
CORRELATED PSEUDORANDOMNESS
FROM EXPAND-ACCUMULATE CODES
Elette Boyle

IDC Herzliya,
NTT Research

Geoffroy Couteau

IRIF

Niv Gilboa

Ben-Gurion
University

Yuval Ishai

Technion

Lisa Kohl

CWI

Nicolas Resch

CWI Uva→

Peter Scholl

Aarhus University

CORRELATED (PSEUDO)RANDOMNESS

SECURE COMMUNICATION: ONE-TIME PAD

SECURE COMMUNICATION: ONE-TIME PAD
m

SECURE COMMUNICATION: ONE-TIME PAD
m

SECURE COMMUNICATION: ONE-TIME PAD
𝖮𝖳𝖯 𝖮𝖳𝖯m

SECURE COMMUNICATION: ONE-TIME PAD
𝖮𝖳𝖯 𝖮𝖳𝖯

c = m ⊕ 𝖮𝖳𝖯

m

- Correlated Randomness: (𝖮𝖳𝖯, 𝖮𝖳𝖯)

SECURE COMMUNICATION: ONE-TIME PAD
𝖮𝖳𝖯 𝖮𝖳𝖯

c = m ⊕ 𝖮𝖳𝖯

"equality" correlation

m

MULTIPARTY COMPUTATION (MPC)

x y

MULTIPARTY COMPUTATION (MPC)

x y

MULTIPARTY COMPUTATION (MPC)

x y

f(x, y)

Goal:

jointly compute ,

without revealing
anything more about
private inputs and

f(x, y)

x y

- Today: focus on case of 2 parties (2PC)

MULTIPARTY COMPUTATION (MPC)

x y

f(x, y)

Goal:

jointly compute ,

without revealing
anything more about
private inputs and

f(x, y)

x y

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

- Correlated randomness: ((b, mb), (m0, m1))

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

Oblivious Transfer (OT)

- Correlated randomness: ((b, mb), (m0, m1))

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

c = x ⊕ b

Oblivious Transfer (OT)

- Correlated randomness: ((b, mb), (m0, m1))

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

c = x ⊕ b

d = y ⊕ mc⊕1

Oblivious Transfer (OT)

- Correlated randomness: ((b, mb), (m0, m1))

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

c = x ⊕ b

d = y ⊕ mc⊕1

x ∧ y = {0 if x = 0
y = d ⊕ elsemb

Oblivious Transfer (OT)

- Correlated randomness: ((b, mb), (m0, m1))

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

c = x ⊕ b

d = y ⊕ mc⊕1

x ∧ y = {0 if x = 0
y = d ⊕ elsemb

Oblivious Transfer (OT)

MPC with preprocessing: exchange correlated
randomness first, then run (fast!) protocol

COMPRESSING RANDOMNESS

- Problem: typically need long correlated random strings

COMPRESSING RANDOMNESS

- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

COMPRESSING RANDOMNESS

- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

COMPRESSING RANDOMNESS

Solution ['80's]: exchange short seeds, stretch with
pseudorandom generator / function

- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

- Secure Computation: 2 OT's per AND gate

COMPRESSING RANDOMNESS

Solution ['80's]: exchange short seeds, stretch with
pseudorandom generator / function

- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

- Secure Computation: 2 OT's per AND gate

- Traditionally, need preprocessing phase with high communication

COMPRESSING RANDOMNESS

Solution ['80's]: exchange short seeds, stretch with
pseudorandom generator / function

- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

- Secure Computation: 2 OT's per AND gate

- Traditionally, need preprocessing phase with high communication

COMPRESSING RANDOMNESS

Solution ['80's]: exchange short seeds, stretch with
pseudorandom generator / function

Solution [2015—]: exchange short seeds, stretch with
pseudorandom correlation generator / function

PSEUDORANDOM CORRELATION GENERATOR (PCG)

- PCG for correlation = (Gen, Expand) C

PSEUDORANDOM CORRELATION GENERATOR (PCG)

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)

PSEUDORANDOM CORRELATION GENERATOR (PCG)

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)
- Correctness:

- (Expand(sA), Expand(sB)) ∈ CN

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)
- Correctness:

- (Expand(sA), Expand(sB)) ∈ CN

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

 indep. OT'sN

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)
- Correctness:

- (Expand(sA), Expand(sB)) ∈ CN

- Pseudorandomness:

- , pseudorand.Expand(sA) Expand(sB)

