GORRELATED PSEUDORANDOMNESS
FROM EXPAND-AGGUMULATE GODES

Elette Boyle Geoffroy Couteau Niv Gilboa Yuval Ishai

IDC Herzliya, IRIF Ben-Gurion Technion
NTT Research University
Lisa Kohl Nicolas Resch Peter Scholl

CWI CWI — Uva Aarhus University

CORRELATED (PSEUDO)RANDOMNESS

SEGURE GOMMUNIGATION: ONE-TIME PAD

SEGURE GOMMUNIGATION: ONE-TIME PAD

SEGURE GOMMUNIGATION: ONE-TIME PAD

SEGURE GOMMUNIGATION: ONE-TIME PAD

m OTP OTP

SEGURE GOMMUNIGATION: ONE-TIME PAD

m OTP OTP

SEGURE GOMMUNIGATION: ONE-TIME PAD

m OTP

c=m@dOTP

= Correlated Randomness: (OTP, OTP) "equality" correlation

MULTIPARTY COMPUTATION (MPG)

MULTIPARTY COMPUTATION (MPG)

MULTIPARTY COMPUTATION (MPG)

Goal:

jointly compute f(x, y),
without revealing
anything more about
private inputs x and y

MULTIPARTY COMPUTATION (MPG)

Goal:

jointly compute f(x, y),
without revealing
anything more about
private inputs x and y

= Today: focus on case of 2 parties (2PC)

CORRELATION FOR 2PG (AND)

X, (ba mb)

ﬁ“—

CORRELATION FOR 2PG (AND)

x, (D, mb) %

- Correlated randomness: ((b, m,), (1, m,)) EROIINV/IVERIEHE(EIA(0d)

CORRELATION FOR 2PG (AND)

x, (D, mb) %

c=xPb

- Correlated randomness: ((b, m,), (1, m,)) EROIINV/IVERIEHE(EIA(0d)

GORRELATION FOR 2PG (ANI])

x, (D, mb) %

- Correlated randomness: ((b, m,), (1, m,)) EROIINV/IVERIEHE(EIA(0d)

GORRELATION FOR 2PG (ANI])

x, (D, mb) %

y=deém, else

- Correlated randomness: ((b, m,), (1, m,)) EROIINV/IVERIEHE(EIA(0d)

GORRELATION FOR 2PG (ANI])

X, (D, mb)

Ny — 0 if x =0
° FAYE y=d@®m, else

- Correlated randomness: ((b, m,), (1, m,)) EROIINV/IVERIEHE(EIA(0d)

MPC with preprocessing: exchange correlated

randomness first, then run (fast!) protocol

GOMPRESSING RANDOMNESS

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

Solution ['80's]: exchange short seeds, stretch with

pseudorandom generator / function

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

Solution ['80's]: exchange short seeds, stretch with

pseudorandom generator / function

= Secure Computation: 2 OT's per AND gate

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

Solution ['80's]: exchange short seeds, stretch with

pseudorandom generator / function

= Secure Computation: 2 OT's per AND gate
= Traditionally, need preprocessing phase with high communication

GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

Solution ['80's]: exchange short seeds, stretch with

pseudorandom generator / function

= Secure Computation: 2 OT's per AND gate

= Traditionally, need preprocessing phase with high communication

Solution [2015—]: exchange short seeds, stretch with

pseudorandom correlation generator / function

POEUDORANDONM GUHHEI.ATIUN GENERATOR (PCG)

POEUDORANDONM GUHHEI.ATIUN GENERATOR (Pﬂﬁ)

= PCG = (Gen, Expand) for correlation C

POEUDORANDONM GUHHEI.ATIUN GENERATOR (PCG)

= PCG = (Gen, Expand) for correlation C
- For (s, 53) < Gen(1%):

PSEUI]UHANI]UM GUHHEI.ATIUN GENERATOR (PCG)

ﬁ &

Expand(s,) Expand(s;)

= PCG = (Gen, Expand) for correlation C
- For (s, 53) < Gen(1%):

PSEUDORANDOM CORRELATION GENERATOR (PGG)

fs = PCG = (Gen, Expand) for correlation C

- For (s,, 55) < Gen(1%):

|
<
ﬂ ﬂ

Expand(s,) Expand(s;)

= Correctness:
- (Expand(s,), Expand(sy)) € cV

PSEUDORANDOM CORRELATION GENERATOR (PGG)

fs = PCG = (Gen, Expand) for correlation C

- For (s,, 55) < Gen(1%):

- Correctness: N indep. OT's
|
<

- (Expand(s,), Expand(sy)) € cV
Expand(s,) Expand(s;)

PSEUDORANDOM CORRELATION GENERATOR (PGG)

= PCG = (Gen, Expand) for correlation C
= For (s,, 55) < Gen(1%):

- Correctness: N indep. OT's

- (Expand(s,), Expand(sy)) € cV
= Pseudorandomness:

: : - Expand(s,), Expand(sz) pseudorand.

