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Super-efficient verification of complex statements:
» Evolution: NP proof, interactive proofs, MIP, PCP, ...

» Central objects in theory literature: NP completeness,
zero-knowledge, PCP Theorem, ...

Proofs spurred the development of lots of deep theory!



Practical Motivation:
Blockchains & Cryptocurrencies

Efficient ZK proofs have amazing applications.

“Perhaps the most powerful cryptographic technology to come
out of the last decade is general-purpose succinct zero
knowledge proofs”

- Vitalik Buterin, Ethereum co-founder (2021)

THE PRINCE
OF CRYPTO
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Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Can proving be as fast as computing?

Looking at very small factors = the computational model matters!
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Today: Boolean Circuits

Constant fan-in,

arbitrary gates | ;D\ |
Why Boolean circuits? [IKOS08]

e Natural, fundamental, and physically motivated model of
computational complexity

 Includes interesting non-arithmetic computation (e.g, SHA).
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Main Result

TL;DR: succinct proofs for "nice circuit" satisfiability with
S - polylog(1) size prover, soundness error 2%, and

sublinear verification
hiding additive
poly (4) exact complexity

depends on niceness
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Nice Boolean Circuits

e Simple examples: C is nice if:

e |t has batch structure:
C(xyy ..., %) = D(xy) A -+ A D(x;) for large k and some
repeated sub-circuit D;

e or it has iterated structure:

C(x) = D(D---(D(x)--+))-
e Our basic verifier has size ~ | D |; can improve with composition

 More generally, we define a "tensor CSP", and say that C is nice if
it has a small tensor CSP. Ask me for details, if you dare :D
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Main Result

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - 4) [RR21]
"nice" Boolean Boolean size S - polylog(4)
(repetitive structure) [this work]

arithmetic size O(S) over [F

_ ﬂ [BCGGHJ17,XZZPS19,72WZZ20,
field: |F[ =52 BCG20,BCL20,GLSTW21]

arithmetic over large
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Core Lemma
(Encoded Multiplication IOP)

There exists a linear code £ : [|:12v — [FZO(N ) such that:

o E'is encodable by size N - polylog(4) Boolean circuit.

Enforceable promise

e Given E(X), E(Y), and E(Z), an IOP prover of size
N - polylog(4) can prove Z = X ® Y with soundness

Pointwise multiplication




Bonus Time:
Technical Tour
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Off-The-Shelf Ingredients

e Field Fwith |F| = O(41)
* Good, linear, systematic codes.

e G:F" - F°"™ encodable in size O(n) such that:

Given G(x), G(v), and G(z), a prover can convince that

z = x ® y with O(1) soundness error and O(1) prover
overhead [Ron-Zewi Rothblum (STOC '22)]

e M: [ - F9Wisa multiplication code encodable in size
A - polylog(4) (e.g. Reed-Solomon + FFT)
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Pointwise Multiplication IOP

Given encodingsf( = GXM, Y = GYM, and 7 = GZM,

want to establish: Z =X ©®
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Pointwise Multiplication IOP

Given encodingsf( = GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

1. Prover sends Z = G(XM © YM) X Y

2. \erifier: N//II X XM Y YM
a) samples a column and row,
verifies (constant soundness): GXM GYM
» column consistency via [RR22] Z 2
—= X0Y=X0Y |
. _ /M
row consistency directly
—7=-X0o7¥ [E— N
b) repeats A times
NOT TO SCALE!

matrices skinnier than shown



Epilogue



Sequel?



Sequel?

e Reduce prover size to O(S) + poly(4, log §)?



Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)



Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)



Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)

 Handle arbitrary Boolean circuits? (with preprocessing)



Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)

 Handle arbitrary Boolean circuits? (with preprocessing)
Paper Slides

OE-£10
I i"l'.' -,
r

[m] e