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

 indep. OT'sN

- PCG for correlation = (Gen, Expand) C

- For :(sA, sB) ← Gen(1λ)
- Correctness:

- (Expand(sA), Expand(sB)) ∈ CN

- Pseudorandomness:

- , pseudorand.Expand(sA) Expand(sB)
- Security:

- Other party's output looks
pseudorandom up to correlation

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

 indep. OT'sN

PSEUDORANDOM CORRELATION FUNCTION (PCF)

- For (kA, kB) ← Gen(1λ)

PSEUDORANDOM CORRELATION FUNCTION (PCF)

- For (kA, kB) ← Gen(1λ)

PSEUDORANDOM CORRELATION FUNCTION (PCF)

kA kB

Eval(kA, x) Eval(kB, x)

- For (kA, kB) ← Gen(1λ)

- Analogous correctness, pseudorandomness and security guarantees

PSEUDORANDOM CORRELATION FUNCTION (PCF)

kA kB

Eval(kA, x) Eval(kB, x)

OFFLINE-ONLINE PCG'S

OFFLINE-ONLINE PCG'S
PCG's: all work in offline phase

OFFLINE-ONLINE PCG'S
PCG's: all work in offline phase PCF's: all work in online phase

OFFLINE-ONLINE PCG'S
PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's
k𝗈𝖿𝖿

A k𝗈𝖿𝖿
B

Offline(k𝗈𝖿𝖿
A) Offline(k𝗈𝖿𝖿

B)
YA YB

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

- Low storage: |Yσ | ≤ N

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's
k𝗈𝖿𝖿

A k𝗈𝖿𝖿
B

Offline(k𝗈𝖿𝖿
A) Offline(k𝗈𝖿𝖿

B)
YA YB

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

- Low storage: |Yσ | ≤ N

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's
k𝗈𝖿𝖿

A k𝗈𝖿𝖿
B

Offline(k𝗈𝖿𝖿
A) Offline(k𝗈𝖿𝖿

B)
YA YB

Online(k𝗈𝗇
A ,YA, x) Online(k𝗈𝗇

B ,YB, x)

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

- Low storage: |Yσ | ≤ N

- Output locality: Online reads
entries of

≤ ℓ
Yσ

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's
k𝗈𝖿𝖿

A k𝗈𝖿𝖿
B

Offline(k𝗈𝖿𝖿
A) Offline(k𝗈𝖿𝖿

B)
YA YB

Online(k𝗈𝗇
A ,YA, x) Online(k𝗈𝗇

B ,YB, x)

OFFLINE-ONLINE PCG'S

- PCG = (Gen, Offline, Online)

- (k𝗈𝖿𝖿
A , k𝗈𝖿𝖿

B , k𝗈𝗇
A , k𝗈𝗇

B) ← Gen(1λ)

- Low storage: |Yσ | ≤ N

- Output locality: Online reads
entries of

≤ ℓ
Yσ- Analogous correctness,

pseudorandomness & security

PCG's: all work in offline phase PCF's: all work in online phase

More flexibility: offline-online PCG's
k𝗈𝖿𝖿

A k𝗈𝖿𝖿
B

Offline(k𝗈𝖿𝖿
A) Offline(k𝗈𝖿𝖿

B)
YA YB

Online(k𝗈𝗇
A ,YA, x) Online(k𝗈𝗇

B ,YB, x)

OUR (MAIN) CONTRIBUTION

OUR (MAIN) CONTRIBUTION
Offline-online PCG's from Expand-Accumulate Codes

OUR (MAIN) CONTRIBUTION
Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

OUR (MAIN) CONTRIBUTION
Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

Offline Phase

Highly parallelizable

Cache friendly

OUR (MAIN) CONTRIBUTION
Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

HOW TO CONSTRUCT EFFICIENT PCGS?

