Faster Sounder Proofs

Justin Holmgren NTT Research

Ron Rothblum Technion

Paper

Faster (Sounder Proofs)

Justin Holmgren NTT Research

Ron Rothblum Technion

Paper

Proof Systems

Proof Systems: the Theory Perspective

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:

- Evolution: NP proof, interactive proofs, MIP, PCP, ...
- Central objects in theory literature: NP completeness, zero-knowledge, PCP Theorem, ...

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:

- Evolution: NP proof, interactive proofs, MIP, PCP, ...
- Central objects in theory literature: NP completeness, zero-knowledge, PCP Theorem, ...

Proofs spurred the development of lots of deep theory!

Practical Motivation: Blockchains & Cryptocurrencies

Efficient ZK proofs have amazing applications.

"Perhaps the most powerful cryptographic technology to come out of the last decade is general-purpose succinct zero knowledge proofs"

- Vitalik Buterin, Ethereum co-founder (2021)

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

<u>In practice</u>: orders of magnitude slower than just performing the computation.

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

<u>In practice</u>: orders of magnitude slower than just performing the computation.

Can proving be as fast as computing?

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

<u>In practice</u>: orders of magnitude slower than just performing the computation.

Can proving be as fast as computing?

Looking at very small factors ⇒ the computational model matters!

Today: Boolean Circuits

Constant fan-in, arbitrary gates

Today: Boolean Circuits

Why Boolean circuits? [IKOS08]

Today: Boolean Circuits

Why Boolean circuits? [IKOS08]

- Natural, fundamental, and physically motivated model of computational complexity
- Includes interesting non-arithmetic computation (e.g, SHA).

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit K	Prover Complexity
Boolean	Boolean size $O(S \cdot \lambda)$ [RR21]

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit *K*

Boolean

Prover Complexity

Boolean size $O(S \cdot \lambda)$ [RR21]

 λ comes from parallel repetition

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit K Prover Complexit

Boolean Boolean size $O(S \cdot \lambda)$ [RR21]

 λ comes from parallel repetition

arithmetic over large

field \mathbb{F} : $|\mathbb{F}| \geq S \cdot 2^{\lambda}$

arithmetic size O(S) over \mathbb{F} [BCGGHJ17,XZZPS19,ZWZZ20, BCG20,BCL20,GLSTW21]

TL;DR: succinct proofs for "nice circuit" satisfiability with

 $S \cdot \mathsf{polylog}(\lambda)$ size prover, soundness error $2^{-\lambda}$, and sublinear verification

hiding additive $poly(\lambda)$

exact complexity depends on niceness

• **Simple examples**: *C* is nice if:

- Simple examples: C is nice if:
 - it has batch structure:

$$C(x_1, ..., x_k) = D(x_1) \land \cdots \land D(x_k)$$
 for large k and some repeated sub-circuit D ;

- Simple examples: C is nice if:
 - it has batch structure: $C(x_1, ..., x_k) = D(x_1) \land \cdots \land D(x_k)$ for large k and some repeated sub-circuit D;
 - or it has iterated structure:

 $C(x) = D(D \cdots (D(x) \cdots)).$

- Simple examples: C is nice if:
 - it has batch structure: $C(x_1, ..., x_k) = D(x_1) \land \cdots \land D(x_k)$ for large k and some repeated sub-circuit D;
 - or it has iterated structure: $C(x) = D(D \cdots (D(x) \cdots)).$
 - Our basic verifier has size pprox |D|; can improve with composition

- Simple examples: C is nice if:
 - it has batch structure: $C(x_1, ..., x_k) = D(x_1) \land \cdots \land D(x_k)$ for large k and some repeated sub-circuit D;
 - or it has iterated structure: $C(x) = D(D \cdots (D(x) \cdots)).$
 - Our basic verifier has size pprox |D|; can improve with composition
- More generally, we define a "tensor CSP", and say that C is nice if it has a small tensor CSP. Ask me for details, if you dare :D

Parameterized by: circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit K	Prover Complexity
Boolean	Boolean size $O(S \cdot \lambda)$ [RR21]

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit K	Prover Complexity

Boolean Boolean size $O(S \cdot \lambda)$ [RR21]

arithmetic over large

field \mathbb{F} : $|\mathbb{F}| \geq S \cdot 2^{\lambda}$

arithmetic size O(S) over \mathbb{F} [BCGGHJ17,XZZPS19,ZWZZ20, BCG20,BCL20,GLSTW21]

Parameterized by:

circuit size S and soundness error $2^{-\lambda}$ (usually $\log S < \lambda \ll S$)

Type of circuit K	Prover Complexity
Boolean	Boolean size $O(S \cdot \lambda)$ [RR21]
"nice" Boolean (repetitive structure)	Boolean size $S \cdot polylog(\lambda)$ [this work]
arithmetic over large field \mathbb{F} : $ \mathbb{F} \geq S \cdot 2^{\lambda}$	arithmetic size $O(S)$ over \mathbb{F} [BCGGHJ17,XZZPS19,ZWZZ20, BCG20,BCL20,GLSTW21]

There exists a linear code $E: \mathbb{F}_2^N \to \mathbb{F}_2^{O(N)}$ such that:

• E is encodable by size N · polylog(λ) Boolean circuit.

