FROM EXPAND-ACCUMULATE CODES

Elette Boyle

IDC Herzliya, NTT Research **Geoffroy Couteau**

IRIF

Niv Gilboa

Ben-Gurion University

Yuval Ishai

Technion

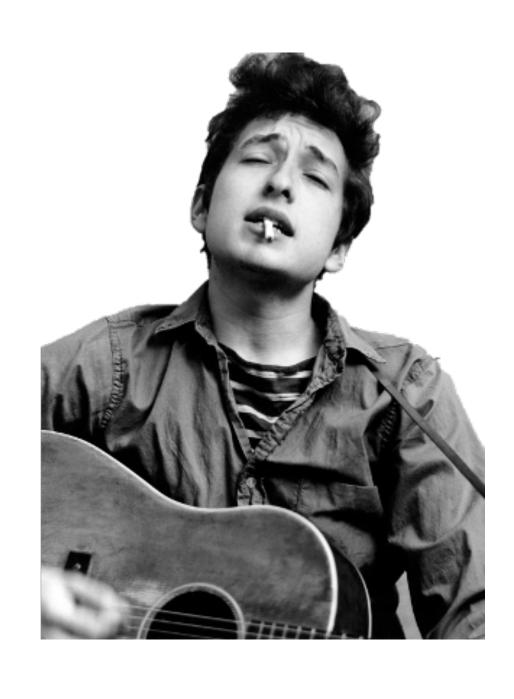
Lisa Kohl CWI

Nicolas Resch Peter Scholl CWI → Uva

Aarhus University

CORRELATED (PSEUDO) RANDOMNESS

m

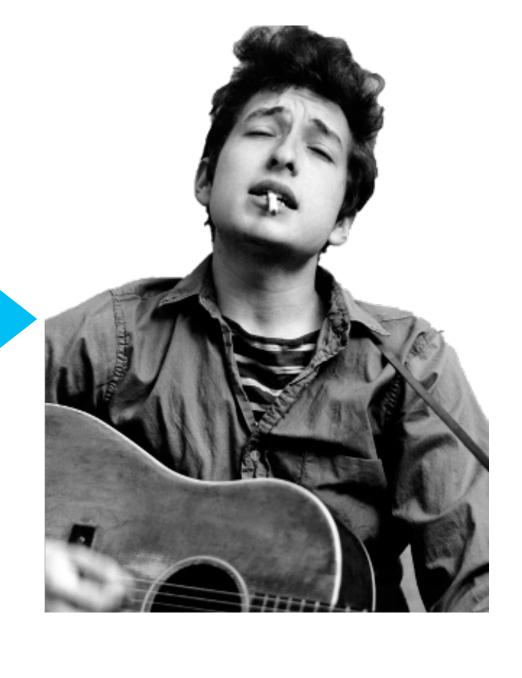


m

m OTP

OTP

 $c = m \oplus \mathsf{OTP}$

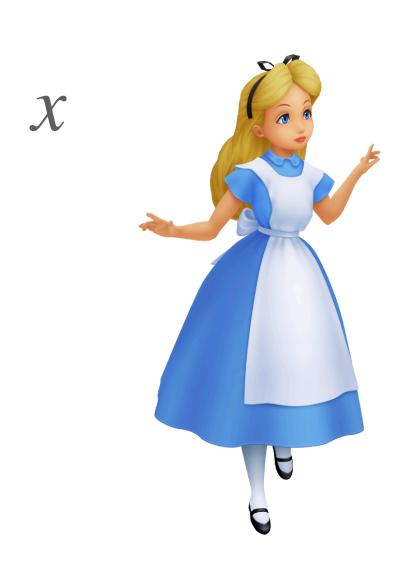


OTP

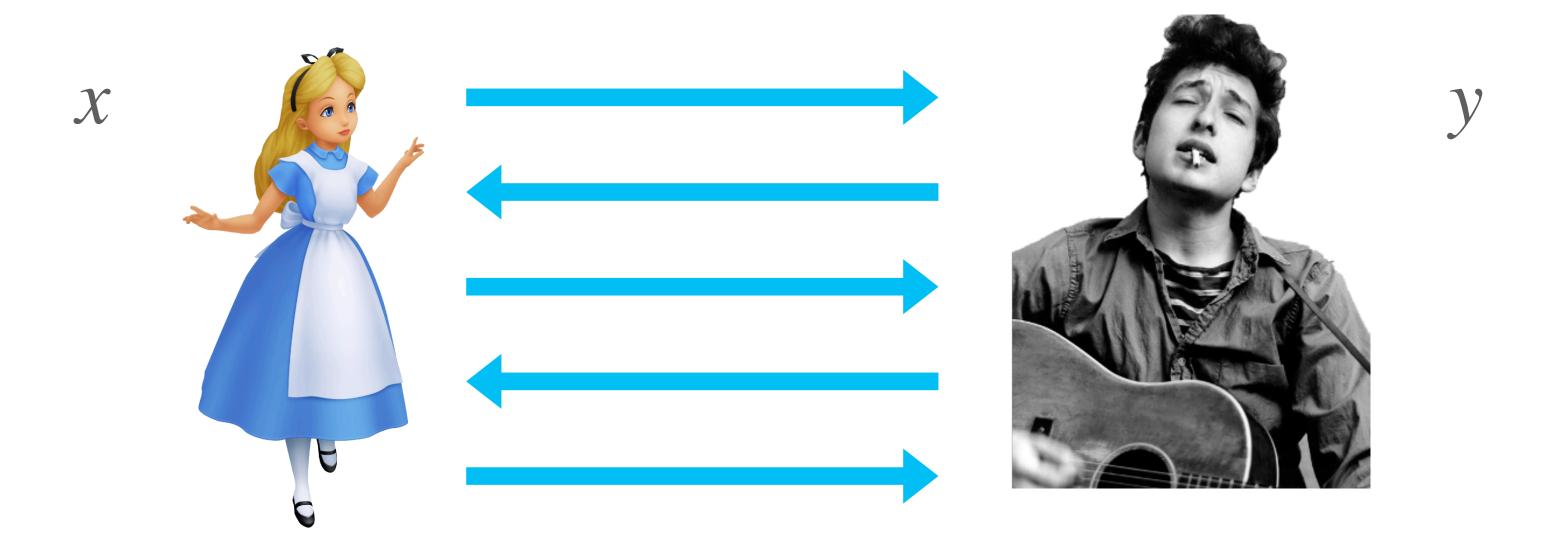
 $c = m \oplus \mathsf{OTP}$

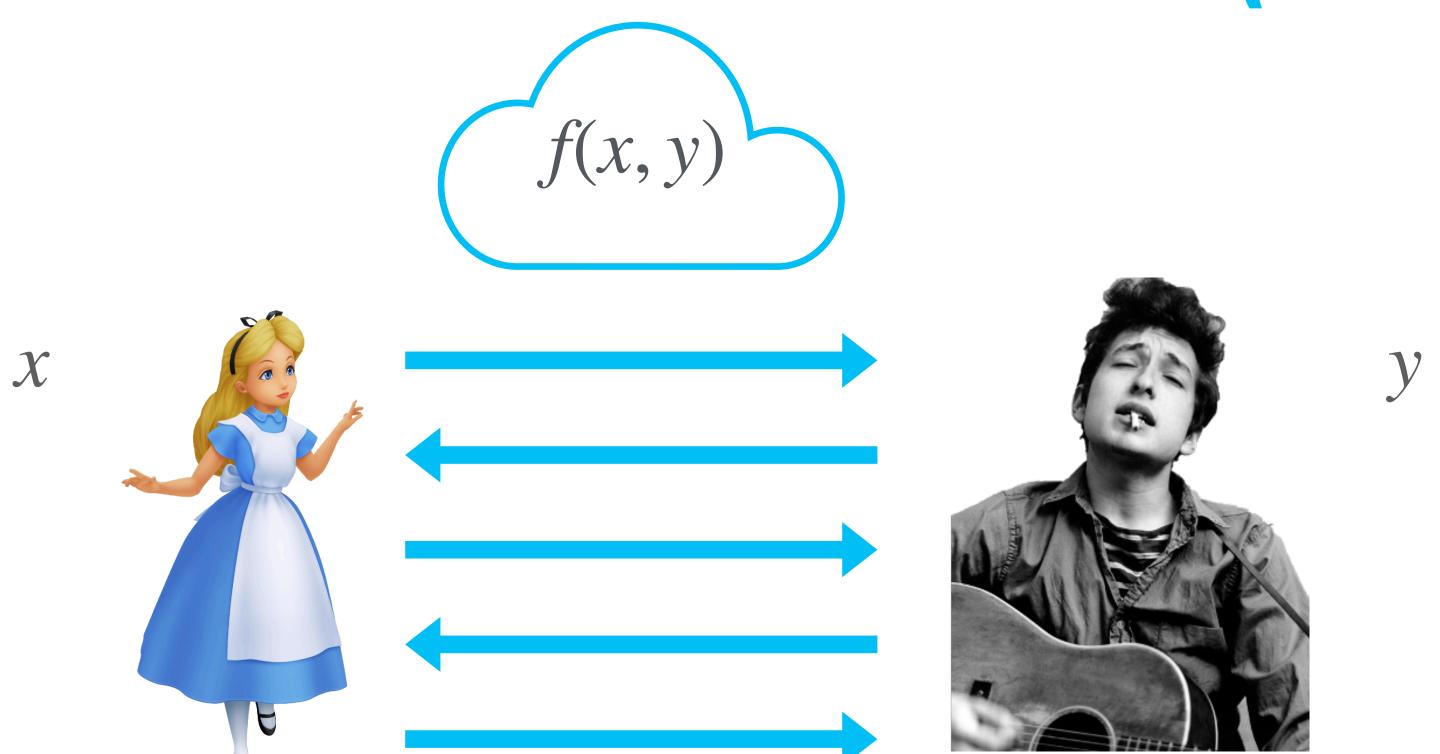
Correlated Randomness: (OTP, OTP)

"equality" correlation



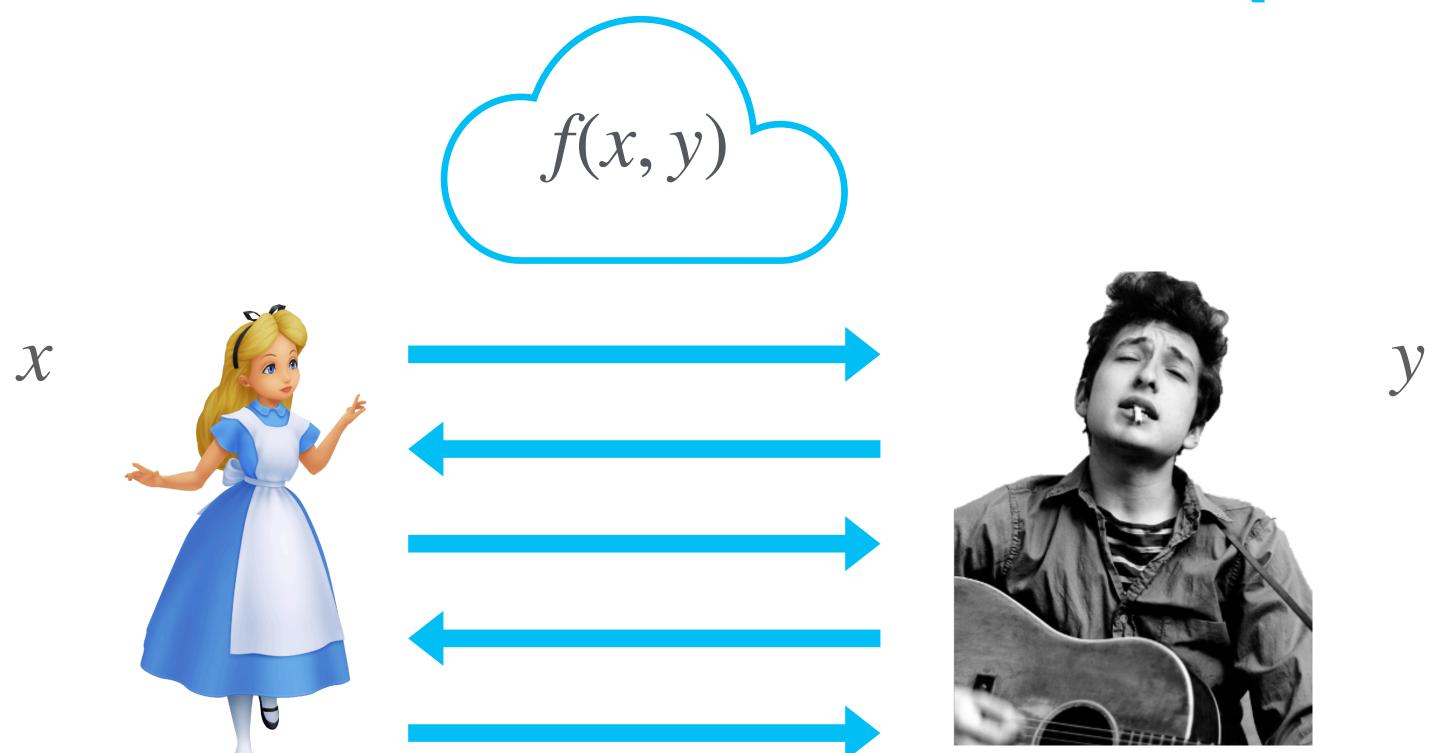
y





Goal:

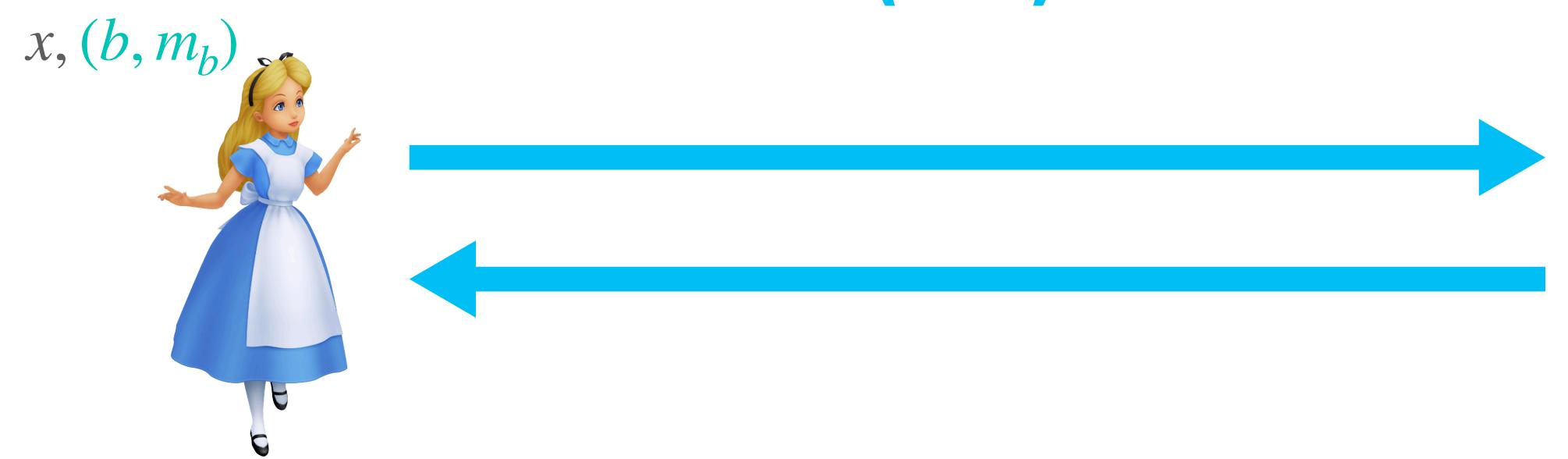
jointly compute f(x, y), without revealing anything more about private inputs x and y