RECIPE FOR PCGS

- Goal: construct PCG for vector OLE (VOLE) correlation

- and s.t. (⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

RECIPE FOR PCGS

- Goal: construct PCG for vector OLE (VOLE) correlation

- and s.t. (⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

RECIPE FOR PCGS

VOLE

- Goal: construct PCG for vector OLE (VOLE) correlation

- and s.t. (⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

RECIPE FOR PCGS

VOLE
⃗a

⃗c 0

b

⃗c 1

- Goal: construct PCG for vector OLE (VOLE) correlation

- and s.t. (⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

- Consider function defined by F : [N] → 𝔽 F(x) = b ⋅ ax

RECIPE FOR PCGS

VOLE
⃗a

⃗c 0

b

⃗c 1

- Goal: construct PCG for vector OLE (VOLE) correlation

- and s.t. (⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

- Consider function defined by F : [N] → 𝔽 F(x) = b ⋅ ax

- Idea: additively share between Alice and BobF

RECIPE FOR PCGS

VOLE
⃗a

⃗c 0

b

⃗c 1

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

- Share function s.t. inputs F ∀ x

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

- Share function s.t. inputs F ∀ x

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

- Share function s.t. inputs F ∀ x

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

Eval(KA, x) + Eval(KB, x) = F(x)

- Share function s.t. inputs F ∀ x

- Goal: , small (secret-sharing truth-table too expensive!)|KA| |KB|

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

Eval(KA, x) + Eval(KB, x) = F(x)

- Share function s.t. inputs F ∀ x

- Goal: , small (secret-sharing truth-table too expensive!)|KA| |KB|

- Efficient FSS for point functions [GilboaIshai'14], or small sums

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

Eval(KA, x) + Eval(KB, x) = F(x)

Fα
y (x) = {α if x = y

0 else
Fα1,…,αt

y1,…,yt
(x) = {αi if x = yi

0 else
 smallt

- Share function s.t. inputs F ∀ x

- Goal: , small (secret-sharing truth-table too expensive!)|KA| |KB|

- Efficient FSS for point functions [GilboaIshai'14], or small sums

- Can efficiently share if is sparseF(x) = b ⋅ ax ⃗a

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

Eval(KA, x) + Eval(KB, x) = F(x)

Fα
y (x) = {α if x = y

0 else
Fα1,…,αt

y1,…,yt
(x) = {αi if x = yi

0 else
 smallt

SPARSE VOLE
[BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE

[BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1 [BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

 linear
compressing map

H

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1 [BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1 [BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

⃗a

⃗c 0 ⃗c 1

[BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

b⋅ ⃗a = ⃗c 0+ ⃗c 1⃗a

⃗c 0 ⃗c 1

⟹ [BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

How to choose ?

Need

H⃗a ≈c Unif

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

b⋅ ⃗a = ⃗c 0+ ⃗c 1⃗a

⃗c 0 ⃗c 1

⟹ [BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

How to choose ?

Need

H⃗a ≈c Unif

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

b⋅ ⃗a = ⃗c 0+ ⃗c 1⃗a

⃗c 0 ⃗c 1

⟹

LPN: uniformly
random works!

H

[BoyleCouteauGilboaIshai'18]

SPARSE VOLE

 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear
compressing map

H

How to choose ?

Need

H⃗a ≈c Unif

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

b⋅ ⃗a = ⃗c 0+ ⃗c 1⃗a

⃗c 0 ⃗c 1

⟹

LPN: uniformly
random works!

H
Better efficiency?

[BoyleCouteauGilboaIshaiKohlScholl'19, '20,
CouteauRindalRaghuraman'21]

[BoyleCouteauGilboaIshai'18]

EXPAND-ACCUMULATE CODES

HOW TO CHOOSE H?

HOW TO CHOOSE H?

≈c

H ⃗e

HOW TO CHOOSE H?

≈c
Want: efficiently

computable
H ⋅ ⃗e

H ⃗e

HOW TO CHOOSE H?

≈c
Want: efficiently

computable
H ⋅ ⃗e

Choose sparse?H

H ⃗e

HOW TO CHOOSE H?

≈c
Want: efficiently

computable
H ⋅ ⃗e

Choose sparse?H

Problem:
also sparse!

H ⋅ ⃗e

H ⃗e

EXPAND-ACCUMULATE (EA) CODES

EXPAND-ACCUMULATE (EA) CODES

sparse matrix

(sample randomly)

