
Faster Sounder Proofs

Justin Holmgren 
NTT Research

Ron Rothblum 
Technion

Paper Slides

Faster Sounder Proofs

Justin Holmgren 
NTT Research

Ron Rothblum 
Technion

Paper Slides

()

Proof Systems

Proof Systems: the Theory Perspective

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:
• Evolution: NP proof, interactive proofs, MIP, PCP, …
• Central objects in theory literature: NP completeness,

zero-knowledge, PCP Theorem, …

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:
• Evolution: NP proof, interactive proofs, MIP, PCP, …
• Central objects in theory literature: NP completeness,

zero-knowledge, PCP Theorem, …

Proofs spurred the development of lots of deep theory!

Practical Motivation:  
Blockchains & Cryptocurrencies

Efficient ZK proofs have amazing applications.

“Perhaps the most powerful cryptographic technology to come
out of the last decade is general-purpose succinct zero
knowledge proofs”

 	 	 - Vitalik Buterin, Ethereum co-founder (2021)

Complexity of Proving
Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Complexity of Proving
Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Can proving be as fast as computing?

Complexity of Proving
Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Can proving be as fast as computing?

Looking at very small factors the computational model matters!⇒

Today: Boolean Circuits
Constant fan-in,
arbitrary gates

Today: Boolean Circuits

Why Boolean circuits? [IKOS08]

Constant fan-in,
arbitrary gates

Today: Boolean Circuits

Why Boolean circuits? [IKOS08]

• Natural, fundamental, and physically motivated model of
computational complexity

• Includes interesting non-arithmetic computation (e.g, SHA).

Constant fan-in,
arbitrary gates

Prover Complexity for Succinct Proofs:
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Prover Complexity for Succinct Proofs:
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

Prover Complexity for Succinct Proofs:
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

 comes from
parallel repetition

λ

Prover Complexity for Succinct Proofs:
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

arithmetic over large  
field : 𝔽 |𝔽 | ≥ S ⋅ 2λ

arithmetic size over  
[BCGGHJ17,XZZPS19,ZWZZ20, 
BCG20,BCL20,GLSTW21]

O(S) 𝔽

 comes from
parallel repetition

λ

Main Result

TL;DR: succinct proofs for "nice circuit" satisfiability with
 size prover, soundness error , and

sublinear verification
S ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) 2−λ

hiding additive
𝗉𝗈𝗅𝗒(λ) exact complexity

depends on niceness

Nice Boolean Circuits

Nice Boolean Circuits
• Simple examples: is nice if:C

Nice Boolean Circuits
• Simple examples: is nice if:C

• it has batch structure: 
 for large and some

repeated sub-circuit ;
C(x1, …, xk) = D(x1) ∧ ⋯ ∧ D(xk) k

D

Nice Boolean Circuits
• Simple examples: is nice if:C

• it has batch structure: 
 for large and some

repeated sub-circuit ;
C(x1, …, xk) = D(x1) ∧ ⋯ ∧ D(xk) k

D

• or it has iterated structure: 
.C(x) = D(D⋯(D(x)⋯))

Nice Boolean Circuits
• Simple examples: is nice if:C

• it has batch structure: 
 for large and some

repeated sub-circuit ;
C(x1, …, xk) = D(x1) ∧ ⋯ ∧ D(xk) k

D

• or it has iterated structure: 
.C(x) = D(D⋯(D(x)⋯))

• Our basic verifier has size ; can improve with composition≈ |D |

Nice Boolean Circuits
• Simple examples: is nice if:C

• it has batch structure: 
 for large and some

repeated sub-circuit ;
C(x1, …, xk) = D(x1) ∧ ⋯ ∧ D(xk) k

D

• or it has iterated structure: 
.C(x) = D(D⋯(D(x)⋯))

• Our basic verifier has size ; can improve with composition≈ |D |

• More generally, we define a "tensor CSP", and say that is nice if
it has a small tensor CSP. Ask me for details, if you dare :D

C

Main Result
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Main Result
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

Main Result
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

arithmetic over large  
field : 𝔽 |𝔽 | ≥ S ⋅ 2λ

arithmetic size over  
[BCGGHJ17,XZZPS19,ZWZZ20, 
BCG20,BCL20,GLSTW21]

O(S) 𝔽

Main Result
Parameterized by: 
circuit size and soundness error (usually)S 2−λ log S < λ ≪ S

Boolean Boolean size [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

arithmetic over large  
field : 𝔽 |𝔽 | ≥ S ⋅ 2λ

arithmetic size over  
[BCGGHJ17,XZZPS19,ZWZZ20, 
BCG20,BCL20,GLSTW21]

O(S) 𝔽

Boolean size
[this work]

S ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)"nice" Boolean 
(repetitive structure)

Core Lemma 
(Encoded Multiplication IOP)

Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code such that:E : 𝔽N
2 → 𝔽O(N)

2

Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code such that:E : 𝔽N
2 → 𝔽O(N)

2

• is encodable by size Boolean circuit.E N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code such that:E : 𝔽N
2 → 𝔽O(N)

2

• is encodable by size Boolean circuit.E N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Given , , and , an IOP prover of size
 can prove with soundness

error .

