach: use a random linear combination over the field Fq

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• Wolverine’s [WYKW21] approach: use a random linear combination over the field Fq

• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

random linear combinations are tricky over Z2k

– need to enlarge ring by s bit to ensure consistency of
lower bits! cf. SPDZ2k [CDESX18]

⇝ cannot do multiple iterations

11

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])

• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

11

GGM Construction for a Punctured PRF

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

v0 v1 v2 v3 v4 v5 v6 v7

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

12

GGM Construction for a Punctured PRF with Consistency Check

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

s7 s8 s9 s7 s10 s11 s12 s13

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

12

GGM Construction for a Punctured PRF with Consistency Check

s0

s1 s2

G0 G1

s3 s4 s5 s6

G0 G1 G0 G1

s7 s8 s9 s7 s10 s11 s12 s13

G0 G1 G0 G1 G0 G1 G0 G1

v0 t0 v1 t1 v2 t2 v3 t3 v4 t4 v5 t5 v6 t6 v7 t7

G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1 G0 G1

G (x) = G (x)0 || G (x)1 length-doubling PRG

⇝ compute and verify universal hash h(t0, . . . , t7)

h
()

12

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])

• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

13

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

13

Single-Point VOLE Protocol

Goal: generate w⃗ = ∆ · u⃗ + v⃗ where uα = β ∈R Z2ℓ \ {0} and uj = 0 for j ̸= α

1. distribute long random vector w⃗ ≈ v⃗ with a punctured PRF F

• R samples a PRF key k and
use log(n/t) OTs to obliviously transfer a punctured key k{α} to S

• set wi := vi := F (k, i) for all i ̸= α and vα := F (k, α)

⇝ R does not learn α and S does not learn vα

2. compute wα = ∆ · β + vα
• use one base VOLE δ = ∆ · β + γ

• R sends d := γ −
∑

j vj

• S computes wα := δ − d −
∑

j ̸=α wj

3. ensure consistency
• use universal hashing to verify consistency of the GGM tree (based on check in [Boy+19])
• use subset sum check for d with binary coefficients χ1, . . . , χn ∈R {0, 1}

– malicious R can guess χα with probability 1/2

⇝ adjust functionality to allow leakage of α with
probability 1/2

⇝ increase noise rate of the error to compensate

13

QuarkSilver – More Efficient
Multiplication Check for Z2k

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2

• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Verifying Multiplications for Z2k – QuarkSilver

Goal: Given ([a], [b], [c]), verify that ã · b̃ = c̃ (mod 2k)

Observation from QuickSilver [YSWW21]: Convert the three MAC equations
M[x] = K [x] + x̃ · ∆ for x ∈ {a, b, c} into a polynomial in ∆:

∆ · K [c]− K [a] · K [b]︸ ︷︷ ︸
known by V

= (M[a] ·M[b])︸ ︷︷ ︸
known by P

+ (M[c]− ã ·M[b]− b̃ ·M[a])︸ ︷︷ ︸
known by P

· ∆ + (c̃ − ã · b̃)︸ ︷︷ ︸
= 0 if P honest

· ∆2

Soundness: cheating P needs to come up with p(X) = e0 + e1 · X + e · X 2 such that

– p (∆) = 0, and

– e := c̃ − ã · b̃ ̸= 0 (mod 2k) =⇒ p has degree 2
• Field Fq: polynomial p has at most two roots ⇝ soundness error of 2/q

• Ring Z2k+s : polynomial p has at most 2s/2 roots in the range {0, . . . , 2s − 1}

use a random linear combination to
verify many multiplications

14

Performance & Summary

Performance

• Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella

• For 64 bit arithmetic, use ℓ = 2162 (192 bit in implementation)

For σ = 40 statistical security large batches in LAN, we achieve:

VOLE

• ≈ 1 bit per VOLE

• ≈ 21 million VOLEs
per second

• similar to
Wolverine [WYKW21]

QuarkSilver Zero-Knowledge

• ≈ one ring element per multiplication

• ≈ 1.3 million multiplications per second

• QuickSilver [YSWW21]: ≈ 5× more for 64 bit field

• QuarkSilver
– larger rings
⇝ more expensive arithmetic and communication

– but provides native 64 bit arithmetic

15

https://github.com/AarhusCrypto/Mozzarella

Performance

• Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella

• For 64 bit arithmetic, use ℓ = 2162 (192 bit in implementation)