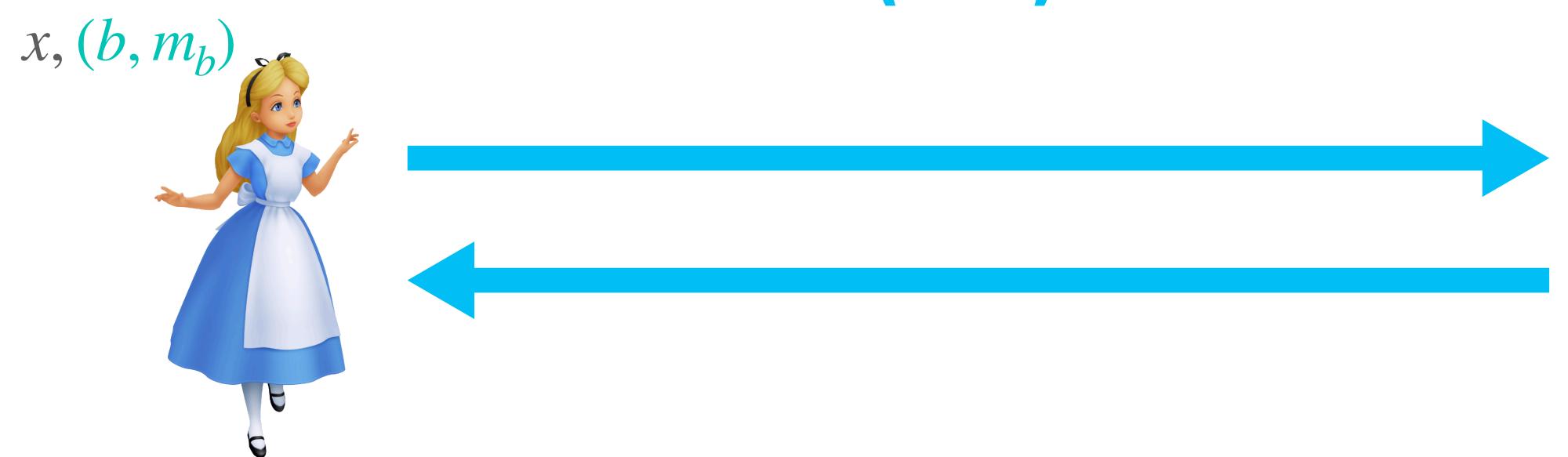
Goal:

jointly compute f(x, y), without revealing anything more about private inputs x and y

Today: focus on case of 2 parties (2PC)

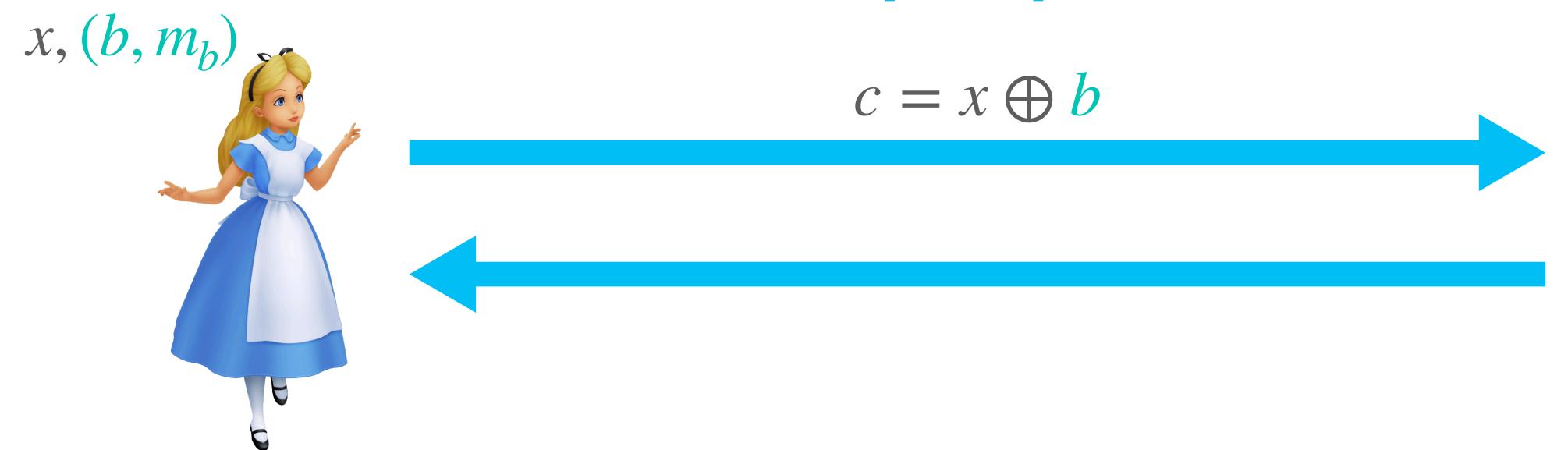


 $y, (m_0, m_1)$



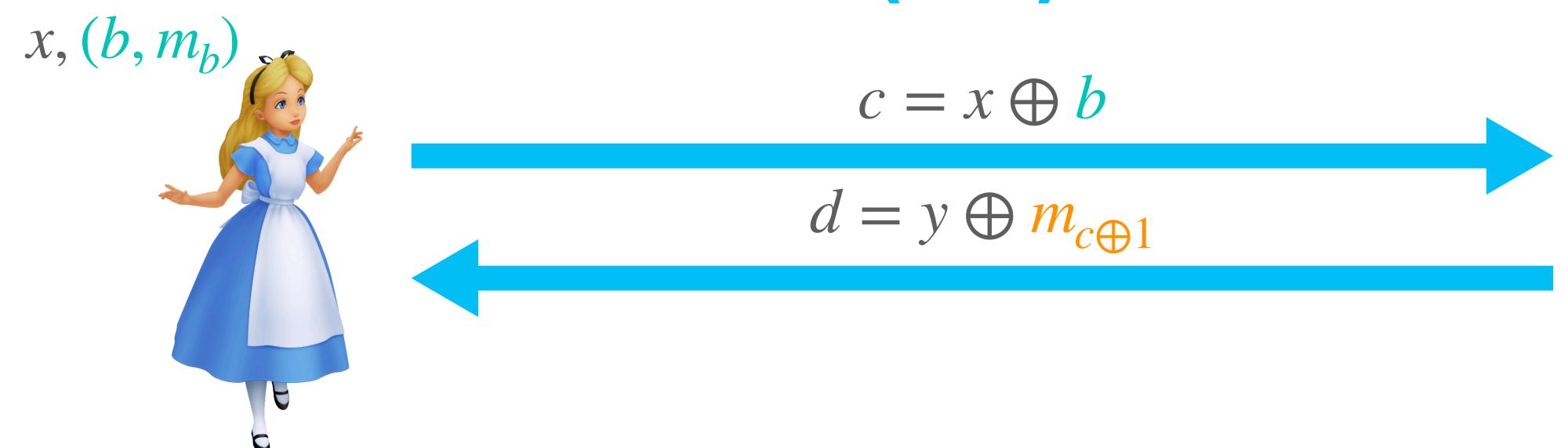
 $y, (m_0, m_1)$

- Correlated randomness: $((b, m_b), (m_0, m_1))$



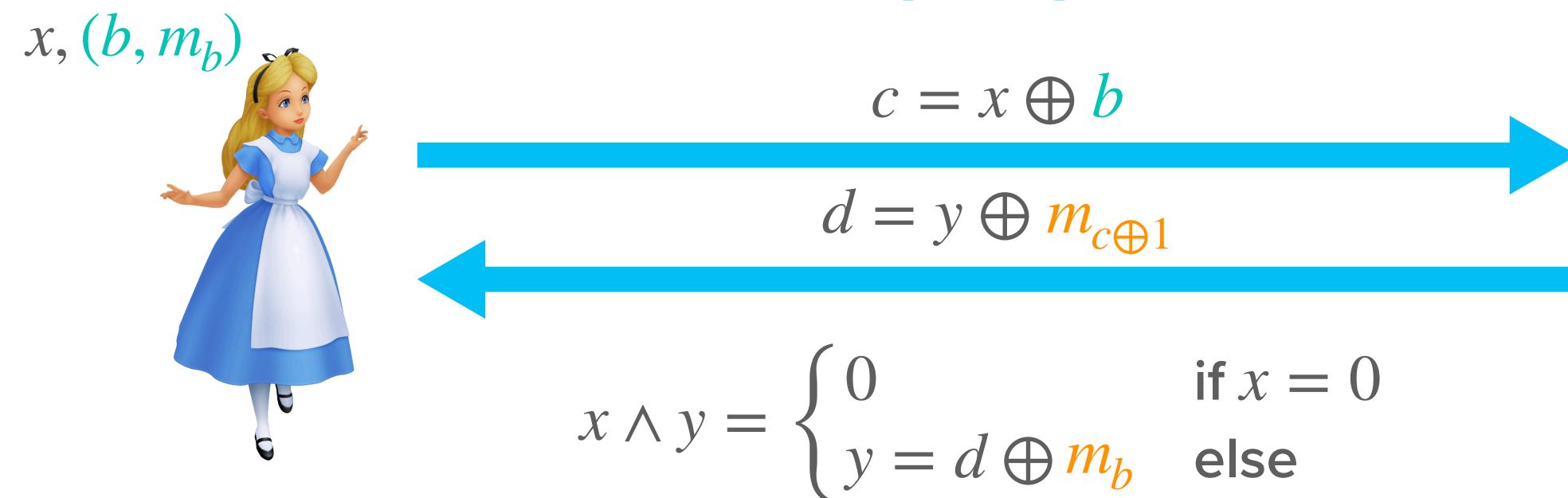
 $y, (m_0, m_1)$

- Correlated randomness: $((b, m_b), (m_0, m_1))$



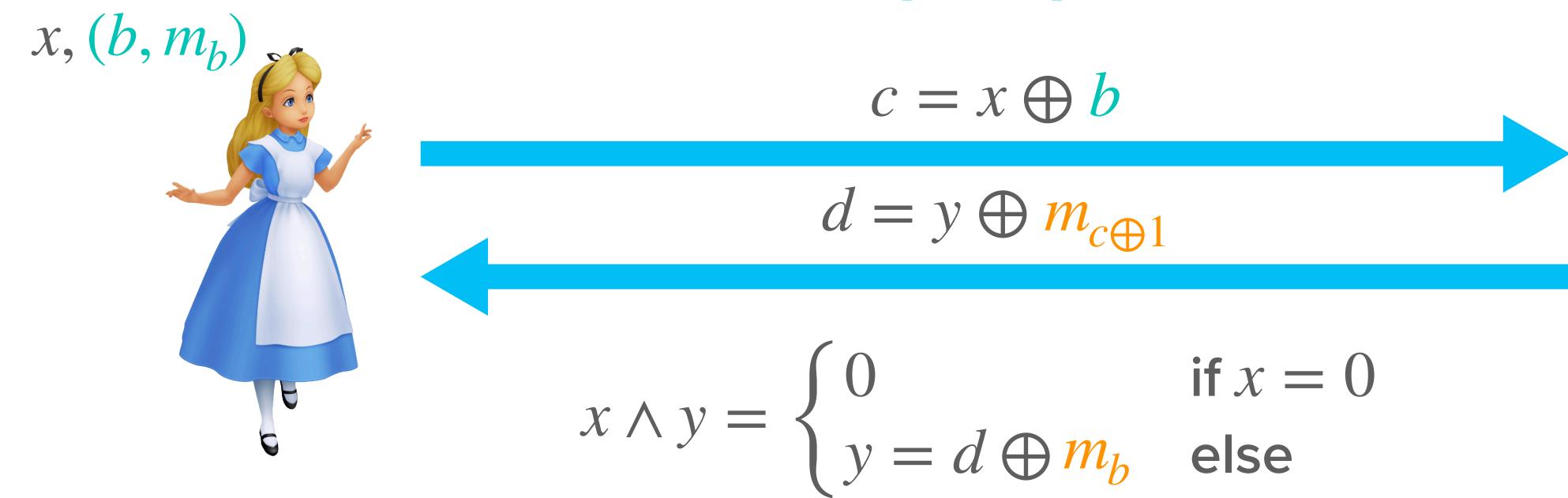
 $y, (m_0, m_1)$

- Correlated randomness: $((b, m_b), (m_0, m_1))$

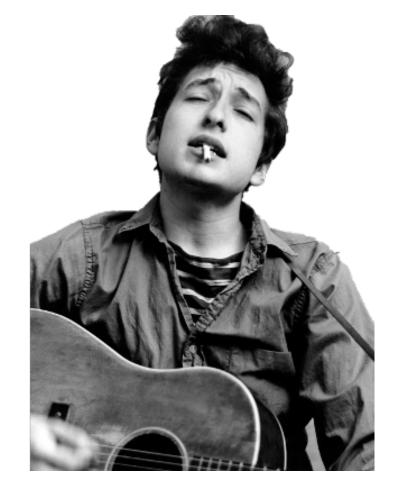


 $y, (m_0, m_1)$

- Correlated randomness: $((b, m_b), (m_0, m_1))$



 $y, (m_0, m_1)$



- Correlated randomness: $((b, m_b), (m_0, m_1))$

Oblivious Transfer (OT)

MPC with preprocessing: exchange correlated randomness first, then run (fast!) protocol

Problem: typically need long correlated random strings

- Problem: typically need long correlated random strings
 - Secure Communication: | OTP | = | message |

- Problem: typically need long correlated random strings
 - Secure Communication: | OTP | = | message |

Solution ['80's]: exchange short seeds, stretch with pseudorandom generator / function

- Problem: typically need long correlated random strings
 - Secure Communication: | OTP | = | message |

Solution ['80's]: exchange short seeds, stretch with pseudorandom generator / function

Secure Computation: 2 OT's per AND gate

- Problem: typically need long correlated random strings
 - Secure Communication: | OTP | = | message |

Solution ['80's]: exchange short seeds, stretch with pseudorandom generator / function

- Secure Computation: 2 OT's per AND gate
 - Traditionally, need preprocessing phase with high communication

- Problem: typically need *long* correlated random strings
 - Secure Communication: | OTP | = | message |

Solution ['80's]: exchange short seeds, stretch with pseudorandom generator / function

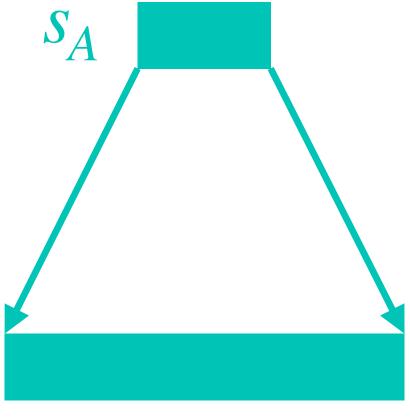
- Secure Computation: 2 OT's per AND gate
 - Traditionally, need preprocessing phase with high communication