Expand(s,) Expand(s;)

PSEUDORANDOM CORRELATION GENERATOR (PGG)

= PCG = (Gen, Expand) for correlation C
= For (s,, 55) < Gen(1%):

- Correctness: N indep. OT's

- (Expand(s,), Expand(sy)) € ch

= Pseudorandomness:

S
SA Sp - Expand(s,), Expand(sz) pseudorand.
= Security:
= Other party's output looks
pseudorandom up to correlation

Expand(s,) Expand(s;)

PSEUDORANDOM CORRELATION FUNGTION (PGF)

PSEUDORANDOM CORRELATION FUNGTION (PGF)

- For (k,, kp) < Gen(1%)

PSEUDORANDOM CORRELATION FUNGTION (PGF)

- For (k,, kp) < Gen(1%)

PSEUDORANDOM CORRELATION FUNGTION (PGF)

- For (k,, kp) < Gen(1%)

ky

Eval(k,, x) Eval(k,, x)

= Analogous correctness, pseudorandomness and security guarantees

OFFLINE-ONLINE PGGS

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

= PCG = (Gen, Offline, Online)
- (KSR, K, k2T) « Gen(1%)

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

kg = PCG = (Gen, Offline, Online)

- (KSR, K, k2T) « Gen(1%)
Offline(kgff)

Yy

off
kA

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

kg = PCG = (Gen, Offline, Online)

- (KSR, K, k2T) « Gen(1%)
Ofﬂine(kgﬁc) = Low storage: |Y | <N

Yy

off
kA

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

ket kg = PCG = (Gen, Offline, Online)

- (KSR, K, k2T) « Gen(1%)
Offline(k{") Offline(k;") - Low storage: |Y,| <N

Online(k;",Y,,x) Online(k;",Y s, x)

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's
kg = PCG = (Gen, Offline, Online)

- (KSR, K, k2T) « Gen(1%)
Ofﬂine(kgﬁc) = Low storage: |Y | <N

= Output locality: Online reads < ¢
entries of ¥

off
kA

Online(k;",Y,,x) Online(k;",Y s, x)

OFFLINE-ONLINE PGGS

PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

= PCG = (Gen, Offline, Online)
- (KSR, K, k2T) « Gen(1%)
= Low storage: |Y | <N

= Output locality: Online reads < ¢
entries of ¥

= Analogous correctness,
pseudorandomness & security

Online(k;",Y,,x) Online(k;",Y s, x)

OUR (MAIN) CONTRIBUTION

OUR (MAIN) CONTRIBUTION

Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

OUR (MAIN) CONTRIBUTION

Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

OUR (MAIN) CONTRIBUTION

Offline-online PCG's from Expand-Accumulate Codes

Offline Phase
Highly parallelizable

Cache friendly

New class of codes!

OUR (MAIN) CONTRIBUTION

Offline-online PCG's from Expand-Accumulate Codes

Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality

HOW T0 GONSTRUGT EFFIGIENT PGGS?

REGIPE FOR PGGS

REGIPE FOR PGGS

= Goal: construct PCG for vector OLE (VOLE) correlation
F¥and (b, ¢)) €

- (a,cy &

FV %

=Xl

REGIPE FOR PGGS

Goal: construct PCG for vector OLE (VOLE) correlation

— —

(a’, ¢y € FY x FY and e FXFVst. b-a=c o+

REGIPE FOR PGGS

Goal: construct PCG for vector OLE (VOLE) correlation

— —

(a’, ¢y € F¥x " and e FxX Vst b-a=c g+

REGIPE FOR PGGS

Goal: construct PCG for vector OLE (VOLE) correlation

(a’,cy) € F¥ x ¥ and

< I
d
—
¢ I

c Xl st D a=

Consider function F : [N]| — |

~defined by F(x) = b - a,

REGIPE FOR PGGS

Goal: construct PCG for vector OLE (VOLE) correlation

(a’,cy) € F¥ x ¥ and

< I
d
—
¢ I

c Xl st D a=

Consider function F : [N]| — |

~defined by F(x) = b - a,

|dea: additively share [between Alice and

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

(ADDITIVE) FUNGTIUN SEGHET SHARING (FSS)