For σ = 40 statistical security large batches in LAN, we achieve:

VOLE

• ≈ 1 bit per VOLE

• ≈ 21 million VOLEs
per second

• similar to
Wolverine [WYKW21]

QuarkSilver Zero-Knowledge

• ≈ one ring element per multiplication

• ≈ 1.3 million multiplications per second

• QuickSilver [YSWW21]: ≈ 5× more for 64 bit field

• QuarkSilver
– larger rings
⇝ more expensive arithmetic and communication

– but provides native 64 bit arithmetic

15

https://github.com/AarhusCrypto/Mozzarella

Performance

• Rust implementation of benchmarks: https://github.com/AarhusCrypto/Mozzarella

• For 64 bit arithmetic, use ℓ = 2162 (192 bit in implementation)

For σ = 40 statistical security large batches in LAN, we achieve:

VOLE

• ≈ 1 bit per VOLE

• ≈ 21 million VOLEs
per second

• similar to
Wolverine [WYKW21]

QuarkSilver Zero-Knowledge

• ≈ one ring element per multiplication

• ≈ 1.3 million multiplications per second

• QuickSilver [YSWW21]: ≈ 5× more for 64 bit field

• QuarkSilver
– larger rings
⇝ more expensive arithmetic and communication

– but provides native 64 bit arithmetic

15

https://github.com/AarhusCrypto/Mozzarella

Summary

by Popo le Chien (CC BY-SA 3.0),
https://commons.wikimedia.org/wiki/File:
Mozzarella_di_bufala2.jpg

Efficient VOLE for Z2k

• practical actively secure protocol with sublinear communication
• 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for Z2k

• one ring element communication per multiplication

Open problems

• The Z2k protocols need larger rings of size 2ℓ > 2k .
=⇒ Can we reduce the communication overhead compared to k?

• Many recent protocols for fields use very efficient checks based on polynomials.
=⇒ Can we get similar efficient alternatives over rings?

Full version of MoZ2kzarella on ePrint: https://ia.cr/2022/819

16

https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://ia.cr/2022/819

Summary

by Popo le Chien (CC BY-SA 3.0),
https://commons.wikimedia.org/wiki/File:
Mozzarella_di_bufala2.jpg

Efficient VOLE for Z2k

• practical actively secure protocol with sublinear communication
• 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for Z2k

• one ring element communication per multiplication

Open problems

• The Z2k protocols need larger rings of size 2ℓ > 2k .
=⇒ Can we reduce the communication overhead compared to k?

• Many recent protocols for fields use very efficient checks based on polynomials.
=⇒ Can we get similar efficient alternatives over rings?

Full version of MoZ2kzarella on ePrint: https://ia.cr/2022/819

16

https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://ia.cr/2022/819

Summary

by Popo le Chien (CC BY-SA 3.0),
https://commons.wikimedia.org/wiki/File:
Mozzarella_di_bufala2.jpg

Efficient VOLE for Z2k

• practical actively secure protocol with sublinear communication
• 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for Z2k

• one ring element communication per multiplication

Open problems

• The Z2k protocols need larger rings of size 2ℓ > 2k .
=⇒ Can we reduce the communication overhead compared to k?

• Many recent protocols for fields use very efficient checks based on polynomials.
=⇒ Can we get similar efficient alternatives over rings?

Full version of MoZ2kzarella on ePrint: https://ia.cr/2022/819

16

https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://ia.cr/2022/819

Summary

by Popo le Chien (CC BY-SA 3.0),
https://commons.wikimedia.org/wiki/File:
Mozzarella_di_bufala2.jpg

Efficient VOLE for Z2k

• practical actively secure protocol with sublinear communication
• 1 bit–1.3 bit communication per VOLE for large batches

QuarkSilver: More efficient VOLE-based zero-knowledge for Z2k

• one ring element communication per multiplication

Open problems

• The Z2k protocols need larger rings of size 2ℓ > 2k .
=⇒ Can we reduce the communication overhead compared to k?

• Many recent protocols for fields use very efficient checks based on polynomials.
=⇒ Can we get similar efficient alternatives over rings?