Solution [2015—]: exchange short seeds, stretch with pseudorandom correlation generator / function

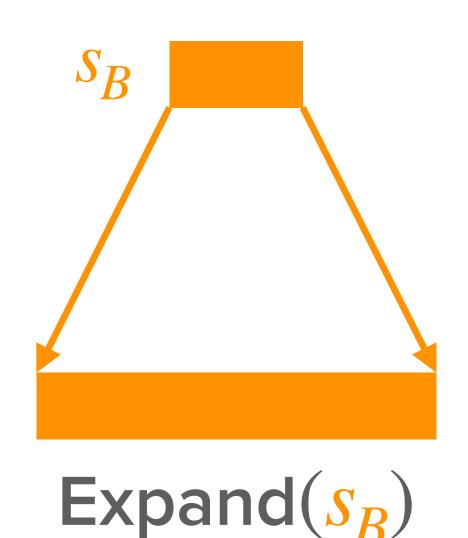
ightharpoonup PCG = (Gen, Expand) for correlation C

- ullet PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:

- ullet PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:

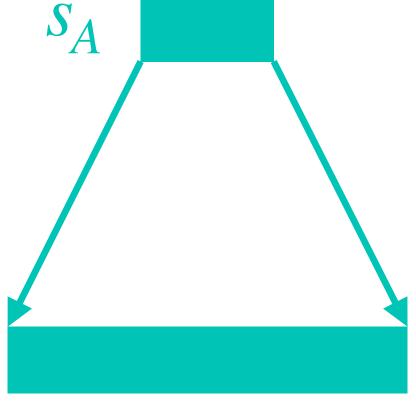


 $Expand(S_A)$

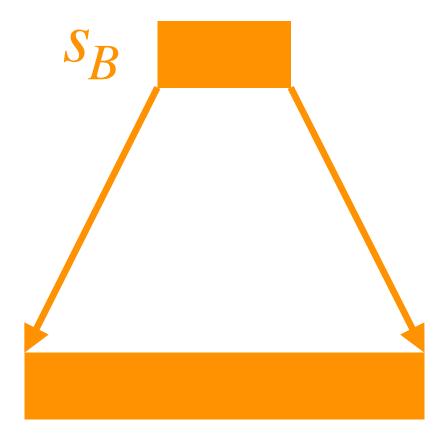




- ullet PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:
- Correctness:
 - $_$ (Expand(s_A), Expand(s_B)) ∈ C^N



 $Expand(s_A)$

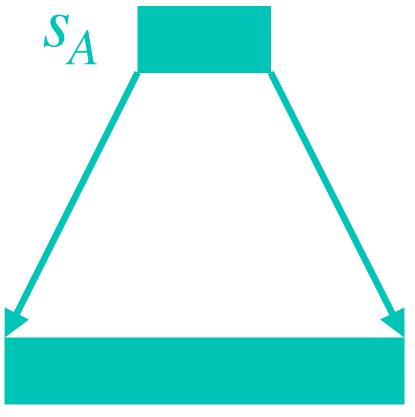


 $Expand(s_R)$

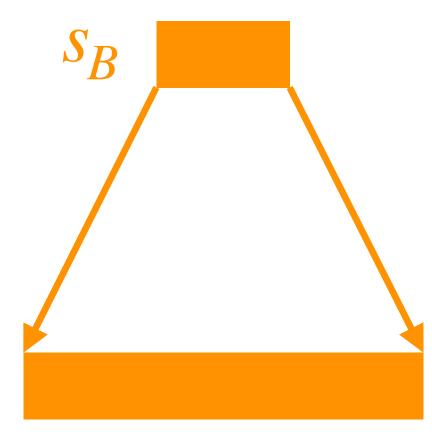
- ullet PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:
- Correctness:

Nindep. OT's

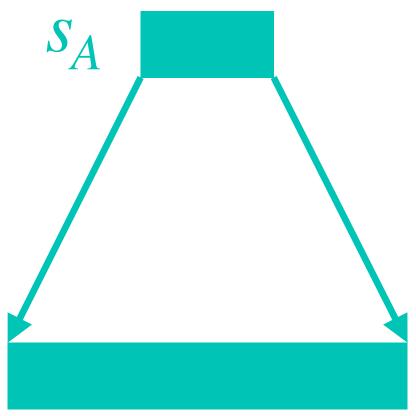
 $_$ (Expand(s_A), Expand(s_B)) ∈ C^N



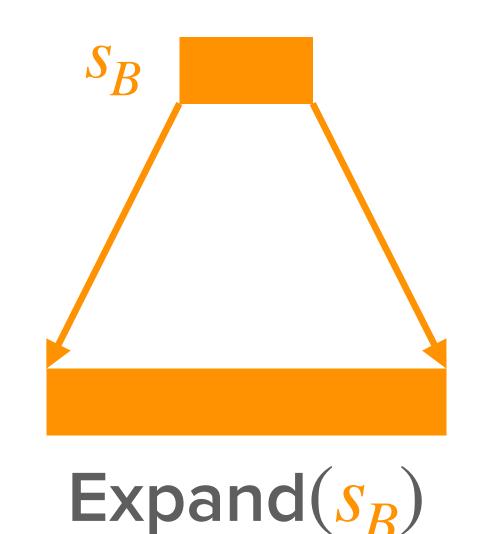
 $Expand(S_A)$



 $Expand(s_R)$

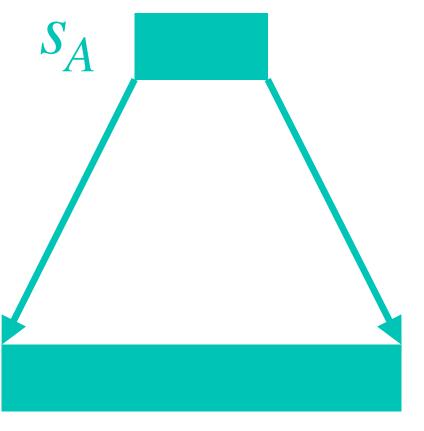


 $Expand(s_A)$

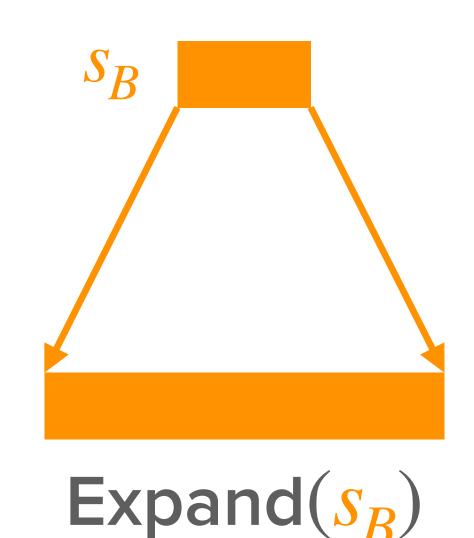


- lacksquare PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:
- Correctness:

- Nindep. OT's
- (Expand(s_A), Expand(s_B)) ∈ C^N
- Pseudorandomness:
 - Expand (s_A) , Expand (s_B) pseudorand.



 $Expand(s_A)$



- lacksquare PCG = (Gen, Expand) for correlation C
- For $(s_A, s_B) \leftarrow \text{Gen}(1^{\lambda})$:
- Correctness:

- Nindep. OT's
- $_$ (Expand(s_A), Expand(s_B)) ∈ C^N
- Pseudorandomness:
 - Expand (s_A) , Expand (s_B) pseudorand.
- Security:
 - Other party's output looks pseudorandom up to correlation

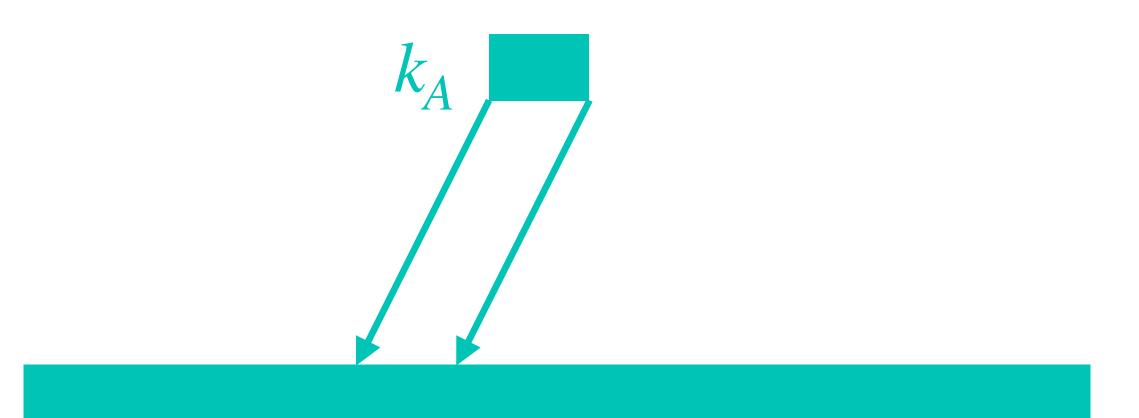
PSEUDORANDOM CORRELATION FUNCTION (PCF)

PSEUDORANDOM CORRELATION FUNCTION (PCF)

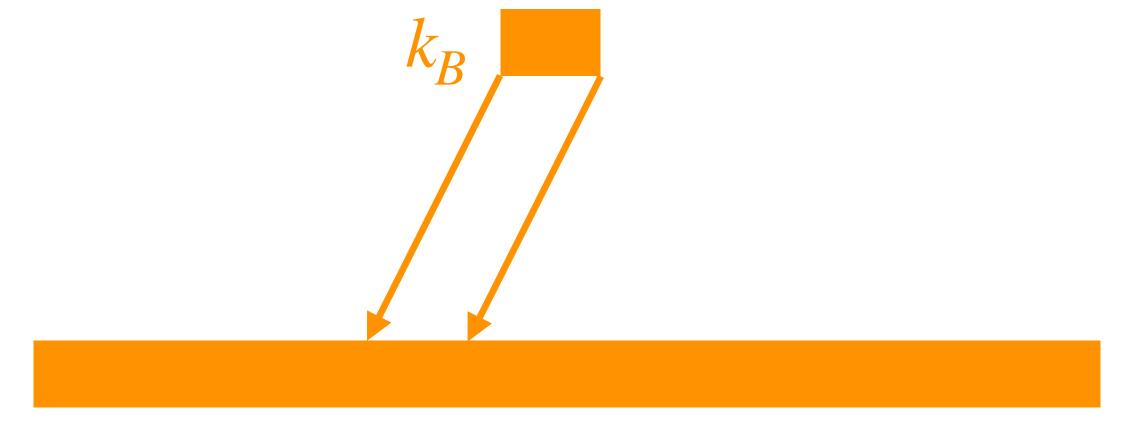
- For $(k_A, k_B) \leftarrow \text{Gen}(1^{\lambda})$

PSEUDORANDOM CORRELATION FUNCTION (PCF)

- For $(k_A, k_B) \leftarrow \text{Gen}(1^{\lambda})$



 $Eval(k_A, x)$



 $Eval(k_B, x)$

PSEUDORANDOM CORRELATION FUNCTION (PCF)

