Faster Sounder Proofs

Justin Holmgren Ron Rothblum
NTT Research Technion

Paper Slides

EI:# [s] e

F’hﬁlﬁ

Faster (Sounder Proofs)

Justin Holmgren Ron Rothblum

NTT Research Technion
Paper Slides
EIEEI [=] g

F’hﬁlﬁ

Proof Systems

Proof Systems: the Theory Perspective

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:
» Evolution: NP proof, interactive proofs, MIP, PCP, ...

» Central objects in theory literature: NP completeness,
zero-knowledge, PCP Theorem, ...

Proof Systems: the Theory Perspective

Super-efficient verification of complex statements:
» Evolution: NP proof, interactive proofs, MIP, PCP, ...

» Central objects in theory literature: NP completeness,
zero-knowledge, PCP Theorem, ...

Proofs spurred the development of lots of deep theory!

Practical Motivation:
Blockchains & Cryptocurrencies

Efficient ZK proofs have amazing applications.

“Perhaps the most powerful cryptographic technology to come
out of the last decade is general-purpose succinct zero
knowledge proofs”

- Vitalik Buterin, Ethereum co-founder (2021)

THE PRINCE
OF CRYPTO

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Can proving be as fast as computing?

Complexity of Proving

Key efficiency bottleneck: complexity of generating the proof.

In practice: orders of magnitude slower than just performing the
computation.

Can proving be as fast as computing?

Looking at very small factors = the computational model matters!

Today: Boolean Circuits

Constant fan-in,
arbitrary gates

Today: Boolean Circuits

Constant fan-in,
arbitrary gates

Why Boolean circuits? [IKOS08]

Today: Boolean Circuits

Constant fan-in,

arbitrary gates | ;D\ |
Why Boolean circuits? [IKOS08]

e Natural, fundamental, and physically motivated model of
computational complexity

 Includes interesting non-arithmetic computation (e.g, SHA).

Prover Complexity for Succinct Proofs:

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Prover Complexity for Succinct Proofs:

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - A) [RR21]

Prover Complexity for Succinct Proofs:

Parameterized by:
circuit size S and soundness error 27* (usually log S < 4 < S)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - A) [RR21]

A comes from

parallel repetition

Prover Complexity for Succinct Proofs:

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - A) [RR21]

A comes from

parallel repetition

arithmetic size O(S) over [F

_ l [BCGGHJ17,XZZPS19,72WZZ20,
field: |F[=52 BCG20,BCL20,GLSTW21]

arithmetic over large

Main Result

TL;DR: succinct proofs for "nice circuit" satisfiability with
S - polylog(1) size prover, soundness error 2%, and

sublinear verification
hiding additive
poly (4) exact complexity

depends on niceness

Nice Boolean Circuits

Nice Boolean Circuits

e Simple examples: C is nice if:

Nice Boolean Circuits

e Simple examples: C is nice if:

e |t has batch structure:
C(xyy ..., %) = D(xy) A -+ A D(x;) for large k and some
repeated sub-circuit D;

Nice Boolean Circuits

e Simple examples: C is nice if:

e |t has batch structure:
C(xyy ..., %) = D(xy) A -+ A D(x;) for large k and some
repeated sub-circuit D;

e or it has iterated structure:

Cx) = D(D---(D(x)-)).

Nice Boolean Circuits

e Simple examples: C is nice if:

e |t has batch structure:
C(xyy ..., %) = D(xy) A -+ A D(x;) for large k and some
repeated sub-circuit D;

e or it has iterated structure:

Cx) = D(D---(D(x)-)).

e Our basic verifier has size ~ | D |; can improve with composition

Nice Boolean Circuits

e Simple examples: C is nice if:

e |t has batch structure:
C(xyy ..., %) = D(xy) A -+ A D(x;) for large k and some
repeated sub-circuit D;

e or it has iterated structure:

C(x) = D(D---(D(x)--+))-
e Our basic verifier has size ~ | D |; can improve with composition

 More generally, we define a "tensor CSP", and say that C is nice if
it has a small tensor CSP. Ask me for details, if you dare :D

Main Result

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Main Result

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - A) [RR21]

Main Result

Parameterized by:

circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K

Prover Complexity

Boolean

Boolean size O(S - A) [RR21]

arithmetic over large
field ;' |F| > S -2/

arithmetic size O(S) over [F

[BCGGHJ17,XZ2ZPS19,ZWZZ20,
BCG20,BCL20,GLSTW21]

Main Result

Parameterized by:
circuit size S and soundness error 27 (usually log$§ < 4 <)

Type of circuit K Prover Complexity
Boolean Boolean size O(S - 4) [RR21]
"nice" Boolean Boolean size S - polylog(4)
(repetitive structure) [this work]

arithmetic size O(S) over [F

_ ﬂ [BCGGHJ17,XZZPS19,72WZZ20,
field: |F[=52 BCG20,BCL20,GLSTW21]

arithmetic over large

Core Lemma
(Encoded Multiplication IOP)

Core Lemma
(Encoded Multiplication IOP)

There exists a linear code E : [FJZV — [FS(N) such that:

Core Lemma
(Encoded Multiplication IOP)

There exists a linear code E : [FJZV — [FS(N) such that:

o E'is encodable by size N - polylog(4) Boolean circuit.