EXPAND-ACCUMULATE (EA) CODES
1 1 1

10

10 0

sparse matrix

(sample randomly)

accumulator matrix A

EXPAND-ACCUMULATE (EA) CODES
1 1 1

10

10 0

=

sparse matrix

(sample randomly)

accumulator matrix A

EA generator matrix

H

EXPAND-ACCUMULATE (EA) CODES
1 1 1

10

10 0

=

sparse matrix

(sample randomly)

accumulator matrix A

EA generator matrix

H

EXPAND-ACCUMULATE (EA) CODES
1 1 1

10

10 0

=

sparse matrix

(sample randomly)

accumulator matrix A

EA generator matrix

H

OFFLINE-ONLINE PCG FROM EA CODES
sparse 1 1 1

10

10 0

sparse

sparse

sparse

sparse

OFFLINE-ONLINE PCG FROM EA CODES
sparse

Offline: Parallelizable & cache-friendly

1 1 1
10

10 0

sparse

sparse

sparse

sparse

OFFLINE-ONLINE PCG FROM EA CODES
sparse

Offline: Parallelizable & cache-friendly

Online: Low locality

1 1 1
10

10 0

sparse

sparse

sparse

sparse

OFFLINE-ONLINE PCG FROM EA CODES
sparse

Offline: Parallelizable & cache-friendly

Online: Low locality

≈c

1 1 1
10

10 0

sparse

sparse

sparse

sparse

SECURITY?

- Why should we believe pseudorandom? H ⋅ ⃗e

SECURITY?

- Why should we believe pseudorandom? H ⋅ ⃗e

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

- Why should we believe pseudorandom? H ⋅ ⃗e

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

Alternatively:

Rule out known

attacks

- Why should we believe pseudorandom? H ⋅ ⃗e

- Almost all* attacks boil down to following strategy:

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

Alternatively:

Rule out known

attacks

*relevant to our parameters which don't exploit algebraic structure

- Why should we believe pseudorandom? H ⋅ ⃗e

- Almost all* attacks boil down to following strategy:

- Look at and find vector s.t. is sparseH ⃗x ⊤ ⃗x ⊤H

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

Alternatively:

Rule out known

attacks

*relevant to our parameters which don't exploit algebraic structure

- Why should we believe pseudorandom? H ⋅ ⃗e

- Almost all* attacks boil down to following strategy:

- Look at and find vector s.t. is sparseH ⃗x ⊤ ⃗x ⊤H

- Compute , where is (i) or (ii) unif. rand.⃗x ⊤ ⃗y ⃗y H ⋅ ⃗e

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

Alternatively:

Rule out known

attacks

*relevant to our parameters which don't exploit algebraic structure

- Why should we believe pseudorandom? H ⋅ ⃗e

- Almost all* attacks boil down to following strategy:

- Look at and find vector s.t. is sparseH ⃗x ⊤ ⃗x ⊤H

- Compute , where is (i) or (ii) unif. rand.⃗x ⊤ ⃗y ⃗y H ⋅ ⃗e

SECURITY?

Ideally:

Reduce to known

hard problem (LPN)

Alternatively:

Rule out known

attacks

*relevant to our parameters which don't exploit algebraic structure

Linear tests
framework

SECURITY
Resistance to linear tests

SECURITY
Resistance to linear tests

No low-weight (non-zero)
vector in code

 good min. dist.
{ ⃗x ⊤H}

⟺⟸

SECURITY
Resistance to linear tests

No low-weight (non-zero)
vector in code

 good min. dist.
{ ⃗x ⊤H}

⟺⟸

This work: rule out linear attacks

SECURITY
Resistance to linear tests

No low-weight (non-zero)
vector in code

 good min. dist.
{ ⃗x ⊤H}

⟺⟸

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with , get minimum distance
 with probability

p = O(log N/N)
Ω(N) 1 − 1/NΩ(1)

SECURITY
Resistance to linear tests

No low-weight (non-zero)
vector in code

 good min. dist.
{ ⃗x ⊤H}

⟺⟸

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with , get minimum distance
 with probability

p = O(log N/N)
Ω(N) 1 − 1/NΩ(1)

2

1 − 1/Nω(1)

CONCRETE EFFICIENCY

CONCRETE EFFICIENCY
Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

CONCRETE EFFICIENCY

Online Phase

Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

CONCRETE EFFICIENCY

Online Phase

Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

Theoretically

40 lookups + 1 hash per OT

CONCRETE EFFICIENCY

Online Phase

Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

Theoretically

40 lookups + 1 hash per OT

Experimentally

7 lookups + 1 hash per OT

CONCRETE EFFICIENCY

Online Phase

Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

Theoretically

40 lookups + 1 hash per OT

Experimentally

7 lookups + 1 hash per OT

Good pseudo-
distance suffices

CONCRETE EFFICIENCY

Online Phase

Offline Phase

Estimated 100ms to generate for 10 million OTs

Factor speedup if processors available

∼ Yσ
∼ k k

Theoretically

40 lookups + 1 hash per OT

Experimentally

7 lookups + 1 hash per OT

Good pseudo-
distance suffices

Needs further
cryptanalysis!