- For $(k_A, k_B) \leftarrow \text{Gen}(1^{\lambda})$

Analogous correctness, pseudorandomness and security guarantees

PCG's: all work in offline phase

PCG's: all work in offline phase

PCF's: all work in online phase

PCG's: all work in offline phase

PCF's: all work in online phase

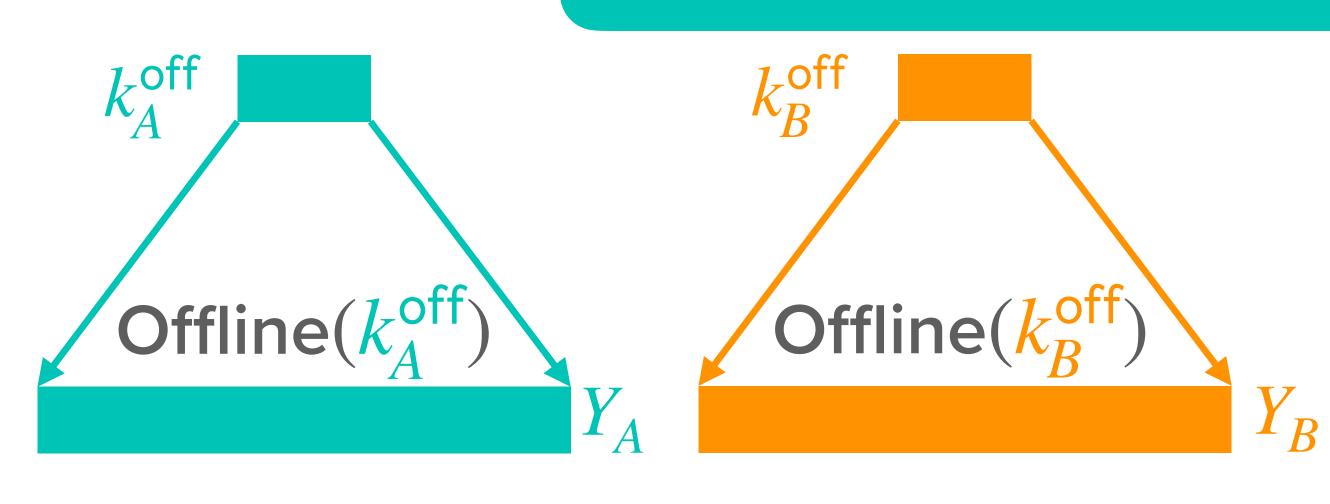
PCG's: all work in offline phase

PCF's: all work in online phase

- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$

PCG's: all work in offline phase

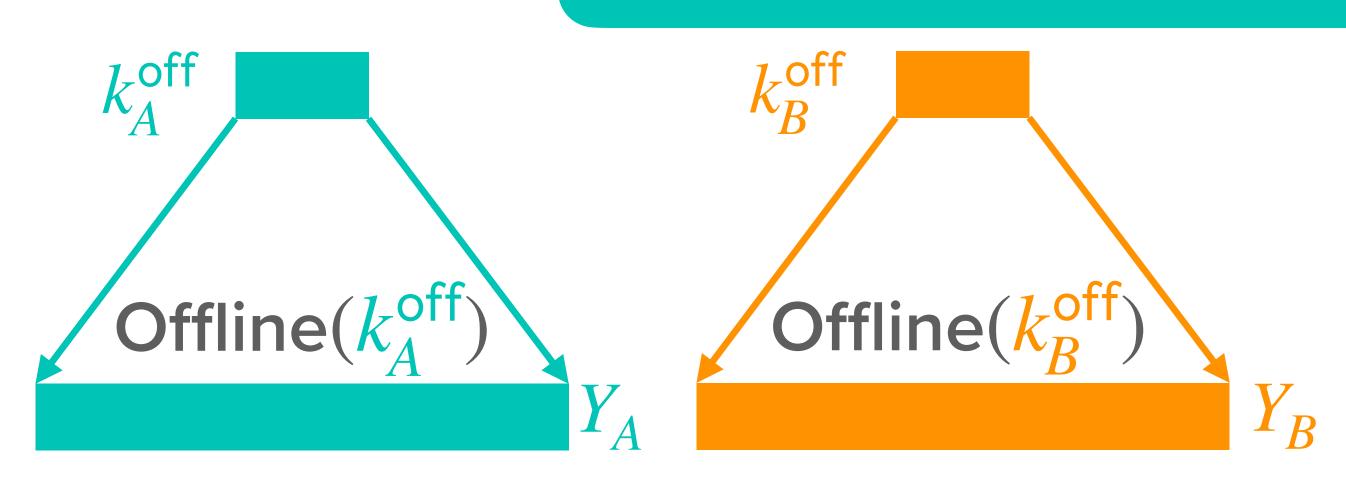
PCF's: all work in online phase



- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$

PCG's: all work in offline phase

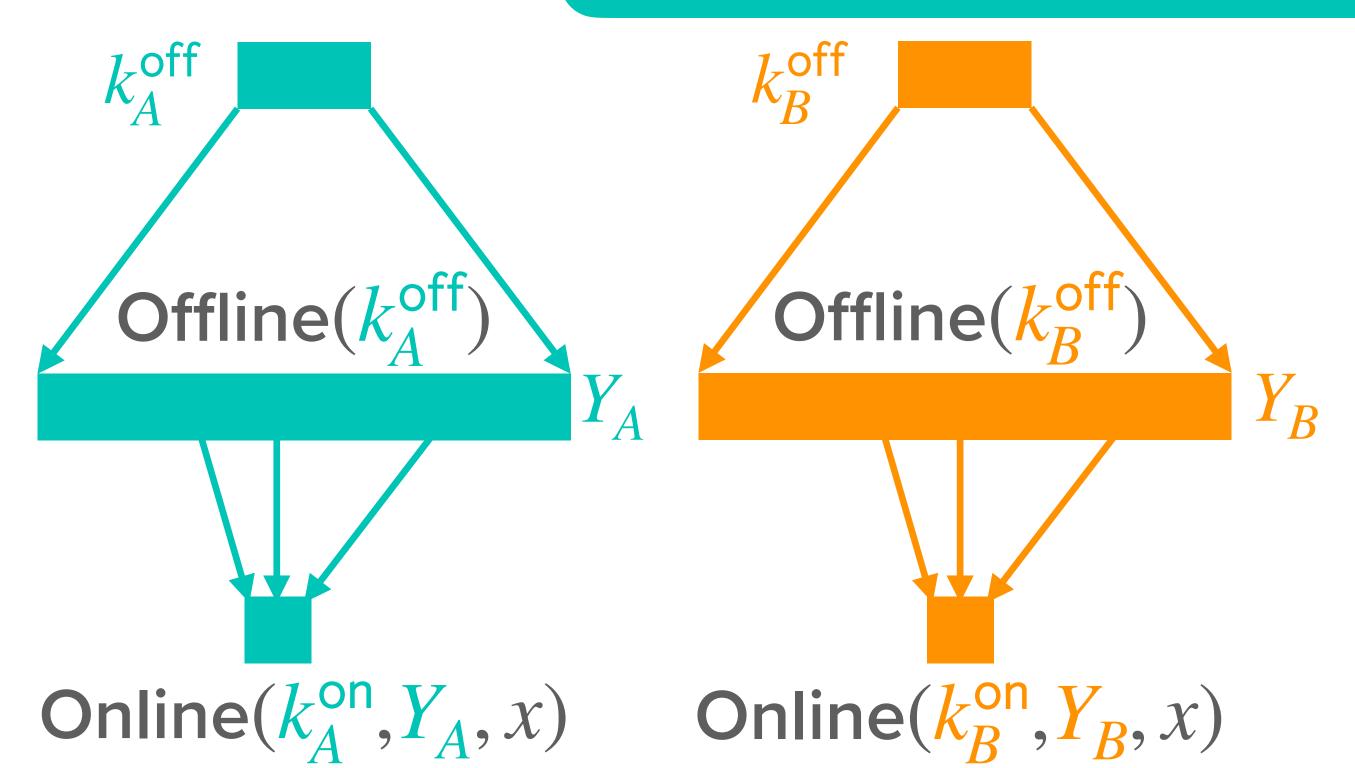
PCF's: all work in online phase



- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$
- Low storage: $|Y_{\sigma}| \leq N$

PCG's: all work in offline phase

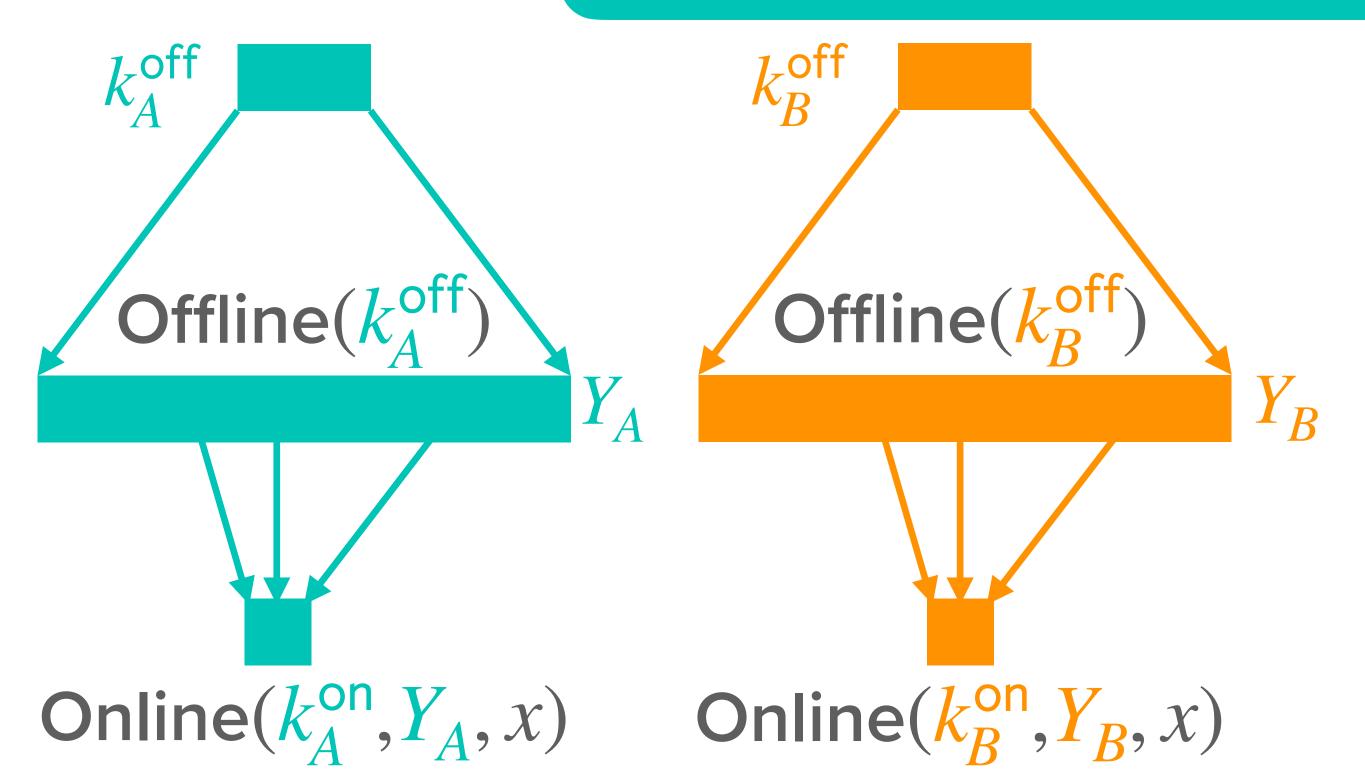
PCF's: all work in online phase



- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$
- Low storage: $|Y_{\sigma}| \leq N$

PCG's: all work in offline phase

PCF's: all work in online phase



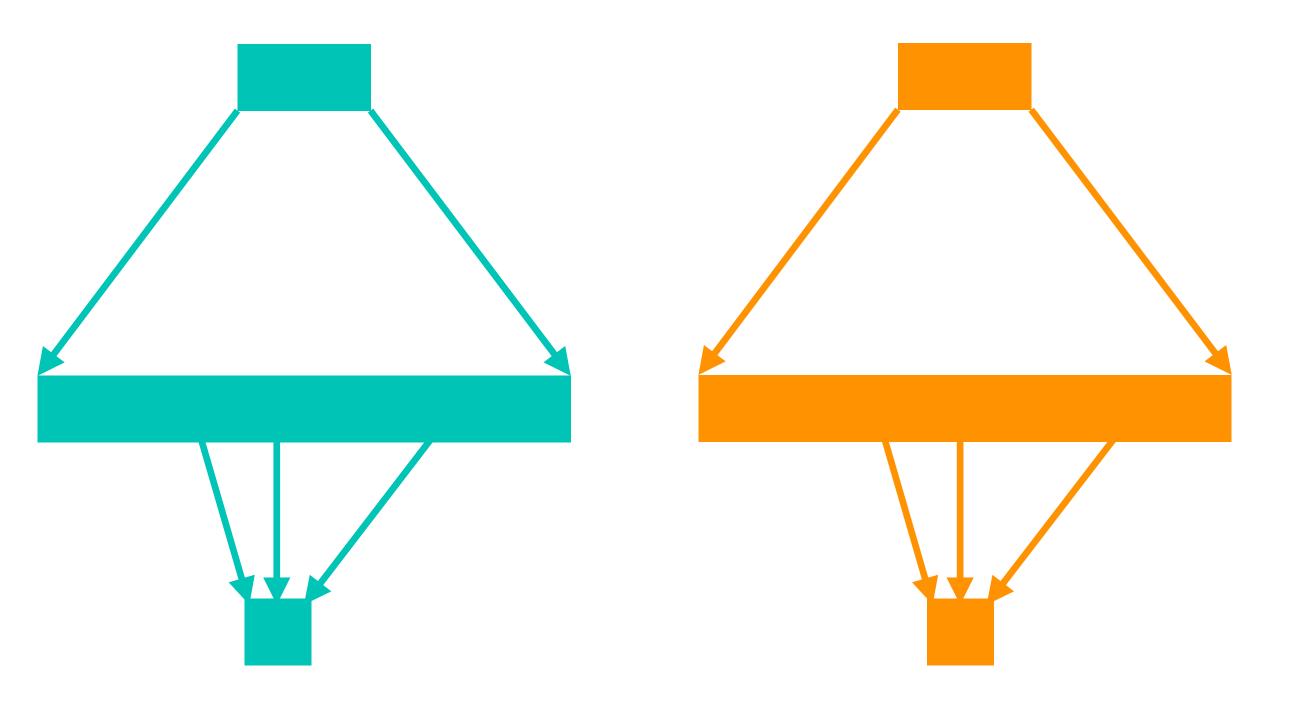
- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$
- Low storage: $|Y_{\sigma}| \leq N$
- Output locality: Online reads $\leq \ell$ entries of Y_{σ}

PCG's: all work in offline phase

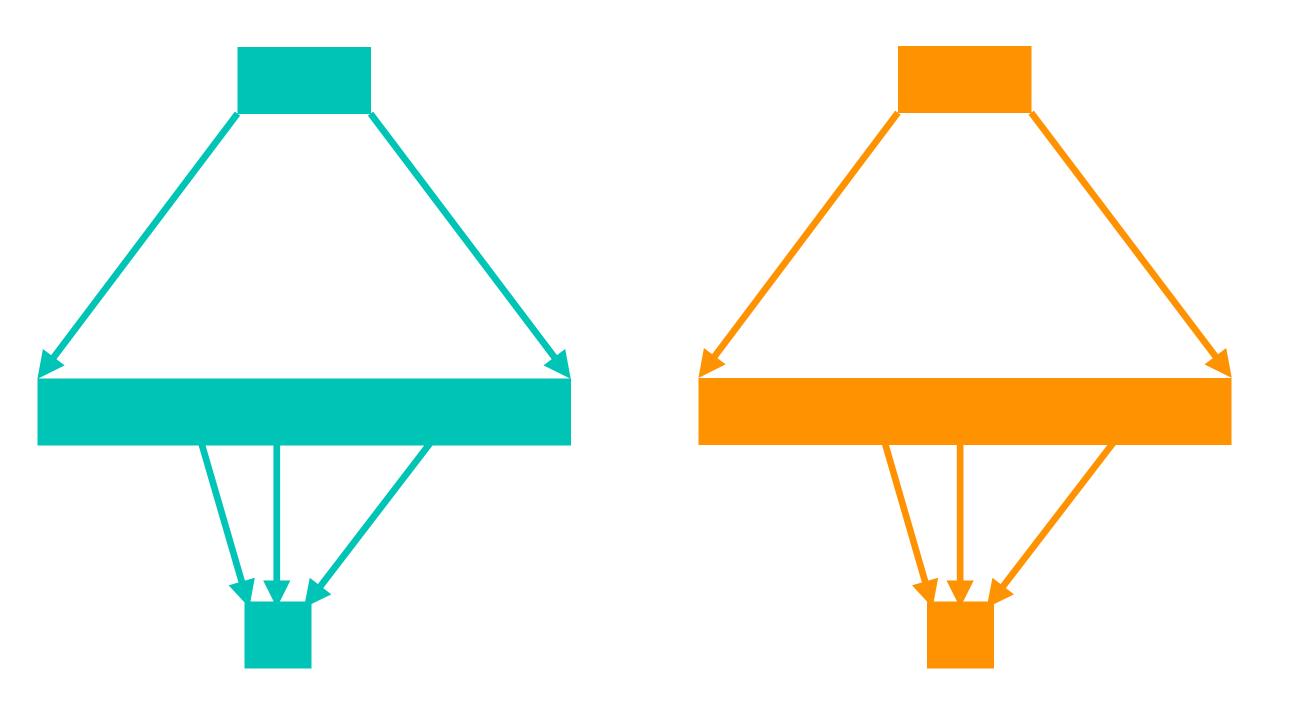
PCF's: all work in online phase



- PCG = (Gen, Offline, Online)
- $(k_A^{\text{off}}, k_B^{\text{off}}, k_A^{\text{on}}, k_A^{\text{on}}) \leftarrow \text{Gen}(1^{\lambda})$
- Low storage: $|Y_{\sigma}| \leq N$
- Output locality: Online reads $\leq \mathcal{C}$ entries of Y_{σ}
- Analogous correctness,
 pseudorandomness & security