= Share function ['s

(ADDITIVE) FUNGTIUN SEGHET SHARING (FSS)

= Share function ['s

JDOITIVE FNCTINSEGRET SHARNG 53
o

= Share function ['s

Eval(K,, x) + Eval(K,, x) — F(x)

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

= Share function F s.t. V inputs x

Eval(K,, x) + Eval(K, x) — F(x)

= Goal: [K,|, |K;| small (secret-sharing truth-table too expensive!)

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

= Share function F s.t. V inputs x

Eval(K,, x) + Eval(K, x) — F(x)

= Goal: [K,|, |K;| small (secret-sharing truth-table too expensive!)
= Efficient FSS for point functions [Gilboalshai'14], or small sums

a Ifx = a- Ifx=yv.
Fi(x) = { Y Fylr i) = { | T ¢ smal
e 0O else

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

= Share function F s.t. V inputs x

Eval(K,, x) + Eval(K, x) — F(x)

= Goal: [K,|, |K;| small (secret-sharing truth-table too expensive!)
= Efficient FSS for point functions [Gilboalshai'14], or small sums

a Ifx = a- Ifx=yv.
Fi(x) = { Y Fylr i) = { | T ¢ smal
e 0O else

- Can efficiently share F(x) = b - a_if @ is sparse

[BoyleCouteauGilboalshai'18]

SPARSE VOLE

sparse VOLE

SPARSE VOLE

)
- — s

—)_—)/
b‘ € =C O+ 1

SPARSE VOLE
compressing map
e]

_),
<o I

—)_—),
b‘ € =C O+ 1

SPARSE VOLE
compressing map

g7

—)_—)/
b‘ € =C O+ 1

SPARSE VOLE

B -
" L.
rd

H linear
compressing map
b
sparse VOLE -
¢

_),
<o I

g7

—

Cq

SPARSEVOLE |

. b-
r—

rd b
sparse VOLE -

—>/
¢ I
g7

—

Cq

H linear

1 compressing map

i [BoyleCouteauGilboalshai'18]

SPARSE VOLE

C
l H linear
compressing map

sparse VOLE

How to choose H?
Need a =, Unif

i [BoyleCouteauGilboalshai'18]

H linear
compressing map
b

LPN: 1 uniformly
random works!

How to choose H?
Need a =, Unif

i [BoyleCouteauGilboalshai'18]

H linear

SARSEVOLE |

compressing map

N)
.
_)-H
Cl_

sparse VOLE

LPN: /1 uniformly

random works!

Better efficiency?

[BoyleCouteauGilboalshaiKohlScholl'19, '20,
CouteauRindalRaghuraman'21]

How to choose H?
Need a =, Unif

EXPAND-AGGUMULATE GODES

HOW T0 GhOOSE h?

—

HOW T0 GhOOSE h?

HOW T0 GhOOSE h?

Want: H - "¢ efficiently
computable

&

HOW T0 GhOOSE h?

Want: H - "¢ efficiently

~
C computable

Choose 1 sparse?

HOW T0 GhOOSE h?

Want: H - "¢ efficiently
C computable

Choose 1 sparse?

N\
N/

—

Problem: { - ¢
also sparse!

EXPAND-ACCUMULATE (EA) CODES

EXPAND-ACCUMULATE (EA) CODES

sparse matrix
(sample randomly)

EXPAND-ACCUMULATE (EA) CODES

11 1
01
sparse matrix
(sample randomly)

0 01

accumulator matrix A

EXPAND-ACCUMULATE (EA) CODES

EA generator matrix sparse matrix
H (sample randomly)

0 01

accumulator matrix A

EXPAND-ACCUMULATE (EA) CODES

EA generator matrix sparse matrix
H (sample randomly)

0 01

accumulator matrix A

EXPAND-ACCUMULATE (EA) CODES

EA generator matrix sparse matrix
H (sample randomly)

0 01

accumulator matrix A

OFFLINE-ONLINE PGG FHUM EA GUI]ES

Ol

OFFLINE-ONLINE PGG FHUM EAGODES

|
\—-\/-_/
Offline: Parallelizable & cache-friend

01

OFFLINE-ONLINE PGG FROM EA GODES

-friendly \:‘i ;

01
\—-\/-_/
Offline: Parallelizable & he-f d

Online: Low locality

OFFLINE-ONLINE PGG FHUM EA GUI]ES

()1
0 01
N —

Offline: Parallelizable & cache-friendly
b—\ ~

Online: Low locality

SEGURITY?