E(X) E(Y) E(Z)
N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) Z = X ⊙ Y

2−λ

Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code such that:E : 𝔽N
2 → 𝔽O(N)

2

• is encodable by size Boolean circuit.E N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Given , , and , an IOP prover of size
 can prove with soundness

error .

E(X) E(Y) E(Z)
N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) Z = X ⊙ Y

2−λ

Enforceable promise

Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code such that:E : 𝔽N
2 → 𝔽O(N)

2

• is encodable by size Boolean circuit.E N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Given , , and , an IOP prover of size
 can prove with soundness

error .

E(X) E(Y) E(Z)
N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) Z = X ⊙ Y

2−λ

Enforceable promise

Pointwise multiplication

Bonus Time: 
Technical Tour

Off-The-Shelf Ingredients

Off-The-Shelf Ingredients
• Field with 𝔽 |𝔽 | = O(λ)

Off-The-Shelf Ingredients
• Field with 𝔽 |𝔽 | = O(λ)

• Good, linear, systematic codes.

Off-The-Shelf Ingredients
• Field with 𝔽 |𝔽 | = O(λ)

• Good, linear, systematic codes.

• encodable in size such that: 
 
Given , , and , a prover can convince that

 with soundness error and prover
overhead [Ron-Zewi Rothblum (STOC '22)]

G : 𝔽n → 𝔽O(n) O(n)

G(x) G(y) G(z)
z = x ⊙ y O(1) O(1)

Off-The-Shelf Ingredients
• Field with 𝔽 |𝔽 | = O(λ)

• Good, linear, systematic codes.

• encodable in size such that: 
 
Given , , and , a prover can convince that

 with soundness error and prover
overhead [Ron-Zewi Rothblum (STOC '22)]

G : 𝔽n → 𝔽O(n) O(n)

G(x) G(y) G(z)
z = x ⊙ y O(1) O(1)

• is a multiplication code encodable in size
 (e.g. Reed-Solomon + FFT)

M : 𝔽λ → 𝔽O(λ)

λ ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

Final Boss Slide

Pointwise Multiplication IOP

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

GXM

XMX

X̂

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

λ

N/λ

GXM

XMX

X̂

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

λ

N/λ

tensor code!

GXM

XMX

X̂

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)

 G(X̃M ⊙ ỸM)

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row,
verifies (constant soundness):

 G(X̃M ⊙ ỸM)

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row,
verifies (constant soundness):
• column consistency via [RR22]

 ⟹ X̃ ⊙ Ỹ = X ⊙ Y

 G(X̃M ⊙ ỸM)

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row,
verifies (constant soundness):
• column consistency via [RR22]

 ⟹ X̃ ⊙ Ỹ = X ⊙ Y
• row consistency directly

 ⟹ Z = X̃ ⊙ Ỹ G(X̃M ⊙ ỸM)

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

GXM

XMX

X̂

 GZM

 ZM

̂Z
 GYM

YMY

̂Y

Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row,
verifies (constant soundness):
• column consistency via [RR22]

 ⟹ X̃ ⊙ Ỹ = X ⊙ Y
• row consistency directly

 ⟹ Z = X̃ ⊙ Ỹ
b) repeats timesλ

 G(X̃M ⊙ ỸM)

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ

Epilogue

Sequel?

Sequel?
• Reduce prover size to ?O(S) + 𝗉𝗈𝗅𝗒(λ, log S)

Sequel?
• Reduce prover size to ?O(S) + 𝗉𝗈𝗅𝗒(λ, log S)

• Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

Sequel?
• Reduce prover size to ?O(S) + 𝗉𝗈𝗅𝗒(λ, log S)

• Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

• Non-interactive argument for P with similar efficiency
(currently from random oracle)

Sequel?
• Reduce prover size to ?O(S) + 𝗉𝗈𝗅𝗒(λ, log S)

• Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

• Non-interactive argument for P with similar efficiency
(currently from random oracle)

• Handle arbitrary Boolean circuits? (with preprocessing)

Sequel?
• Reduce prover size to ?O(S) + 𝗉𝗈𝗅𝗒(λ, log S)

• Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

• Non-interactive argument for P with similar efficiency
(currently from random oracle)

• Handle arbitrary Boolean circuits? (with preprocessing)
Paper Slides