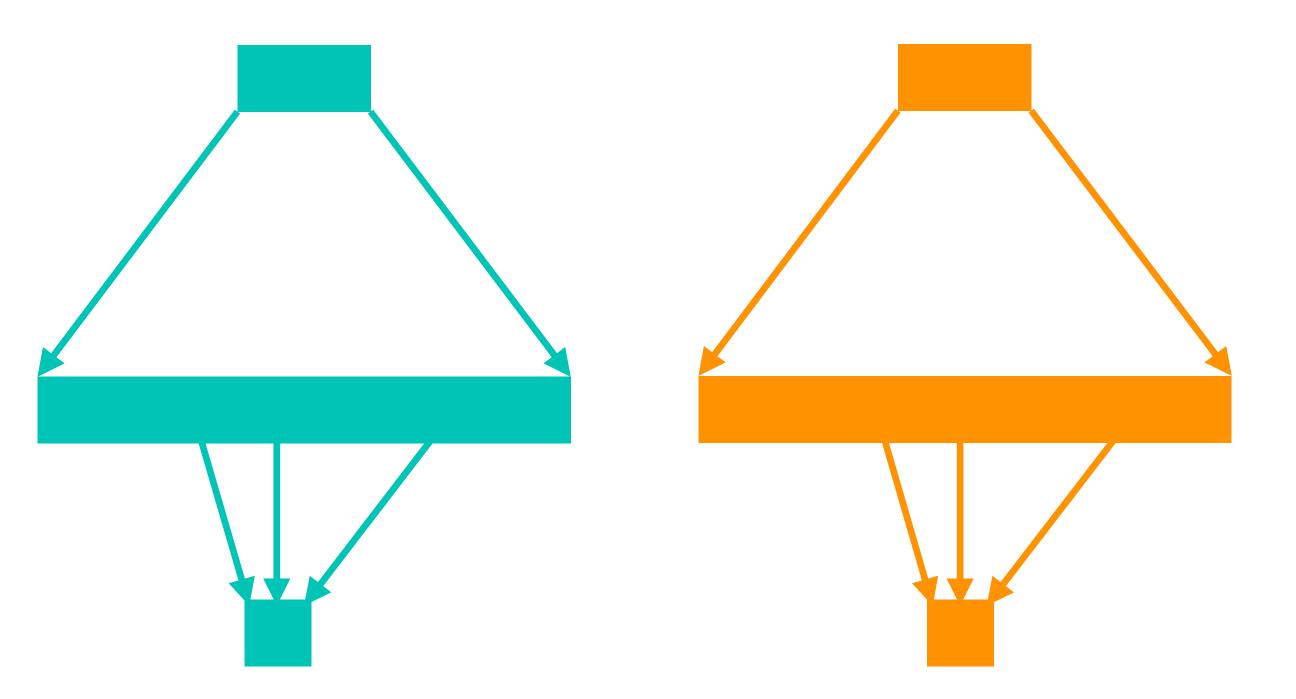


Offline-online PCG's from Expand-Accumulate Codes



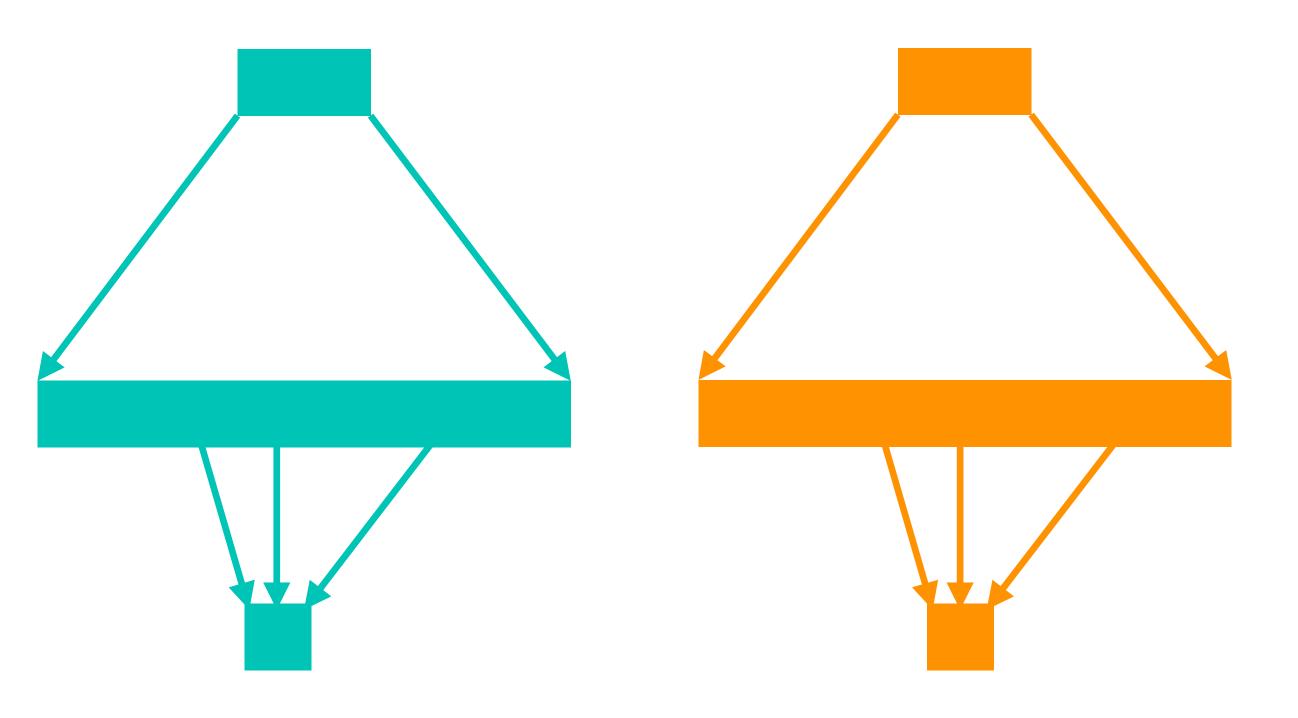
New class of codes!

Offline-online PCG's from Expand-Accumulate Codes



New class of codes!

Offline-online PCG's from Expand-Accumulate Codes



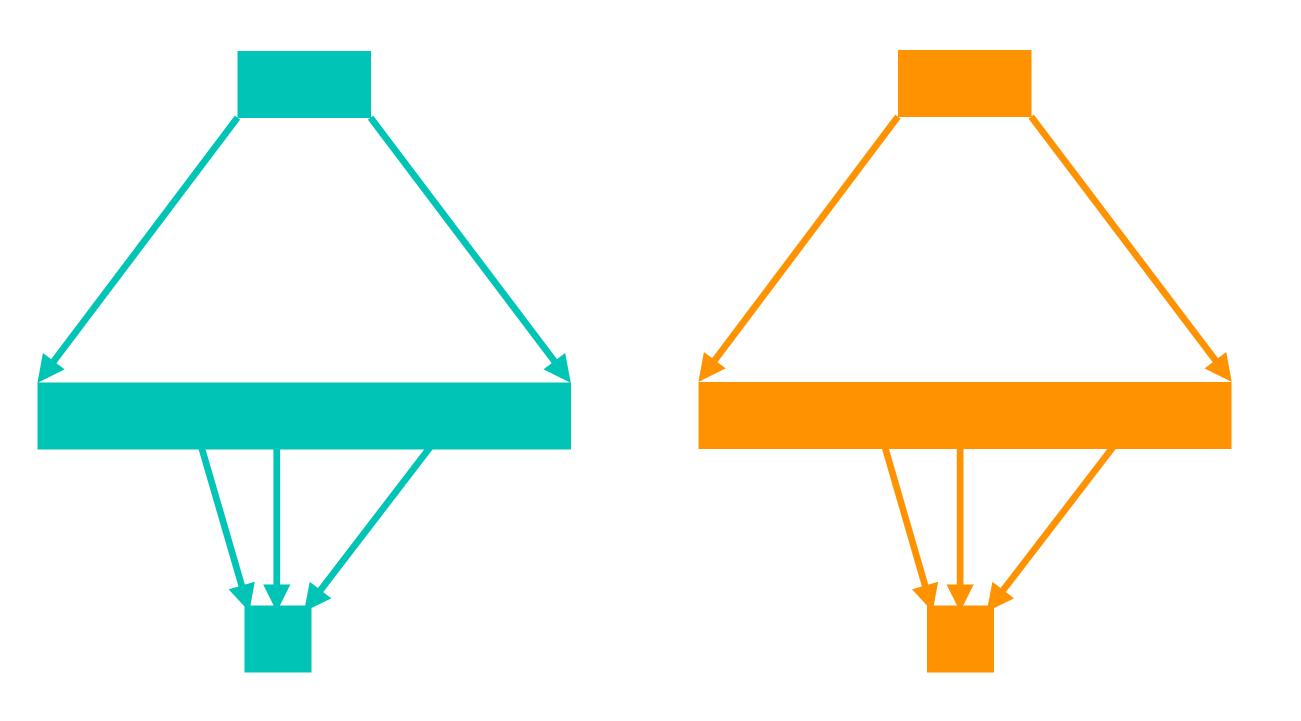
Offline Phase

Highly parallelizable

Cache friendly

New class of codes!

Offline-online PCG's from Expand-Accumulate Codes



Offline Phase

Highly parallelizable

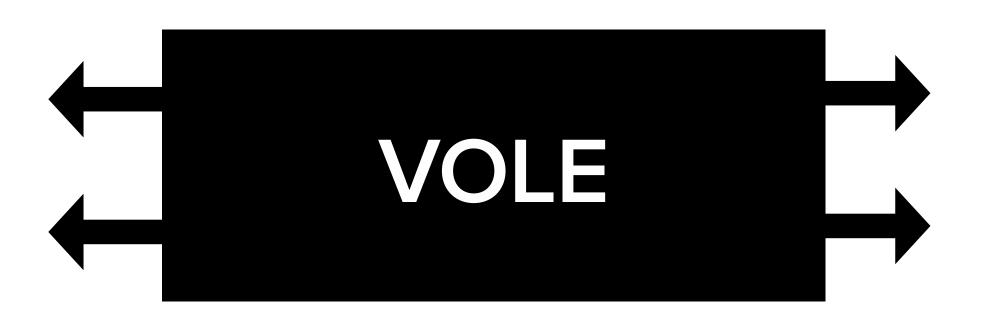
Cache friendly

Online Phase
Low output locality

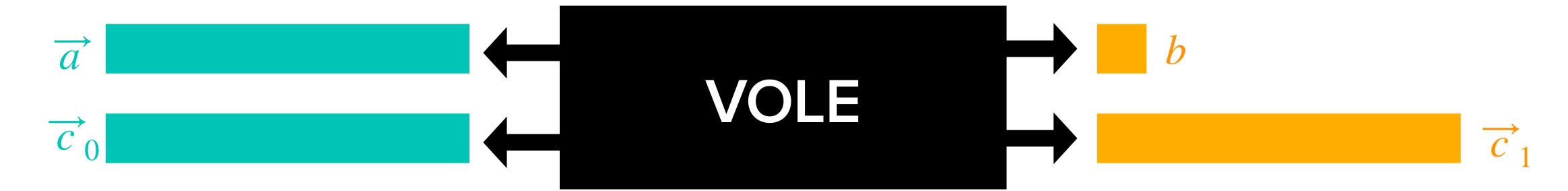
HOW TO CONSTRUCT EFFICIENT PCGS?

- Goal: construct PCG for vector OLE (VOLE) correlation
 - $(\overrightarrow{a}, \overrightarrow{c}_0) \in \mathbb{F}^N \times \mathbb{F}^N \text{ and } (b, \overrightarrow{c}_1) \in \mathbb{F} \times \mathbb{F}^N \text{ s.t. } b \cdot \overrightarrow{a} = \overrightarrow{c}_0 + \overrightarrow{c}_1$

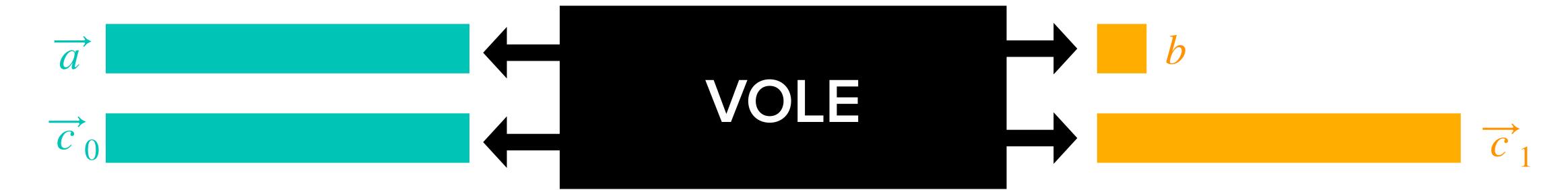
- Goal: construct PCG for vector OLE (VOLE) correlation
 - $(\overrightarrow{a}, \overrightarrow{c}_0) \in \mathbb{F}^N \times \mathbb{F}^N \text{ and } (b, \overrightarrow{c}_1) \in \mathbb{F} \times \mathbb{F}^N \text{ s.t. } b \cdot \overrightarrow{a} = \overrightarrow{c}_0 + \overrightarrow{c}_1$



- Goal: construct PCG for vector OLE (VOLE) correlation
 - $(\overrightarrow{a}, \overrightarrow{c}_0) \in \mathbb{F}^N \times \mathbb{F}^N \text{ and } (b, \overrightarrow{c}_1) \in \mathbb{F} \times \mathbb{F}^N \text{ s.t. } b \cdot \overrightarrow{a} = \overrightarrow{c}_0 + \overrightarrow{c}_1$

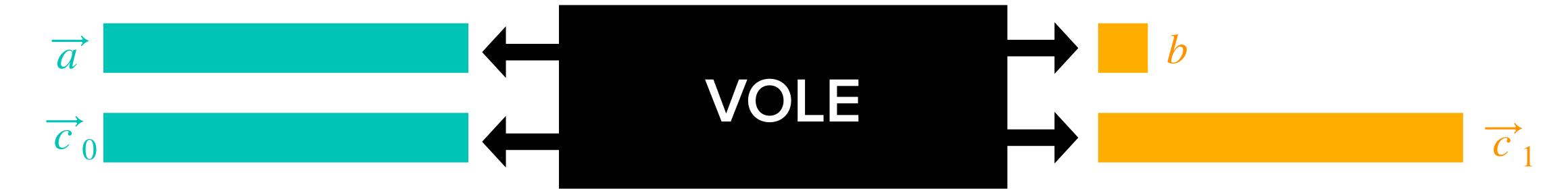


- Goal: construct PCG for vector OLE (VOLE) correlation
 - $(\overrightarrow{a}, \overrightarrow{c}_0) \in \mathbb{F}^N \times \mathbb{F}^N \text{ and } (b, \overrightarrow{c}_1) \in \mathbb{F} \times \mathbb{F}^N \text{ s.t. } b \cdot \overrightarrow{a} = \overrightarrow{c}_0 + \overrightarrow{c}_1$

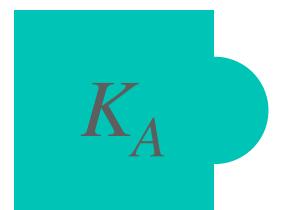


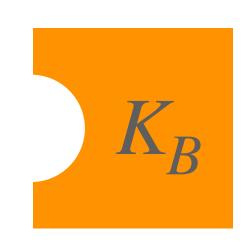
■ Consider function $F:[N] \to \mathbb{F}$ defined by $F(x) = b \cdot a_x$

- Goal: construct PCG for vector OLE (VOLE) correlation
 - $(\overrightarrow{a}, \overrightarrow{c}_0) \in \mathbb{F}^N \times \mathbb{F}^N \text{ and } (b, \overrightarrow{c}_1) \in \mathbb{F} \times \mathbb{F}^N \text{ s.t. } b \cdot \overrightarrow{a} = \overrightarrow{c}_0 + \overrightarrow{c}_1$



- Consider function $F:[N] \to \mathbb{F}$ defined by $F(x) = b \cdot a_x$
- lacksquare Idea: additively share F between Alice and Bob





■ Share function F s.t. \forall inputs x

- Goal: $|K_A|$, $|K_B|$ small (secret-sharing truth-table too expensive!)