RECAP

RECAP Offline Phase

Highly parallelizable

Cache friendly

RECAP

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

RECAP

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work

RECAP

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work

RECAP

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work

RECAP

Online Phase

Low output locality

Offline Phase

Highly parallelizable

Cache friendly

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work

FURTHER RESULTS & RECAP

CONSTRUCTING PCFS

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

CONSTRUCTING PCFS

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

CONSTRUCTING PCFS

1 1 1
10

10 0
A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0
A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

Corresponds to (small sum
of) comparison functions

A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

Corresponds to (small sum
of) comparison functions

Fα
y (x) = α ⋅ 1{x ≤ y} = {α x ≤ y

0 x > y

A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

Corresponds to (small sum
of) comparison functions

Fα
y (x) = α ⋅ 1{x ≤ y} = {α x ≤ y

0 x > y

Efficient FSS due to [BGI'19,BCGGIKR'21]
A ⃗e

- Problem: if , too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for F(x) := b ⋅ (A ⋅ ⃗e)x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

Corresponds to (small sum
of) comparison functions

Fα
y (x) = α ⋅ 1{x ≤ y} = {α x ≤ y

0 x > y

Efficient FSS due to [BGI'19,BCGGIKR'21]
A ⃗e

Also get efficient PCFs for
general degree-2/circuit-
dependent correlations

SPEEDING UP OFFLINE

- Bulk of offline work:

SPEEDING UP OFFLINE
EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

- Bulk of offline work:

- FSS built from punctured PRF

SPEEDING UP OFFLINE
EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

H0(H0(k)) H1(H0(k)) H0(H1(k)) H1(H1(k))

H0(k) H1(k)

k

- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

H0(H0(k)) H1(H0(k)) H0(H1(k)) H1(H1(k))

H0(k) H1(k)

k

H(k) H(k) ⊕ k

H(H(k) ⊕ k) H(H(k) ⊕ k) ⊕ H(k) ⊕ kH(H(k)) ⊕ H(k)H(H(k))

- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
Yields: unpredictable
punctured function

EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

H0(H0(k)) H1(H0(k)) H0(H1(k)) H1(H1(k))

H0(k) H1(k)

k

H(k) H(k) ⊕ k

H(H(k) ⊕ k) H(H(k) ⊕ k) ⊕ H(k) ⊕ kH(H(k)) ⊕ H(k)H(H(k))

- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
Yields: unpredictable
punctured function

One hashing layer:
yields genuine
punctured PRF

EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)

H0(H0(k)) H1(H0(k)) H0(H1(k)) H1(H1(k))

H0(k) H1(k)

k

H(k) H(k) ⊕ k

H(H(k) ⊕ k) H(H(k) ⊕ k) ⊕ H(k) ⊕ kH(H(k)) ⊕ H(k)H(H(k))

RECAP

RECAP
(Pseudo)random correlations

b⋅ ⃗a = ⃗c 0+ ⃗c 1

VOLE
⃗a

⃗c 0

b

⃗c 1

RECAP
Offline-Online PCGs
(Pseudo)random correlations

b⋅ ⃗a = ⃗c 0+ ⃗c 1

VOLE
⃗a

⃗c 0

b

⃗c 1

RECAP
Offline-Online PCGs
(Pseudo)random correlations

b⋅ ⃗a = ⃗c 0+ ⃗c 1

Expand-Accumulate

VOLE
⃗a

⃗c 0

b

⃗c 1

sparse ≈c

1 1 1
10

10 0

RECAP
Offline-Online PCGs
(Pseudo)random correlations

b⋅ ⃗a = ⃗c 0+ ⃗c 1

Other results

- Concretely efficient PCF's

- New correlations

- Sped-up offline phase

Expand-Accumulate

VOLE
⃗a

⃗c 0

b

⃗c 1

sparse ≈c

1 1 1
10

10 0

RECAP
Offline-Online PCGs
(Pseudo)random correlations

b⋅ ⃗a = ⃗c 0+ ⃗c 1

Other results

- Concretely efficient PCF's

- New correlations

- Sped-up offline phase

Expand-Accumulate

VOLE
⃗a

⃗c 0

b

⃗c 1

sparse ≈c

1 1 1
10

10 0

THANK YOU! 
QUESTIONS?