Full version of MoZ2kzarella on ePrint: https://ia.cr/2022/819
16

https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://commons.wikimedia.org/wiki/File:Mozzarella_di_bufala2.jpg
https://ia.cr/2022/819

References i

[BBMRS21] C. Baum et al. “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for
Mixed-Mode Arithmetic and Z2k”. In: ACM CCS 2021. Nov. 2021.

[BMRS21] C. Baum et al. “Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and
Arithmetic Circuits with Nested Disjunctions”. In: CRYPTO 2021, Part IV. Aug.
2021.

[Boy+19] E. Boyle et al. “Efficient Two-Round OT Extension and Silent Non-Interactive
Secure Computation”. In: ACM CCS 2019. Nov. 2019.

[CDESX18] R. Cramer et al. “SPD Z2k : Efficient MPC mod 2k for Dishonest Majority”. In:
CRYPTO 2018, Part II. Aug. 2018.

[WYKW21] C. Weng et al. “Wolverine: Fast, Scalable, and Communication-Efficient
Zero-Knowledge Proofs for Boolean and Arithmetic Circuits”. In:
2021 IEEE Symposium on Security and Privacy. May 2021.

17

References ii

[YSWW21] K. Yang et al. “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for
Circuits and Polynomials over Any Field”. In: ACM CCS 2021. Nov. 2021.

Emoji graphics licensed under CC-BY 4.0:
https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other
contributors

18

https://creativecommons.org/licenses/by/4.0/

Commitments

Over large fields: Authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

breaking binding =⇒ guessing ∆

Issue: Z2k is not a field and contains zero divisors

Idea: authenticate x ∈ Z2k over the larger ring Z2ℓ with ℓ ≥ k + s for security parameter s

• represent x by x̃ ∈ Z2k+s such that x = x̃ (mod 2k)

• sample keys ∆ ∈R Z2s , K [x] ∈R Z2k+s

• compute tag M[x] = ∆ · x̃ + K [x] (mod 2k+s)

• authenticates the lower k bits

• increases storage and
communication costs

Commitments for Z2k

Over large fields: Authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

breaking binding =⇒ guessing ∆

Issue: Z2k is not a field and contains zero divisors

Idea: authenticate x ∈ Z2k over the larger ring Z2ℓ with ℓ ≥ k + s for security parameter s

• represent x by x̃ ∈ Z2k+s such that x = x̃ (mod 2k)

• sample keys ∆ ∈R Z2s , K [x] ∈R Z2k+s

• compute tag M[x] = ∆ · x̃ + K [x] (mod 2k+s)

• authenticates the lower k bits

• increases storage and
communication costs

Commitments for Z2k – SPDZ2k -style [BBMRS21]

Over large fields: Authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

breaking binding =⇒ guessing ∆

Issue: Z2k is not a field and contains zero divisors

Idea: authenticate x ∈ Z2k over the larger ring Z2ℓ with ℓ ≥ k + s for security parameter s

• represent x by x̃ ∈ Z2k+s such that x = x̃ (mod 2k)

• sample keys ∆ ∈R Z2s , K [x] ∈R Z2k+s

• compute tag M[x] = ∆ · x̃ + K [x] (mod 2k+s)

• authenticates the lower k bits

• increases storage and
communication costs

Commitments for Z2k – SPDZ2k -style [BBMRS21]

Over large fields: Authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

breaking binding =⇒ guessing ∆

Issue: Z2k is not a field and contains zero divisors

Idea: authenticate x ∈ Z2k over the larger ring Z2ℓ with ℓ ≥ k + s for security parameter s

• represent x by x̃ ∈ Z2k+s such that x = x̃ (mod 2k)

• sample keys ∆ ∈R Z2s , K [x] ∈R Z2k+s

• compute tag M[x] = ∆ · x̃ + K [x] (mod 2k+s)

• authenticates the lower k bits

• increases storage and
communication costs

Commitments for Z2k – SPDZ2k -style [BBMRS21]

Over large fields: Authenticate x ∈ F with information-theoretic MAC:

M[x] = ∆ · x + K [x] ∈ F

Prover holds value x and tag M[x] Verifier holds global key ∆ ∈R F and key K [x] ∈R F

breaking binding =⇒ guessing ∆

Issue: Z2k is not a field and contains zero divisors

Idea: authenticate x ∈ Z2k over the larger ring Z2ℓ with ℓ ≥ k + s for security parameter s