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

Ideally:

Reduce to known
hard problem (LPN)

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

= Almost all* attacks boil down to following strategy:

*relevant to our parameters which don't exploit algebraic structure

SEGURITY?

—= Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known

hard problem (LPN) attacks

= Almost all* attacks boil down to following strategy:
- Look at H and find vector X ' st. X ' H is sparse

*relevant to our parameters which don't exploit algebraic structure

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

= Almost all* attacks boil down to following strategy:

—

- Look at H and find vector X ' st. X ' H is sparse

—>[—>

— Compute X 'y, where y is (i) H - € or (ii) unif. rand.

*relevant to our parameters which don't exploit algebraic structure

SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

= Almost all* attacks boil down to following strategy: 1 ,
Linear tests

J framework

—

- Look at H and find vector X ' st. X ' H is sparse

—>[—>

— Compute X 'y, where y is (i) H - € or (ii) unif. rand.

*relevant to our parameters which don't exploit algebraic structure

SEGURITY

Resistance to linear tests

SEGURITY

No low-weight (non-zero)

vector in code { X 'H)

Resistance to linear tests < good min. dist.

SEGURITY

Resistance to linear tests

No low-weight (non-zero)
vector in code { X 'H)
< good min. dist.

This work: rule out linear attacks

SEGURITY

Resistance to linear tests

No low-weight (non-zero)
vector in code { X 'H)
< good min. dist.

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with p = O(log N/N), get minimum distance
Q(N) with probability 1 — 1/N*

SEGURITY

Resistance to linear tests

No low-weight (non-zero)
vector in code { X 'H)
< good min. dist.

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with p = O(IOgZN/N), get minimum distance
Q(N) with probability 1 — 1/N®M 1 — 1/N“D

GONGRETE EFFIGIENGY

GONGRETE EFFIGIENGY

Offline Phase

Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

Theoretically
40 lookups + 1 hash per OT

GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

Theoretically Experimentally
40 lookups + 1 hash per OT 7 lookups + 1 hash per OT

GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

Theoretically Experimentally
40 lookups + 1 hash per OT 7 lookups + 1 hash per OT

Good pseudo-
distance suffices

GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

Theoretically Experimentally
40 lookups + 1 hash per OT 7 lookups + 1 hash per OT

Good pseudo- Needs further
distance suffices cryptanalysis!

Offline Phase
Highly parallelizable

Cache friendly

Offline Phase
Highly parallelizable
Cache friendly

Online Phase
Low output locality

Offline Phase
Highly parallelizable
Cache friendly

Online Phase

Low output locality

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work

Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality

Cache-friendly? Parallelizable?

X

Silver [CouteauRindalRaghuaman'21] V

RAA Codes

This work

Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality

Cache-friendly? Parallelizable?

X

Silver [CouteauRindalRaghuaman'21] V

v

RAA Codes x

This work

Silver [CouteauRindalRaghuaman'21]

Offline Phase
Highly parallelizable

Cache friendly

Online Phase

Low output locality

Cache-friendly?

v

Parallelizable?

X

RAA Codes

X

v

This work

v

v

FURTHER RESULIS & REGAP

GONSTRUGTING PGFS

GONSTRUGTING PGFS

- Problem:if | ¢ | =2% A - € too expensive to compute!

GONSTRUGTING PGFS

- Problem:if | ¢ | =2% A - € too expensive to compute!

