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Super-efficient verification of complex statements:
• Evolution: NP proof, interactive proofs, MIP, PCP, …
• Central objects in theory literature: NP completeness, 

zero-knowledge, PCP Theorem, …

Proofs spurred the development of lots of deep theory!



Practical Motivation:  
Blockchains & Cryptocurrencies 

Efficient ZK proofs have amazing applications.


“Perhaps the most powerful cryptographic technology to come 
out of the last decade is general-purpose succinct zero 
knowledge proofs” 

    	 	 - Vitalik Buterin, Ethereum co-founder (2021)
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Complexity of Proving
Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the 
computation.

Can proving be as fast as computing?

Looking at very small factors  the computational model matters!⇒
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Today: Boolean Circuits

Why Boolean circuits? [IKOS08]

• Natural, fundamental, and physically motivated model of 
computational complexity

• Includes interesting non-arithmetic computation (e.g, SHA).

Constant fan-in, 
arbitrary gates
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arithmetic over large  
field :    𝔽 |𝔽 | ≥ S ⋅ 2λ

arithmetic size  over  
[BCGGHJ17,XZZPS19,ZWZZ20, 
BCG20,BCL20,GLSTW21]

O(S) 𝔽

 comes from 
parallel repetition
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Main Result

TL;DR: succinct proofs for "nice circuit" satisfiability with 
 size prover, soundness error , and 

sublinear verification
S ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) 2−λ

hiding additive 
𝗉𝗈𝗅𝗒(λ) exact complexity 

depends on niceness
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Nice Boolean Circuits
• Simple examples:  is nice if:C

• it has batch structure: 
 for large  and some 

repeated sub-circuit ;
C(x1, …, xk) = D(x1) ∧ ⋯ ∧ D(xk) k

D

• or it has iterated structure: 
.C(x) = D(D⋯(D(x)⋯))

• Our basic verifier has size ; can improve with composition≈ |D |

• More generally, we define a "tensor CSP", and say that  is nice if 
it has a small tensor CSP.  Ask me for details, if you dare :D

C
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Main Result
Parameterized by: 
circuit size  and soundness error  (usually )S 2−λ log S < λ ≪ S

Boolean Boolean size  [RR21]O(S ⋅ λ)
Type of circuit K Prover Complexity

arithmetic over large  
field :    𝔽 |𝔽 | ≥ S ⋅ 2λ

arithmetic size  over  
[BCGGHJ17,XZZPS19,ZWZZ20, 
BCG20,BCL20,GLSTW21]

O(S) 𝔽

Boolean size 
[this work]

S ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)"nice" Boolean 
(repetitive structure)
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Core Lemma 
(Encoded Multiplication IOP)

There exists a linear code  such that:E : 𝔽N
2 → 𝔽O(N)

2

•  is encodable by size  Boolean circuit.E N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)

• Given , , and , an IOP prover of size 
 can prove  with soundness 

error .

E(X) E(Y) E(Z)
N ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ) Z = X ⊙ Y

2−λ

Enforceable promise

Pointwise multiplication



Bonus Time: 
Technical Tour
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Off-The-Shelf Ingredients
• Field  with 𝔽 |𝔽 | = O(λ)

• Good, linear, systematic codes.

•  encodable in size  such that: 
 
Given , , and , a prover can convince that 

 with  soundness error and  prover 
overhead [Ron-Zewi Rothblum (STOC '22)]

G : 𝔽n → 𝔽O(n) O(n)

G(x) G(y) G(z)
z = x ⊙ y O(1) O(1)

•  is a multiplication code encodable in size 
 (e.g. Reed-Solomon + FFT) 

M : 𝔽λ → 𝔽O(λ)

λ ⋅ 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(λ)
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X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row, 
verifies (constant soundness):
• column consistency via [RR22]

 ⟹ X̃ ⊙ Ỹ = X ⊙ Y
• row consistency directly

 ⟹ Z = X̃ ⊙ Ỹ   G(X̃M ⊙ ỸM )
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Pointwise Multiplication IOP
Given encodings , , and ,

want to establish: .

X̂ = GXM ̂Y = GYM ̂Z = GZM
Z = X ⊙ Y

1. Prover sends Z̃ = G(XM ⊙ YM)
2. Verifier:

a) samples a column and row, 
verifies (constant soundness):
• column consistency via [RR22]

 ⟹ X̃ ⊙ Ỹ = X ⊙ Y
• row consistency directly

 ⟹ Z = X̃ ⊙ Ỹ
b) repeats  timesλ

  G(X̃M ⊙ ỸM )

X̃M ⊙ ỸM

Z̃

NOT TO SCALE! 
matrices skinnier than shown

λ

N/λ
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