Core Lemma
(Encoded Multiplication IOP)

There exists a linear code £ : [FJZV — [FS(N) such that:
o E'is encodable by size N - polylog(4) Boolean circuit.

e Given E(X), E(Y), and E(Z), an IOP prover of size
N - polylog(4) can prove Z = X ® Y with soundness
error 277,

Core Lemma
(Encoded Multiplication IOP)

There exists a linear code E : [|:12v — [F20(N) such that:

o E'is encodable by size N - polylog(4) Boolean circuit.

Enforceable promise

e Given E(X), E(Y), and E(Z), an IOP prover of size
N - polylog(4) can prove Z = X ® Y with soundness
error 277,

Core Lemma
(Encoded Multiplication IOP)

There exists a linear code £ : [|:12v — [FZO(N) such that:

o E'is encodable by size N - polylog(4) Boolean circuit.

Enforceable promise

e Given E(X), E(Y), and E(Z), an IOP prover of size
N - polylog(4) can prove Z = X ® Y with soundness

Pointwise multiplication

Bonus Time:
Technical Tour

Off-The-Shelf Ingredients

Off-The-Shelf Ingredients

e Field Fwith |F| = O(1)

Off-The-Shelf Ingredients

e Field Fwith |F| = O(1)

* Good, linear, systematic codes.

Off-The-Shelf Ingredients

e Field Fwith |F| = O(41)
* Good, linear, systematic codes.

e G:F" - F°"™ encodable in size O(n) such that:

Given G(x), G(v), and G(z), a prover can convince that

z = x ® y with O(1) soundness error and O(1) prover
overhead [Ron-Zewi Rothblum (STOC '22)]

Off-The-Shelf Ingredients

e Field Fwith |F| = O(41)
* Good, linear, systematic codes.

e G:F" - F°"™ encodable in size O(n) such that:

Given G(x), G(v), and G(z), a prover can convince that

z = x ® y with O(1) soundness error and O(1) prover
overhead [Ron-Zewi Rothblum (STOC '22)]

e M: [- F9Wisa multiplication code encodable in size
A - polylog(4) (e.g. Reed-Solomon + FFT)

Final Boss Slide

Pointwise Multiplication IOP

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

< >
A

N//II X XM

GXM

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,

want to establish: Z =X @ Y.
, tensor code!

< >
A

N//II X XM

GXM

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

< >
A

N//II X XM

GXM

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.

>

X Y

N//II X XM Y YM

GXM GYM

IM

GZM

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,

want to establish: Z =X @® Y.

N//II

A

— s
X
X XM YM
GXM GYM
ZM
GZM
NOT TO SCALE!

matrices skinnier than shown

1.

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,

want to establish: Z =X ©®

Prover sends Z = G(XM ® YM)

Y.

N//II

A

<< >
X XM YM
GXM GYM
| XM oYM M
GXM o YM) GZM
NOT TO SCALE!

matrices skinnier than shown

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

X Y

1. Prover sends Z = G(XM © YM)

2. \erifier: N//II X Y YM
a) samples a column and row,
verifies (constant soundness): GYM
/ /
| /M
GZM
NOT TO SCALE!

matrices skinnier than shown

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

>

X Y

1. Prover sends Z = G(XM © YM)

2. \erifier: N//II X XM Y YM
a) samples a column and row,
verifies (constant soundness): GXM GYM
» column consistency via [RR22] Z 2
—= XO0Y=X0Y
/M
GZM
NOT TO SCALE!

matrices skinnier than shown

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

1. Prover sends Z = G(XM © YM) X Y

2. \erifier: N//II X XM Y YM
a) samples a column and row,
verifies (constant soundness): GXM GYM
» column consistency via [RR22] Z 2
—= X0Y=X0Y |
. . /M
row consistency directly
—7Z=X0Y GZM
NOT TO SCALE!

matrices skinnier than shown

Pointwise Multiplication IOP

Given encodingsf(= GXM, Y = GYM, and 7 = GZM,
want to establish: Z =X @© Y.
b

1. Prover sends Z = G(XM © YM) X Y

2. \erifier: N//II X XM Y YM
a) samples a column and row,
verifies (constant soundness): GXM GYM
» column consistency via [RR22] Z 2
—= X0Y=X0Y |
. _ /M
row consistency directly
—7=-X0o7¥ [E— N
b) repeats A times
NOT TO SCALE!

matrices skinnier than shown

Epilogue

Sequel?

Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)

Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)

 Handle arbitrary Boolean circuits? (with preprocessing)

Sequel?

e Reduce prover size to O(S) + poly(4, log §)?

* Replace Reed-Solomon by linear-size encodable
multiplication codes (do these exist?)

* Non-interactive argument for P with similar efficiency
(currently from random oracle)

 Handle arbitrary Boolean circuits? (with preprocessing)
Paper Slides

OE-£10
I i"l'.' -,
r

[m] e