1 1
1

0 01
A e

1
0

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

11 1
01
0 01

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

11 1
01
0 01

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

(1) i ! Corresponds to (small sum
of) comparison functions
0 01

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

(1) i ! Corresponds to (small sum
of) comparison functions
Fry=a-1{x<yl=d & =7
VW =a IESyE=0 15y
0 01

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

(1) i ! Corresponds to (small sum
of) comparison functions
Fry=a-1{x<yl=d & =7
VW =a IESyE=0 15y
0 01

Efficient FSS due to [BGI'"9,BCGGIKR'21]

Also get efficient PCFs for

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

general degree-2/circuit-
dependent correlations

(1) i ! Corresponds to (small sum
of) comparison functions
Fry=a-1{x<yl=d & =7
VW =a IESyE=0 15y
0 01

Efficient FSS due to [BGI'"9,BCGGIKR'21]

SPEEDING UP OFFLINE

Eval(K ,1)
Eval(K ,2)

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

Eval(K_,1)
Eval(K_,2)

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

= FSS built from punctured PRF

Eval(K_,1)
Eval(K_,2)

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

= FSS built from punctured PRF
= Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

Eval(K_,1)
Eval(K_,2)

= FSS built from punctured PRF
= Basically: corresponds to computing entire GGM tree

k
H, (k) H,(k)

Hy(Hy(k)) H,(Hy(k)) Hy(H,(k)) H,(H,(k))

Eval(K_,1)
Eval(K_,2)

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

= FSS built from punctured PRF
= Basically: corresponds to computing entire GGM tree

k
H(k) H(k) @ k

15(0:(09) H(H(k)) & H(k) HHk) @ k) Buwaw e v oG @k

Yields: unpredictable

SPEEDING UP OFFLINE

= Bulk of offline work: EvalAll(K) :=

Eval(K,, 1) punctured function
Eval(K ,2)

= FSS built from punctured PRF
= Basically: corresponds to computing entire GGM tree

k
H(k) H(k) @ k

15(0:(09) H(H(k)) & H(k) HHk) @ k) Buwaw e v oG @k

Yields: unpredictable

SPEEDING UP OFFLINE

Eval(K,,,1) punctured function
Eval(K_,2)
| ne hashing laver:
= Bulk of offline work: EvalAll(K) := One has aye
yields genuine
= FSS built from punctured PRF , punctured PRF
= Basically: corresponds to computing entire GGM tree

k
H(k) H(k) @ k

15(0:(09) H(H(k)) & H(k) HHk) @ k) Buwaw e v oG @k

SN TSN

D

—

|

—

Expand-Accumulate

11
01

Offline-Online PCGs i

B
v

|

3 5
A\
A I
)
N
N
S
BIRD, - NP TR B T 19 34> - N D oot GIUE I N o0 MUY
fcihac £ h A e s ST BT EReS TR) FON N SO IES TS TN
= = 2 > ~ S o_co L N “a - - - - O ==

RECAP |

(Pseudo)random correlatlons
b

il -A']) 5 : " s -_ _'-,’
>) ST S P

d

—

?2 €0 “1
—
b‘ — O+ C 1

Expa nd-AccumuIate

“gaiice

,.

Offllne-Onllne PCGs

Other results
= Concretely efficient PCF's
i= New correlations

.
0. !
-
.
‘i
h '8
W\ A
. o\ N
R
r - h
I - \
g > q
~ \ .
R
Y
- -' 185 - Z - P > - i - - P - - e > . S o - P e)" .- - - el P . e - o= > . - - -cy . _ - . .“
W 5 < - ’ = DR MY O O TSy, — ‘g 2 e - S e - Ty DEGPR DN B fo s s =¥ N Am . m o - . S SRS S0

RECAP |

(Pseudo)random correlatlons Offline-Online PCGs .f,'
, ;

VOLE

—

THANK YOU!
QUESTIONS?

= Concretely efficient PCF's

er results

~
C

= New correlations

.
"
¥
A
I‘
.
$) - \
rg h "8
N R
N
. \
BA ng,'
~ \ .
N
\J
. o o2 - sy < a e L as). - mieE sk - e e - o e e s e —pe - mi P . L. P e e ey .as P e . N L R~ d - < e L s e ena- R S oo s s T < \."
2 YR e AL R € o 3 Yy 2l A T U (&SP e S, O e F O e Sy A AT TS S U TN AN BUES y p EYES WM PE S G 3PN S Sy S S T S TS PG oS Y D AT AT, (A e B IR, 7 - W RSN e & <Y 1R A OB U, TSP e B 0wk 8O T S S SR R BT INAT R SRSy B A S PO 6 S SN B SR ST O N TS SN