• represent x by x̃ ∈ Z2k+s such that x = x̃ (mod 2k)

• sample keys ∆ ∈R Z2s , K [x] ∈R Z2k+s

• compute tag M[x] = ∆ · x̃ + K [x] (mod 2k+s)

• authenticates the lower k bits

• increases storage and
communication costs

Linear Operations and Openings [BBMRS21]

Linear Operations: to compute [z]← α · [x] + [y] + c , set

• z̃ ← α · x̃ + ỹ + c (mod 2ℓ)

• M[z]← α ·M[x] +M[y] (mod 2ℓ)

• K [z]← α ·K [x] +K [y]−∆ · c (mod 2ℓ)

Open:

• P publishes x̃ ,M[x]

• V checks M[x] = ∆ · x̃ + K [x] (mod 2ℓ)
upper bits of x̃ leak information

about intermediate values

⇝ use random [r] to mask upper bits before opening: [z]← [x] + 2k · [r]

Batched Open: e.g., send H(M[x1], . . . ,M[xn]) instead of all M[x1], . . . ,M[xn]

Linear Operations and Openings [BBMRS21]

Linear Operations: to compute [z]← α · [x] + [y] + c , set

• z̃ ← α · x̃ + ỹ + c (mod 2ℓ)

• M[z]← α ·M[x] +M[y] (mod 2ℓ)

• K [z]← α ·K [x] +K [y]−∆ · c (mod 2ℓ)

Open:

• P publishes x̃ ,M[x]

• V checks M[x] = ∆ · x̃ + K [x] (mod 2ℓ)

upper bits of x̃ leak information
about intermediate values

⇝ use random [r] to mask upper bits before opening: [z]← [x] + 2k · [r]

Batched Open: e.g., send H(M[x1], . . . ,M[xn]) instead of all M[x1], . . . ,M[xn]

Linear Operations and Openings [BBMRS21]

Linear Operations: to compute [z]← α · [x] + [y] + c , set

• z̃ ← α · x̃ + ỹ + c (mod 2ℓ)

• M[z]← α ·M[x] +M[y] (mod 2ℓ)

• K [z]← α ·K [x] +K [y]−∆ · c (mod 2ℓ)

Open:

• P publishes x̃ ,M[x]

• V checks M[x] = ∆ · x̃ + K [x] (mod 2ℓ)
upper bits of x̃ leak information

about intermediate values

⇝ use random [r] to mask upper bits before opening: [z]← [x] + 2k · [r]

Batched Open: e.g., send H(M[x1], . . . ,M[xn]) instead of all M[x1], . . . ,M[xn]

Linear Operations and Openings [BBMRS21]

Linear Operations: to compute [z]← α · [x] + [y] + c , set

• z̃ ← α · x̃ + ỹ + c (mod 2ℓ)

• M[z]← α ·M[x] +M[y] (mod 2ℓ)

• K [z]← α ·K [x] +K [y]−∆ · c (mod 2ℓ)

Open:

• P publishes x̃ ,M[x]

• V checks M[x] = ∆ · x̃ + K [x] (mod 2ℓ)
upper bits of x̃ leak information

about intermediate values

⇝ use random [r] to mask upper bits before opening: [z]← [x] + 2k · [r]

Batched Open: e.g., send H(M[x1], . . . ,M[xn]) instead of all M[x1], . . . ,M[xn]

Linear Operations and Openings [BBMRS21]

Linear Operations: to compute [z]← α · [x] + [y] + c , set

• z̃ ← α · x̃ + ỹ + c (mod 2ℓ)

• M[z]← α ·M[x] +M[y] (mod 2ℓ)

• K [z]← α ·K [x] +K [y]−∆ · c (mod 2ℓ)

Open:

• P publishes x̃ ,M[x]

• V checks M[x] = ∆ · x̃ + K [x] (mod 2ℓ)
upper bits of x̃ leak information

about intermediate values

⇝ use random [r] to mask upper bits before opening: [z]← [x] + 2k · [r]

Batched Open: e.g., send H(M[x1], . . . ,M[xn]) instead of all M[x1], . . . ,M[xn]

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

Verifying Multiplications for Z2k [BBMRS21]

Task: Given ([a], [b], [c]), verify that a · b = c (mod 2k).