- Goal: $|K_A|$, $|K_B|$ small (secret-sharing truth-table too expensive!)
- Efficient FSS for point functions [Gilboalshai'14], or small sums

$$F_y^{\alpha}(x) = \begin{cases} \alpha & \text{if } x = y \\ 0 & \text{else} \end{cases} \qquad F_{y_1, \dots, y_t}^{\alpha_1, \dots, \alpha_t}(x) = \begin{cases} \alpha_i & \text{if } x = y_i \\ 0 & \text{else} \end{cases} t \text{ small}$$

■ Share function F s.t. \forall inputs x

- Goal: $|K_A|$, $|K_B|$ small (secret-sharing truth-table too expensive!)
- Efficient FSS for point functions [Gilboalshai'14], or small sums

$$F_y^{\alpha}(x) = \begin{cases} \alpha & \text{if } x = y \\ 0 & \text{else} \end{cases} \qquad F_{y_1, \dots, y_t}^{\alpha_1, \dots, \alpha_t}(x) = \begin{cases} \alpha_i & \text{if } x = y_i \\ 0 & \text{else} \end{cases} t \text{ small}$$

- Can efficiently share $F(x) = b \cdot a_x$ if \overrightarrow{a} is sparse

[BoyleCouteauGilboalshai'18]

[BoyleCouteauGilboalshai'18]

SPARSE VOLE

$$b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$$
 [BoyleCouteauGilboalshai'18]

$$b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$$

 $b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$ [BoyleCouteauGilboalshai'18]

Hlinear compressing map

$$b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$$

 $b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$ [BoyleCouteauGilboalshai'18]

$$b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$$

 $b \cdot \overrightarrow{e} = \overrightarrow{c}_0' + \overrightarrow{c}_1'$ [BoyleCouteauGilboalshai'18]



SPARSE VOLE

[BoyleCouteauGilboalshai'18]

Hlinear compressing map

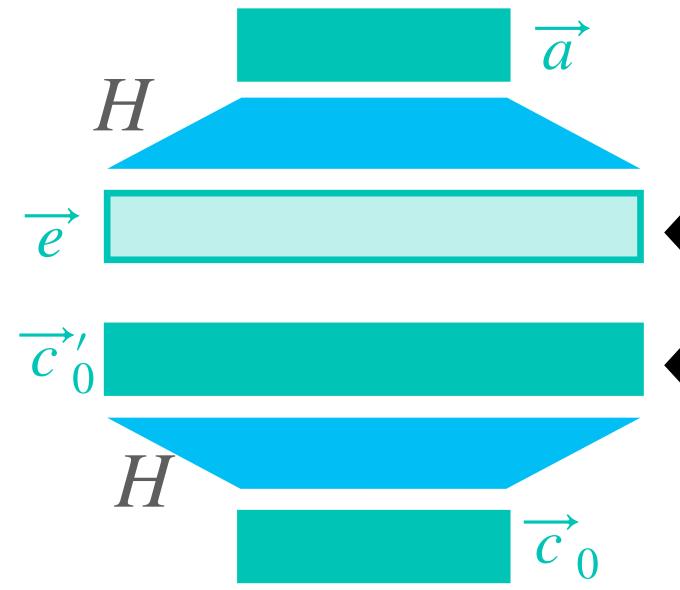
SPARSE VILE

[BoyleCouteauGilboalshai'18]

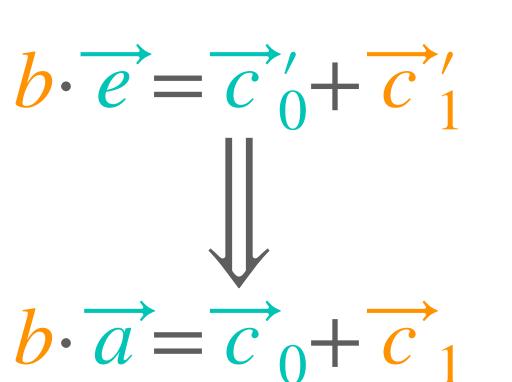
Hlinear compressing map

How to choose H? Need $\overrightarrow{a} \approx_c$ Unif

SPARSE VOLE



Need $\overrightarrow{a} \approx_c$ Unif



[BoyleCouteauGilboalshai'18]

Hlinear compressing map

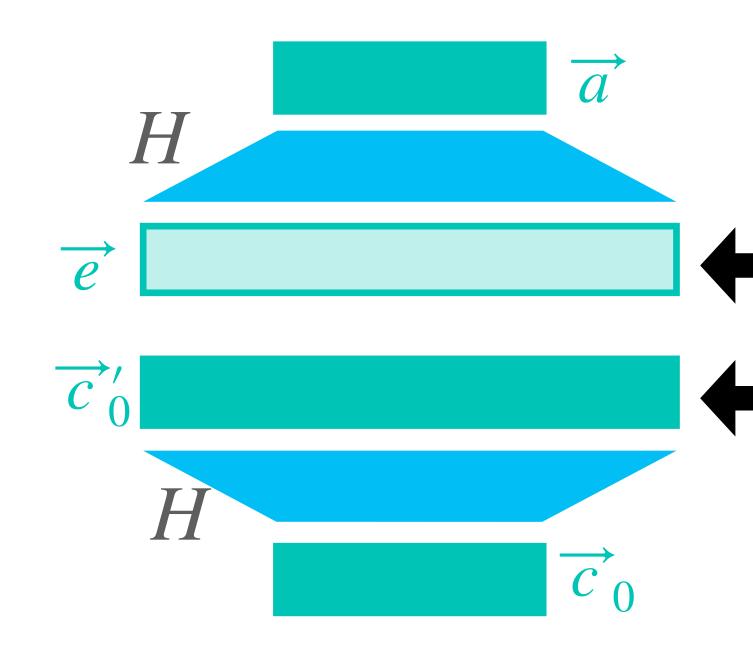
 $\overrightarrow{C}_{1}^{\prime}$

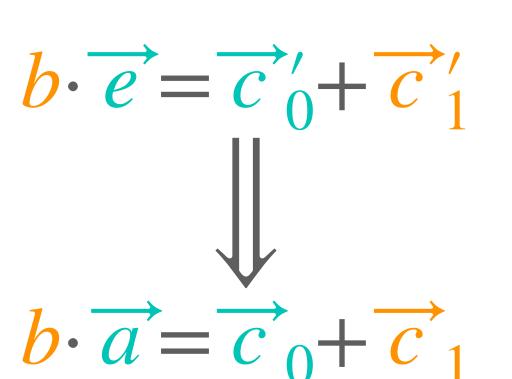
sparse VOLE

LPN: H uniformly

random works! How to choose H?

SPARSE VOLE





[BoyleCouteauGilboalshai'18]

H linear compressing map

 $\overrightarrow{C}_{1}^{\prime}$

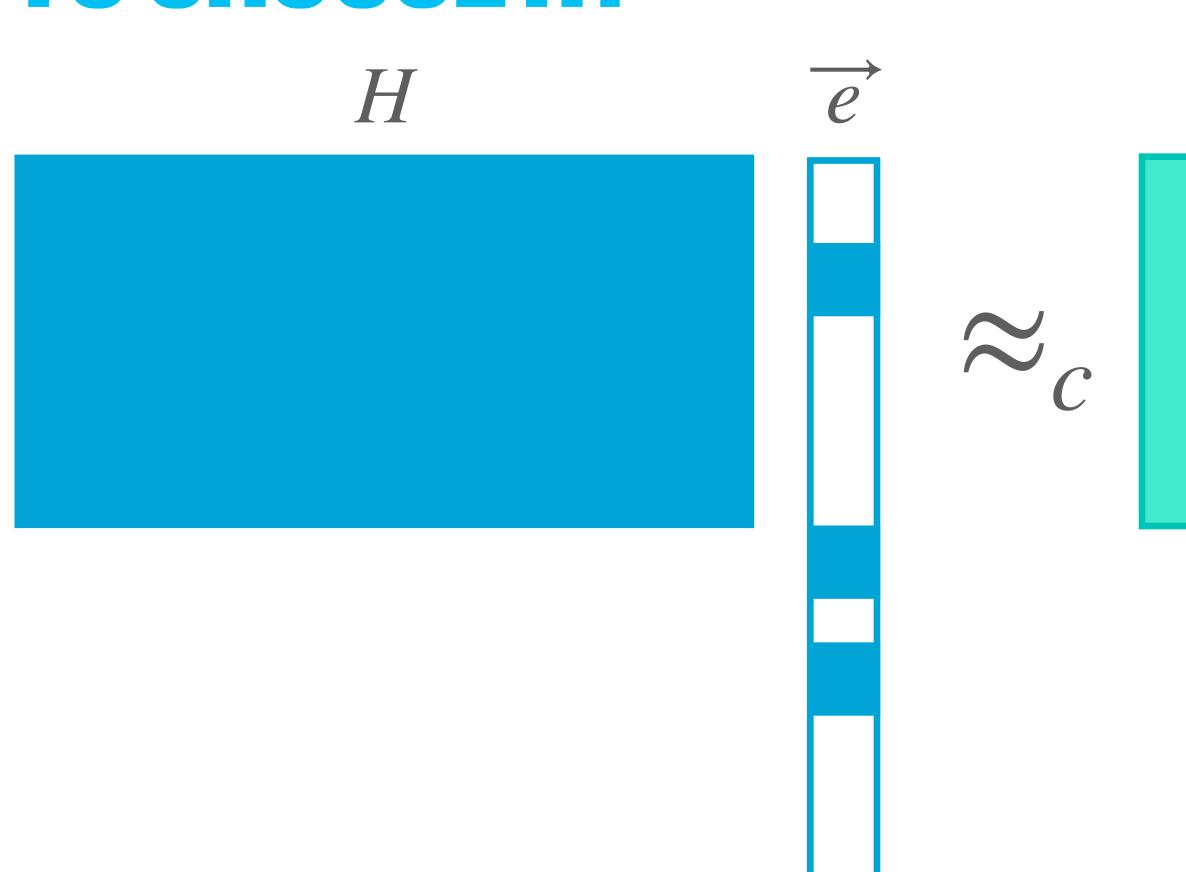
sparse VOLE

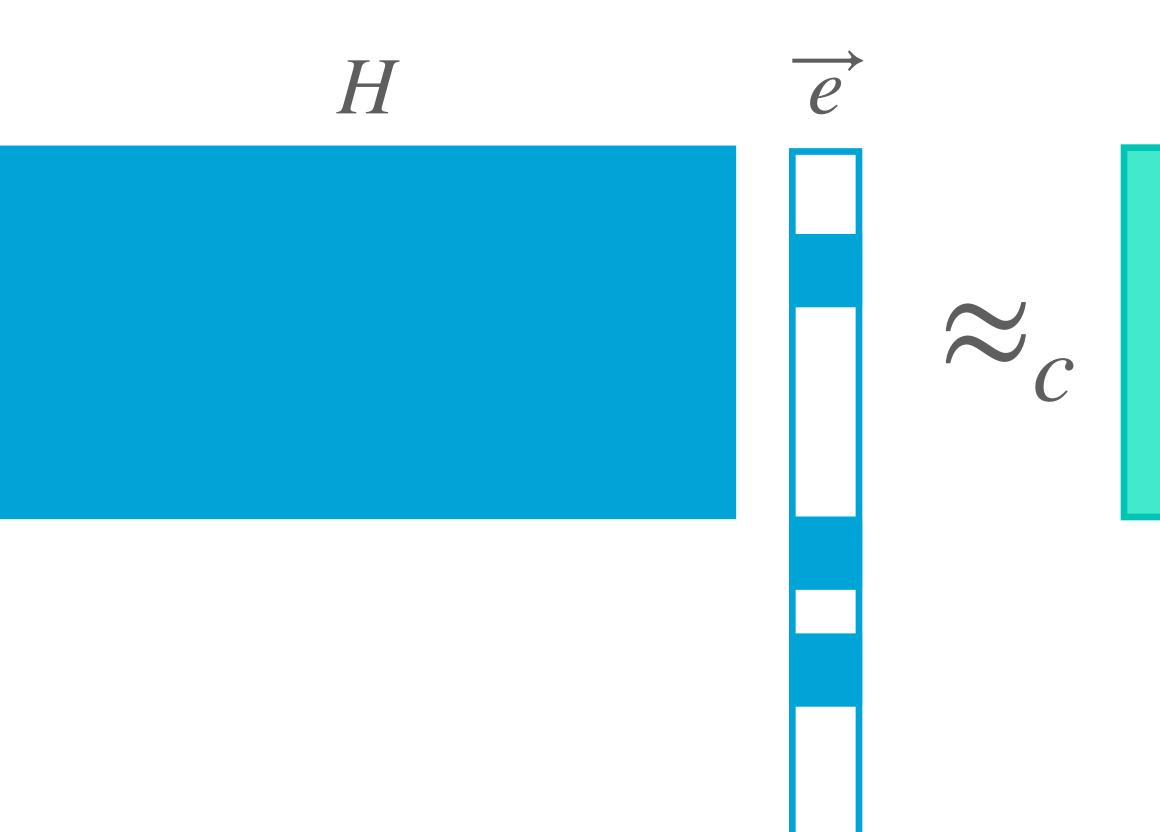
LPN: *H* uniformly random works!

Better efficiency?