- E is encodable by size N · polylog(λ) Boolean circuit.
- Given E(X), E(Y), and E(Z), an **IOP prover** of size $N \cdot \mathsf{polylog}(\lambda)$ can prove $Z = X \odot Y$ with soundness error $2^{-\lambda}$.

- E is encodable by size N $\operatorname{polylog}(\lambda)$ Boolean circuit. Enforceable promise
- Given E(X), E(Y), and E(Z), an **IOP prover** of size $N \cdot \mathsf{polylog}(\lambda)$ can prove $Z = X \odot Y$ with soundness error $2^{-\lambda}$.

- E is encodable by size N · polylog(λ) Boolean circuit.

 Enforceable promise
- Given E(X), E(Y), and E(Z), an **IOP prover** of size $N \cdot \mathsf{polylog}(\lambda)$ can prove $Z = X \odot Y$ with soundness error $2^{-\lambda}$.

Bonus Time: Technical Tour

Off-The-Shelf Ingredients

• Field \mathbb{F} with $|\mathbb{F}| = O(\lambda)$

- Field \mathbb{F} with $|\mathbb{F}| = O(\lambda)$
- Good, linear, systematic codes.

- Field \mathbb{F} with $|\mathbb{F}| = O(\lambda)$
- Good, linear, systematic codes.
 - $G: \mathbb{F}^n \to \mathbb{F}^{O(n)}$ encodable in size O(n) such that:

Given G(x), G(y), and G(z), a prover can convince that $z = x \odot y$ with O(1) soundness error and O(1) prover overhead [Ron-Zewi Rothblum (STOC '22)]

- Field \mathbb{F} with $|\mathbb{F}| = O(\lambda)$
- Good, linear, systematic codes.
 - $G: \mathbb{F}^n \to \mathbb{F}^{O(n)}$ encodable in size O(n) such that:

Given G(x), G(y), and G(z), a prover can convince that $z = x \odot y$ with O(1) soundness error and O(1) prover overhead [Ron-Zewi Rothblum (STOC '22)]

• $M: \mathbb{F}^{\lambda} \to \mathbb{F}^{O(\lambda)}$ is a **multiplication code** encodable in size $\lambda \cdot \operatorname{polylog}(\lambda)$ (e.g. Reed-Solomon + FFT)

Final Boss Slide

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

- 1. Prover sends $\tilde{Z} = G(XM \odot YM)$
- 2. Verifier:
 - a) samples a column and row, verifies (constant soundness):

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

- 1. Prover sends $\tilde{Z} = G(XM \odot YM)$
- 2. Verifier:
 - a) samples a column and row, verifies (constant soundness):
 - column consistency via [RR22]

$$\Longrightarrow \tilde{X} \odot \tilde{Y} = X \odot Y$$

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

- 1. Prover sends $\tilde{Z} = G(XM \odot YM)$
- 2. Verifier:
 - a) samples a column and row, verifies (constant soundness):
 - column consistency via [RR22]

$$\Longrightarrow \tilde{X} \odot \tilde{Y} = X \odot Y$$

row consistency directly

$$\Longrightarrow Z = \tilde{X} \odot \tilde{Y}$$

Given encodings $\hat{X} = GXM$, $\hat{Y} = GYM$, and $\hat{Z} = GZM$, want to establish: $Z = X \odot Y$.

- 1. Prover sends $\tilde{Z} = G(XM \odot YM)$
- 2. Verifier:
 - a) samples a column and row, verifies (constant soundness):
 - column consistency via [RR22]

$$\Longrightarrow \tilde{X} \odot \tilde{Y} = X \odot Y$$

row consistency directly

$$\Longrightarrow Z = \tilde{X} \odot \tilde{Y}$$

b) repeats λ times

Epilogue

• Reduce prover size to O(S) + poly(λ , log S)?

- Reduce prover size to O(S) + poly(λ , log S)?
 - Replace Reed-Solomon by linear-size encodable multiplication codes (do these exist?)

- Reduce prover size to O(S) + poly(λ , log S)?
 - Replace Reed-Solomon by linear-size encodable multiplication codes (do these exist?)
- Non-interactive argument for P with similar efficiency (currently from random oracle)

- Reduce prover size to O(S) + poly(λ , log S)?
 - Replace Reed-Solomon by linear-size encodable multiplication codes (do these exist?)
- Non-interactive argument for P with similar efficiency (currently from random oracle)
- Handle arbitrary Boolean circuits? (with preprocessing)

- Reduce prover size to O(S) + poly(λ , log S)?
 - Replace Reed-Solomon by linear-size encodable multiplication codes (do these exist?)
- Non-interactive argument for P with similar efficiency (currently from random oracle)
- Handle arbitrary Boolean circuits? (with preprocessing)

Paper

Slides

