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- Correlated randomness:    ( (b, mb), (m0, m1) )

CORRELATION FOR 2PC (AND)
x, (b, mb) y, (m0, m1)

c = x ⊕ b

d = y ⊕ mc⊕1

x ∧ y = {0 if x = 0
y = d ⊕ elsemb

Oblivious Transfer (OT)

MPC with preprocessing: exchange correlated 
randomness first, then run (fast!) protocol
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- Problem: typically need long correlated random strings

- Secure Communication: |𝖮𝖳𝖯 | = |message |

- Secure Computation: 2 OT's per AND gate

- Traditionally, need preprocessing phase with high communication

COMPRESSING RANDOMNESS

Solution ['80's]: exchange short seeds, stretch with 
pseudorandom generator / function

Solution [2015—]: exchange short seeds, stretch with 
pseudorandom correlation generator / function
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- PCG  for correlation = (Gen, Expand) C

- For  :(sA, sB) ← Gen(1λ)
- Correctness:


- (Expand(sA), Expand(sB)) ∈ CN

- Pseudorandomness:


- ,  pseudorand.Expand(sA) Expand(sB)
- Security:


- Other party's output looks 
pseudorandom up to correlation

PSEUDORANDOM CORRELATION GENERATOR (PCG)

sA sB

Expand(sA) Expand(sB)

 indep. OT'sN
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- For  (kA, kB) ← Gen(1λ)

- Analogous correctness, pseudorandomness and security guarantees

PSEUDORANDOM CORRELATION FUNCTION (PCF)

kA kB

Eval(kA, x) Eval(kB, x)
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- PCG = (Gen, Offline, Online)

-    (k𝗈𝖿𝖿
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A , k𝗈𝗇

B ) ← Gen(1λ)

- Low storage: |Yσ | ≤ N

- Output locality: Online reads  
entries of 

≤ ℓ
Yσ- Analogous correctness, 

pseudorandomness & security

PCG's: all work in offline phase PCF's: all work in online phase
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Offline-online PCG's from Expand-Accumulate Codes

New class of codes!

Online Phase

Low output locality


Offline Phase

Highly parallelizable


Cache friendly
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- Goal: construct PCG for vector OLE (VOLE) correlation


-  and  s.t. ( ⃗a , ⃗c 0) ∈ 𝔽N × 𝔽N (b, ⃗c 1) ∈ 𝔽 × 𝔽N b⋅ ⃗a = ⃗c 0+ ⃗c 1

- Consider function  defined by F : [N] → 𝔽 F(x) = b ⋅ ax

- Idea: additively share  between Alice and BobF

RECIPE FOR PCGS

VOLE
⃗a

⃗c 0

b

⃗c 1
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- Share function  s.t.  inputs F ∀ x

- Goal: ,  small (secret-sharing truth-table too expensive!)|KA| |KB|

- Efficient FSS for point functions [GilboaIshai'14], or small sums

- Can efficiently share  if  is sparseF(x) = b ⋅ ax ⃗a

(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

KA KB

Eval(KA, x) + Eval(KB, x) = F(x)

Fα
y (x) = {α if x = y

0 else
Fα1,…,αt

y1,…,yt
(x) = {αi if x = yi

0 else
 smallt
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 sparse VOLE
⃗e

⃗c ′￼0

b

⃗c ′￼1

H

H H

 linear 
compressing map 

H

How to choose ?

Need 

H⃗a ≈c Unif

b⋅ ⃗e = ⃗c ′￼0+ ⃗c ′￼1

b⋅ ⃗a = ⃗c 0+ ⃗c 1⃗a

⃗c 0 ⃗c 1

⟹

LPN:  uniformly 
random works!

H
Better efficiency?

[BoyleCouteauGilboaIshaiKohlScholl'19, '20, 
CouteauRindalRaghuraman'21]

[BoyleCouteauGilboaIshai'18]
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HOW TO CHOOSE H?

≈c
Want:  efficiently 


computable
H ⋅ ⃗e

Choose  sparse?H

Problem:  
also sparse! 

H ⋅ ⃗e

H ⃗e
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Online: Low locality

≈c

1 1 1
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10 0
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sparse

sparse
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- Why should we believe  pseudorandom? H ⋅ ⃗e

- Almost all* attacks boil down to following strategy:

- Look at  and find vector  s.t.  is sparseH ⃗x ⊤ ⃗x ⊤H

- Compute , where  is (i)  or (ii) unif. rand.⃗x ⊤ ⃗y ⃗y H ⋅ ⃗e

SECURITY?

Ideally:

Reduce to known 

hard problem (LPN)

Alternatively:

Rule out known 

attacks

*relevant to our parameters which don't exploit algebraic structure

Linear tests 
framework
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SECURITY
Resistance to linear tests

No low-weight (non-zero) 
vector in code 


 good min. dist.
{ ⃗x ⊤H}

⟺⟸

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with , get minimum distance 
 with probability 

p = O(log N/N)
Ω(N) 1 − 1/NΩ(1)

2

1 − 1/Nω(1)
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Online Phase


Offline Phase

Estimated 100ms to generate  for 10 million OTs


Factor  speedup if  processors available

∼ Yσ
∼ k k

Theoretically

40 lookups + 1 hash per OT 


Experimentally

7 lookups + 1 hash per OT


Good pseudo-
distance suffices

Needs further 
cryptanalysis!
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- Problem: if ,  too expensive to compute!| ⃗e | = 2λ A ⋅ ⃗e

- Solution: use FSS for  F(x) := b ⋅ (A ⋅ ⃗e )x

CONSTRUCTING PCFS

1 1 1
10

10 0

=

Corresponds to (small sum 
of) comparison functions

Fα
y (x) = α ⋅ 1{x ≤ y} = {α x ≤ y

0 x > y

Efficient FSS due to [BGI'19,BCGGIKR'21]
A ⃗e

Also get efficient PCFs for 
general degree-2/circuit-
dependent correlations
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- Bulk of offline work:

- FSS built from punctured PRF

- Basically: corresponds to computing entire GGM tree

SPEEDING UP OFFLINE
Yields: unpredictable 
punctured function

One hashing layer: 
yields genuine 
punctured PRF

EvalAll(Kσ) :=

Eval(Kσ,1)
Eval(Kσ,2)

Eval(Kσ, N)
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Other results
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Expand-Accumulate


VOLE
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sparse ≈c

1 1 1
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THANK YOU! 
QUESTIONS?