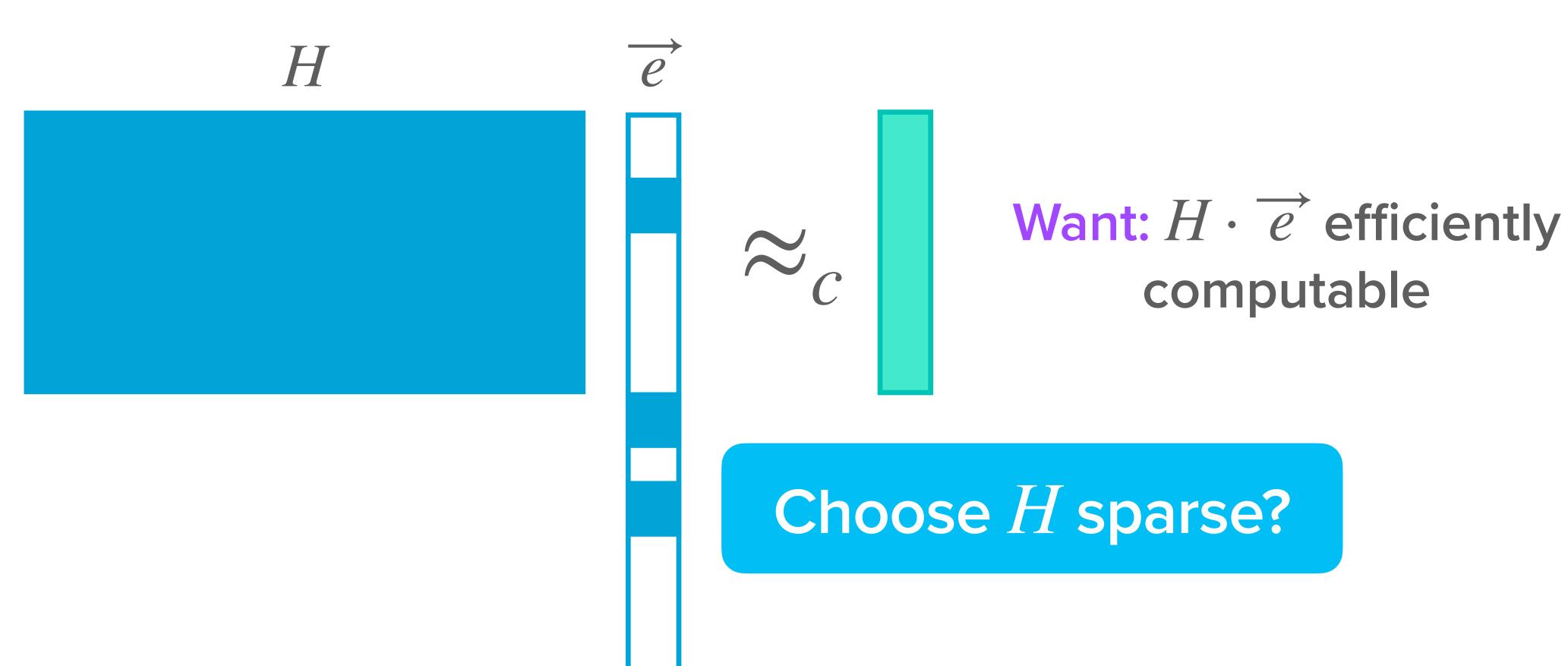
How to choose H?
Need $\overrightarrow{a} \approx_c$ Unif

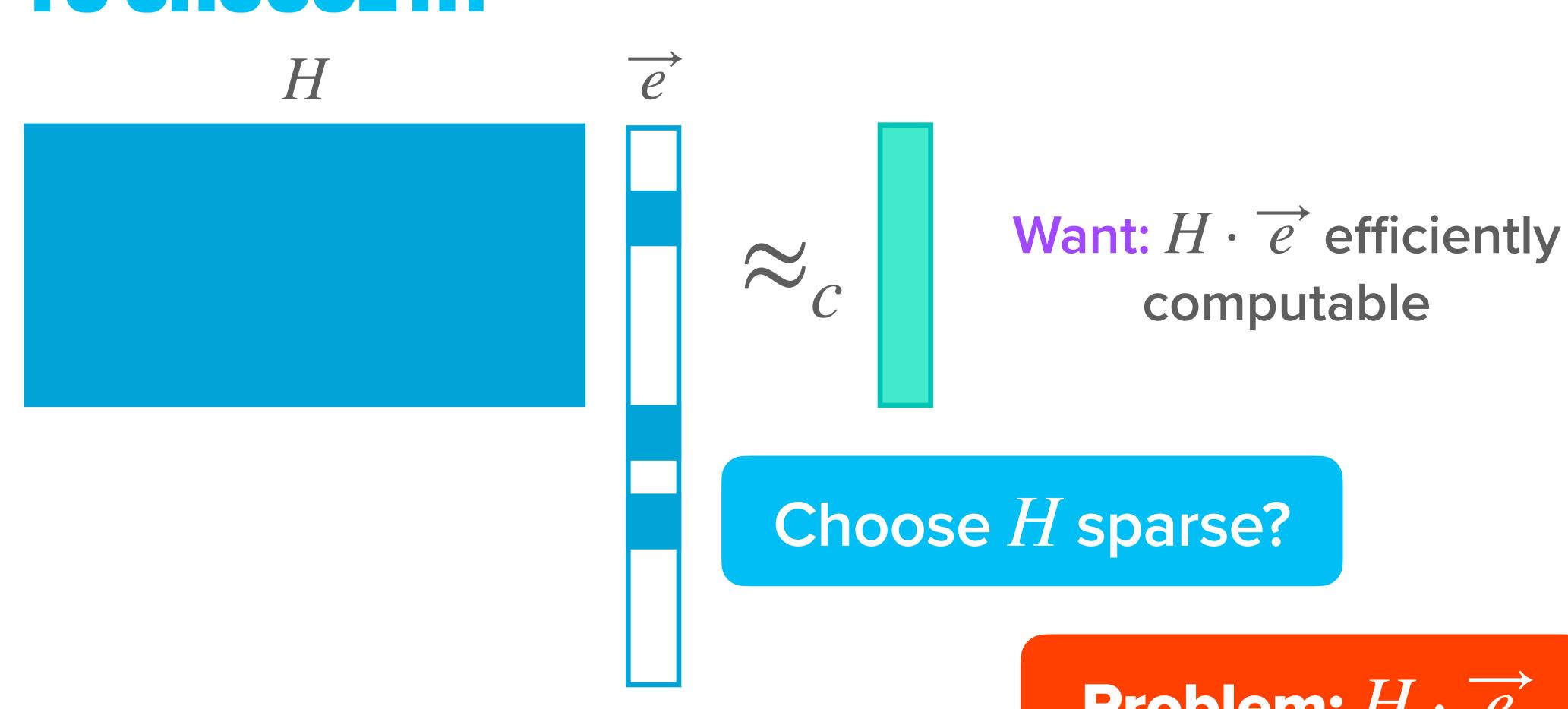
[BoyleCouteauGilboalshaiKohlScholl'19, '20, CouteauRindalRaghuraman'21]





Want: $H \cdot \overrightarrow{e}$ efficiently computable

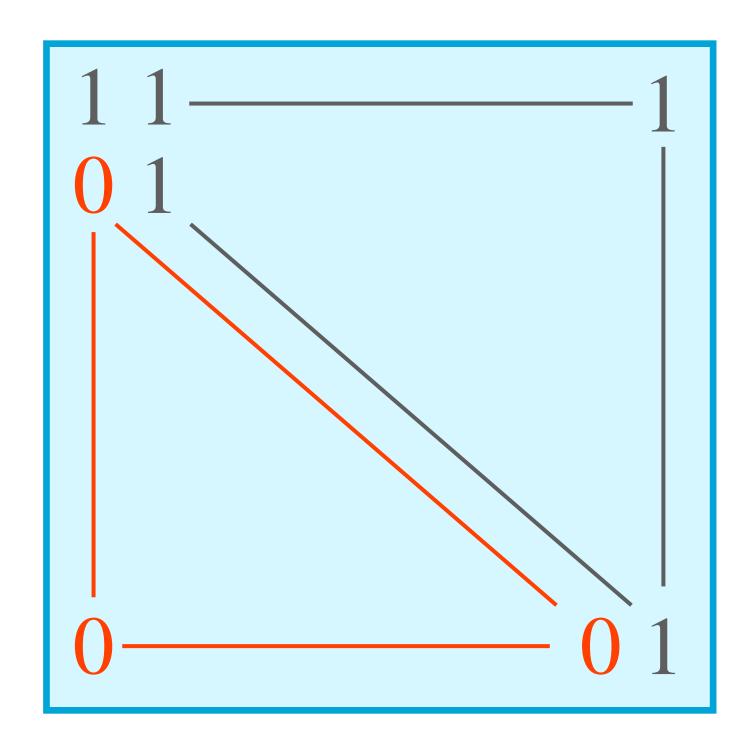


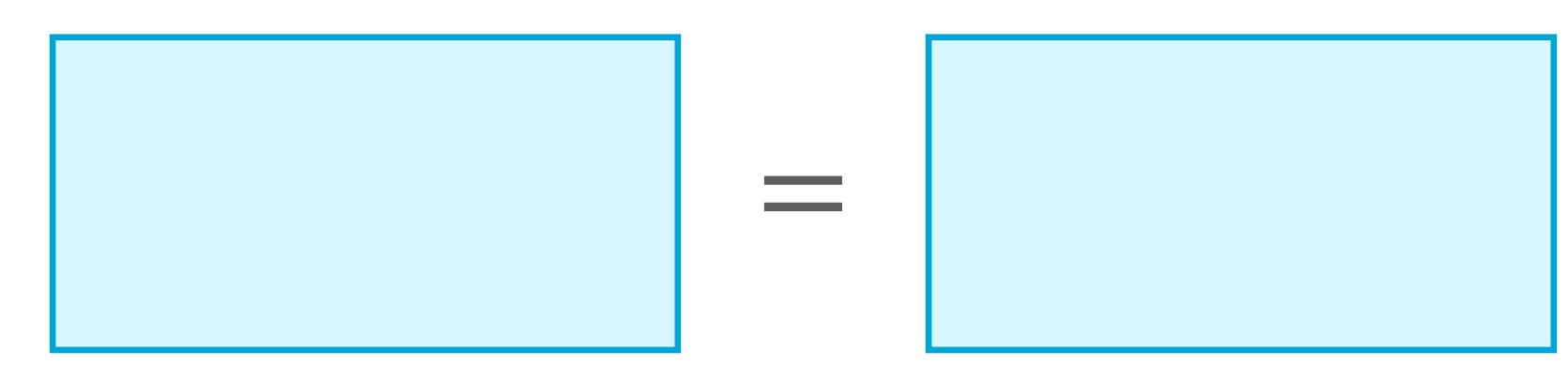


Problem: $H \cdot e$ also sparse!

sparse matrix (sample randomly)

sparse matrix (sample randomly)

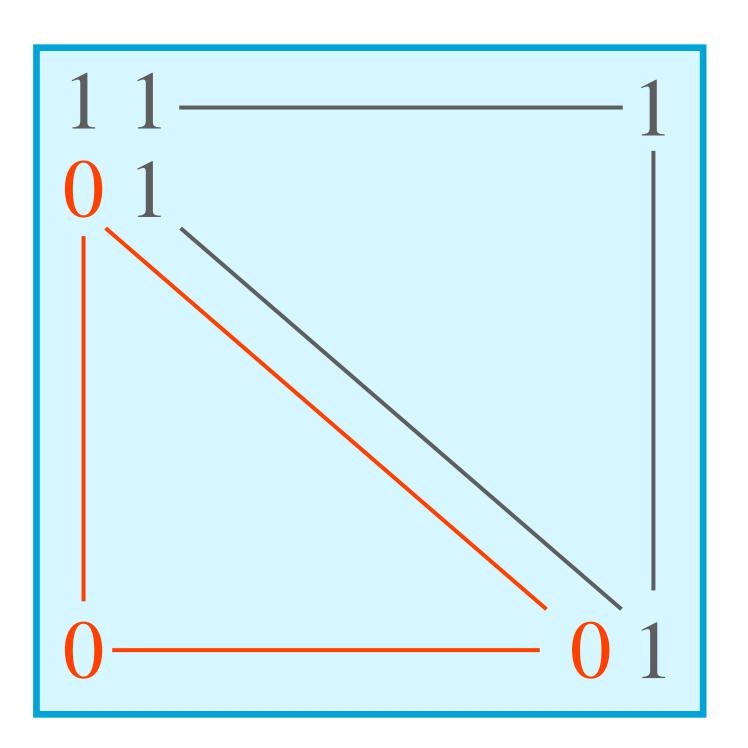


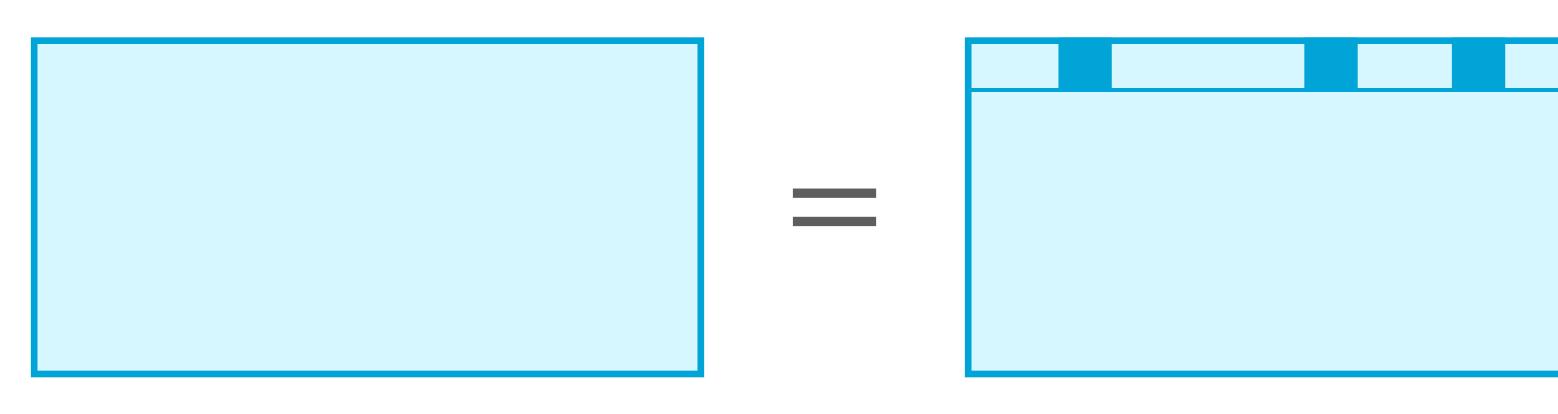


EA generator matrix

H

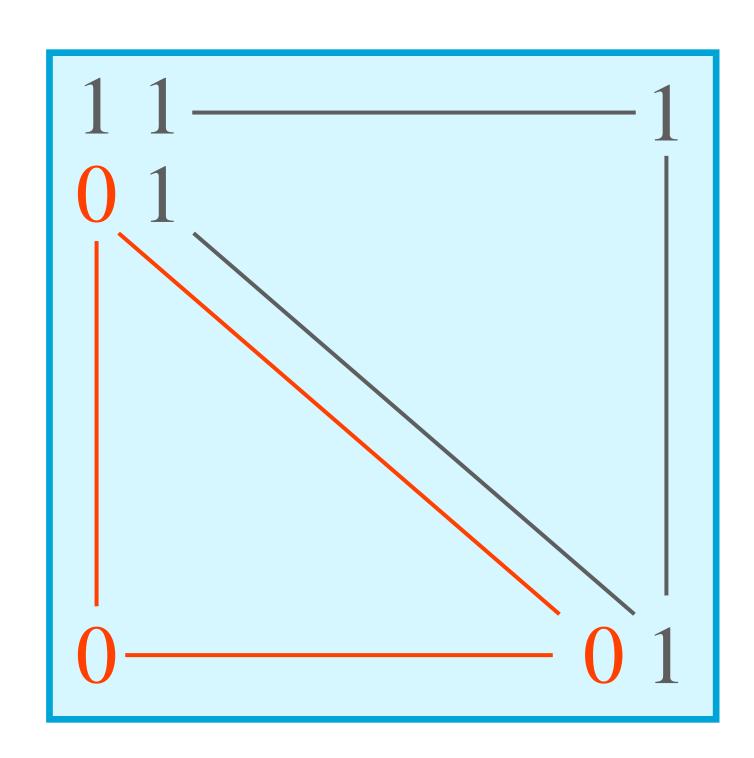
sparse matrix (sample randomly)