Variant 1: Adaption of Wolverine’s [WYKW21] check

• bucketing with untrusted multiplication triples ⇝ Beaver multiplication

Variant 2: Adaption of the Mac’n’Cheese [BMRS21] check

• needs large message space ⇝ authenticate Z2k+s elements over Z2k+2s

Prover P Verifier VRandom()→ [x]

Input(x · b)→ [z]

η ∈R Z2s

Open(η · [a]− [x])→ ϵ

CheckZero(η · [c]− [z]− ϵ · [b])

VOLE Performace (σ = 40)

Table 1: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size ℓ (i.e., using Z2ℓ). The computational security parameter is set to κ = 128.
For statistical security σ ∈ {40, 80}, we target batch sizes of no = 107 and no = 108, and use LPN parameters (m, t, n).

σ ℓ
Run-time Communication

LAN WAN S → R R → S total

40

m = 553 600, t = 2 186, n = 10 558 380

64 27.3 190.8 0.467 0.927 1.394
104 40.7 186.7 0.509 0.955 1.464
144 55.2 212.6 0.551 0.983 1.534
244 80.7 255.0 0.593 1.011 1.604

m = 773 200, t = 15 045, n = 100 816 545

64 20.1 46.0 0.318 0.636 0.954
104 33.2 58.9 0.347 0.655 1.002
144 46.7 75.1 0.376 0.674 1.050
244 76.7 102.8 0.405 0.694 1.098

VOLE Performace (σ = 80)

Table 2: Run-time of the Extend operation in ns per VOLE and the communication cost in bit per VOLE. The
benchmarks are parametrized by the ring size ℓ (i.e., using Z2ℓ). The computational security parameter is set to κ = 128.
For statistical security σ ∈ {40, 80}, we target batch sizes of no = 107 and no = 108, and use LPN parameters (m, t, n).

σ ℓ
Run-time Communication

LAN WAN S → R R → S total

80

m = 830 800, t = 2 013, n = 10 835 979

64 27.6 171.9 0.431 0.853 1.284
104 42.6 194.1 0.469 0.879 1.349
144 59.4 217.1 0.508 0.905 1.413
244 89.3 277.4 0.547 0.931 1.477

m = 866 800, t = 18 114, n = 100 913 094

64 21.4 48.2 0.383 0.765 1.148
104 34.3 61.0 0.418 0.789 1.206
144 49.2 76.0 0.453 0.812 1.264
244 79.8 106.8 0.487 0.835 1.322

VOLE Perfomance Comparison with Wolverine [WYKW21]

Table 3: Run-times in ns per VOLE in different bandwidth settings, when generating ca. 107 VOLEs
with 5 threads and statistical security σ ≥ 40. The parameter ℓ denotes the size of a ring or field
element. The numbers for Wolverine are taken from [WYKW21].

ℓ 20 Mbit/s 50 Mbit/s 100Mbit/s 500Mbit/s 1 Gbit/s 10 Gbit/s

this work

64 110.0 68.7 55.0 50.2 50.6 50.4
104 142.0 95.2 80.1 73.2 71.5 73.6
144 178.6 134.7 119.3 111.6 112.6 113.3
244 266.3 219.1 201.7 194.5 193.7 196.5

Wolverine 61 101.0 87.0 85.0 85.0 85.0 —

QuarkSilver Performance

Table 4: We measure the run-time of a batch of ≈ 107 multiplications and their verification in ns per multiplication and
the communication cost in bit per multiplication. The benchmarks are parametrized by the statistical security parameter σ,
and the computational security parameter is set to κ = 128. For σ = 40, we use the ring of size ℓ = 162, for σ = 80, we
use ℓ = 244.

σ
Run-time Communication

LAN WAN S → R R → S total

40

vole 78.5 265.5 0.5 1.0 1.5
mult 663.2 2 101.5 192.0 0.0 192.0
check 28.2 38.2 0.0 0.0 0.0

total 769.9 2 405.2 192.5 1.0 193.5

80

vole 125.3 345.6 0.5 0.9 1.5
mult 680.7 2 767.2 256.0 0.0 256.0
check 42.3 52.4 0.0 0.0 0.0

total 848.3 3 165.2 256.5 0.9 257.5

	VOLE for Z2k
	QuarkSilver – More Efficient Multiplication Check for Z2k
	Performance & Summary
	Appendix