EA generator matrix *H*

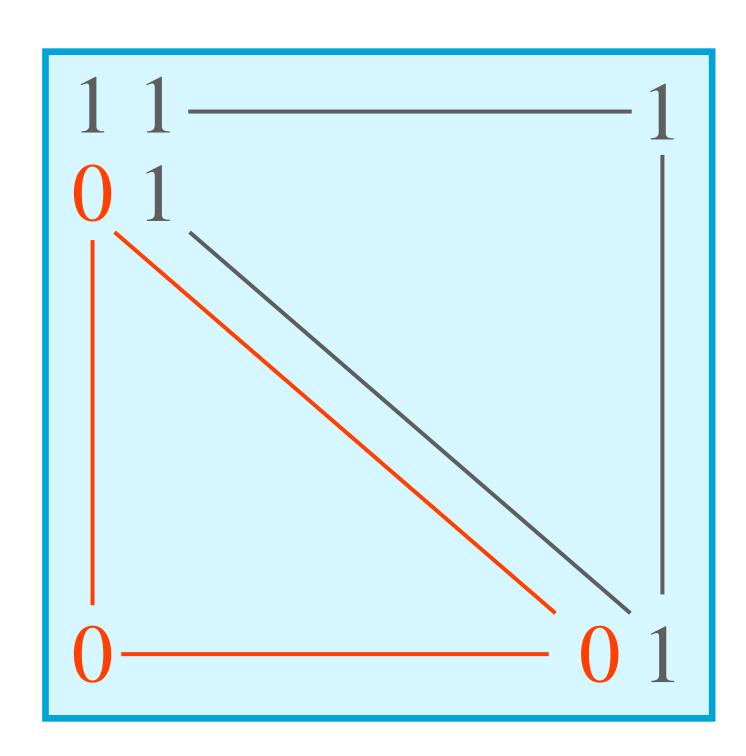
sparse matrix (sample randomly)



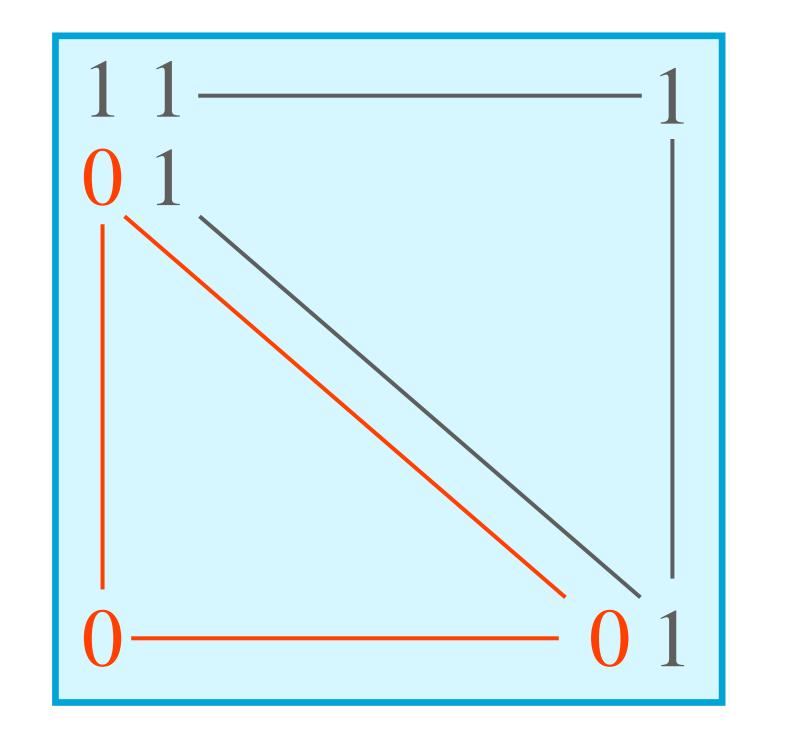
EA generator matrix

H

sparse matrix (sample randomly)



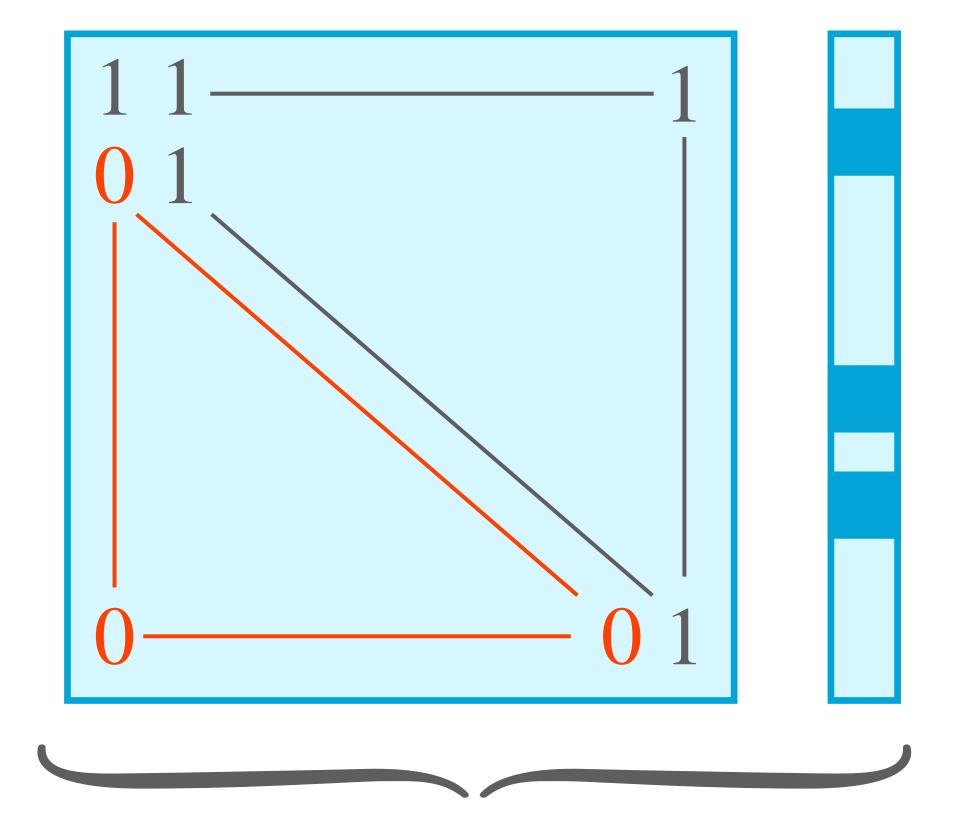
sparse
sparse
sparse
sparse
sparse





sparse
sparse
sparse
sparse

sparse



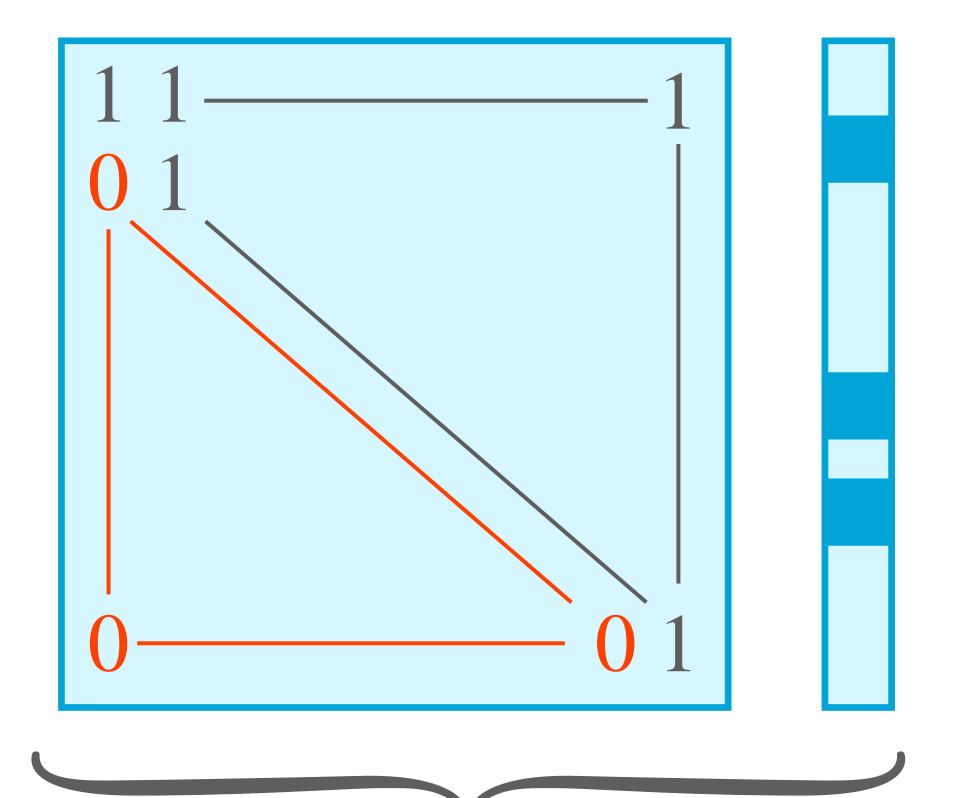
sparse

sparse

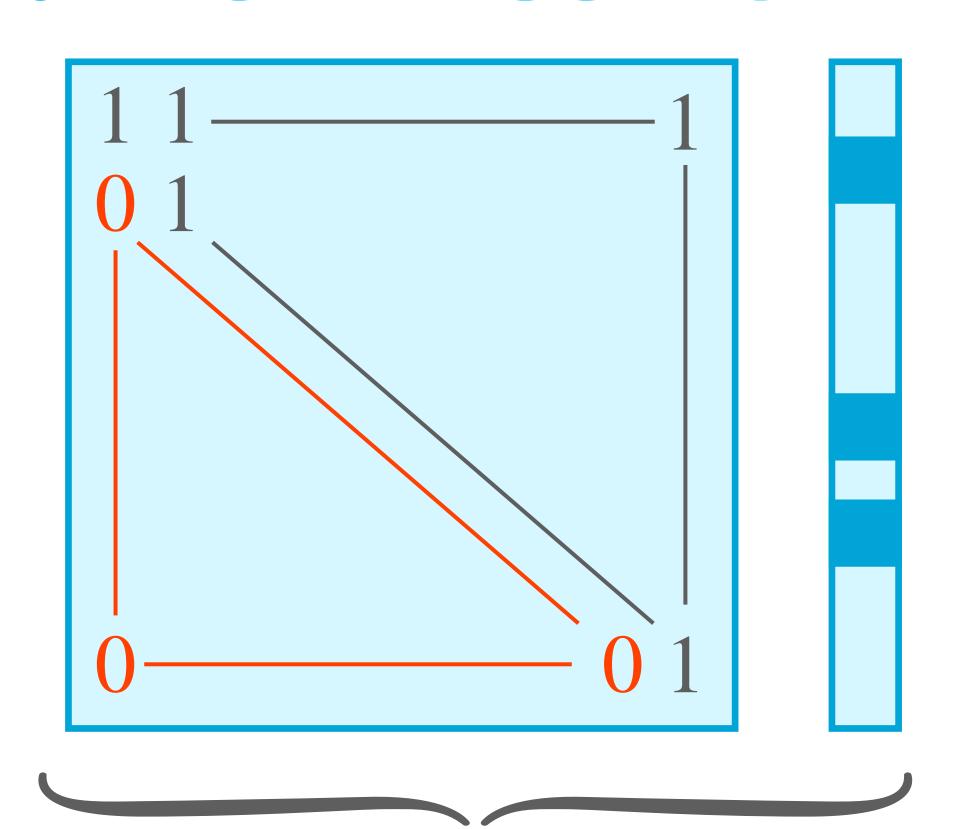
sparse

sparse

sparse



sparse
sparse
sparse
sparse
sparse



Offline: Parallelizable & cache-friendly

Online: Low locality

SEGURITY?

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:

Reduce to known hard problem (LPN)

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:
Reduce to known
hard problem (LPN)

Alternatively:
Rule out known
attacks

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:
Reduce to known
hard problem (LPN)

Alternatively:
Rule out known
attacks

Almost all* attacks boil down to following strategy:

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:
Reduce to known
hard problem (LPN)

Alternatively:
Rule out known
attacks

- Almost all* attacks boil down to following strategy:
 - Look at H and find vector $\overrightarrow{x}^{\top}$ s.t. $\overrightarrow{x}^{\top}H$ is sparse

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:

Reduce to known hard problem (LPN)

Alternatively:

Rule out known attacks

- Almost all* attacks boil down to following strategy:
 - Look at H and find vector $\overrightarrow{x}^{\top}$ s.t. $\overrightarrow{x}^{\top}H$ is sparse
 - Compute $\overrightarrow{x}^{\top}\overrightarrow{y}$, where \overrightarrow{y} is (i) $H \cdot \overrightarrow{e}$ or (ii) unif. rand.

- Why should we believe $H \cdot \overrightarrow{e}$ pseudorandom?

Ideally:

Reduce to known hard problem (LPN)

Alternatively:

Rule out known attacks

- Almost all* attacks boil down to following strategy:
 - Look at H and find vector $\overrightarrow{x}^{\top}$ s.t. $\overrightarrow{x}^{\top}H$ is sparse
 - Compute $\overrightarrow{x}^{\top}\overrightarrow{y}$, where \overrightarrow{y} is (i) $H \cdot \overrightarrow{e}$ or (ii) unif. rand.

Linear tests framework

Resistance to linear tests

Resistance to linear tests

No low-weight (non-zero) vector in code $\{\overrightarrow{x}^T H\}$ \iff good min. dist.

SEGURITY

Resistance to linear tests

This work: rule out linear attacks

Resistance to linear tests

No low-weight (non-zero) vector in code $\{\overrightarrow{x}^T H\}$ \iff good min. dist.

This work: rule out linear attacks

For i.i.d. Bernoulli matrix with $p = O(\log N/N)$, get minimum distance $\Omega(N)$ with probability $1 - 1/N^{\Omega(1)}$

SEGURITY

Resistance to linear tests

No low-weight (non-zero) vector in code $\{\overrightarrow{x}^T H\}$ \iff good min. dist.

This work: rule out linear attacks

– For i.i.d. Bernoulli matrix with $p=O(\log^2 N/N)$, get minimum distance $\Omega(N)$ with probability $1-1/N^{\Omega(1)}$ $1-1/N^{\omega(1)}$

CONCRETE EFFICIENCY

CONCRETE EFFICIENCY

Offline Phase

Estimated \sim 100ms to generate Y_{σ} for 10 million OTs Factor $\sim k$ speedup if k processors available

CONCRETE EFFICIENCY

Offline Phase

Estimated ~100ms to generate Y_{σ} for 10 million OTs Factor ~ k speedup if k processors available

Online Phase

Offline Phase

Estimated \sim 100ms to generate Y_{σ} for 10 million OTs Factor $\sim k$ speedup if k processors available

Online Phase

Theoretically

40 lookups + 1 hash per OT

Offline Phase

Estimated ~100ms to generate Y_{σ} for 10 million OTs

Factor $\sim k$ speedup if k processors available

Online Phase

Theoretically

40 lookups + 1 hash per OT

Experimentally

7 lookups + 1 hash per OT

Offline Phase

Estimated \sim 100ms to generate Y_{σ} for 10 million OTs

Factor $\sim k$ speedup if k processors available

Online Phase

Theoretically

40 lookups + 1 hash per OT

Experimentally

7 lookups + 1 hash per OT

Good pseudodistance suffices

Offline Phase

Estimated ~100ms to generate Y_{σ} for 10 million OTs

Factor $\sim k$ speedup if k processors available

Online Phase

Theoretically

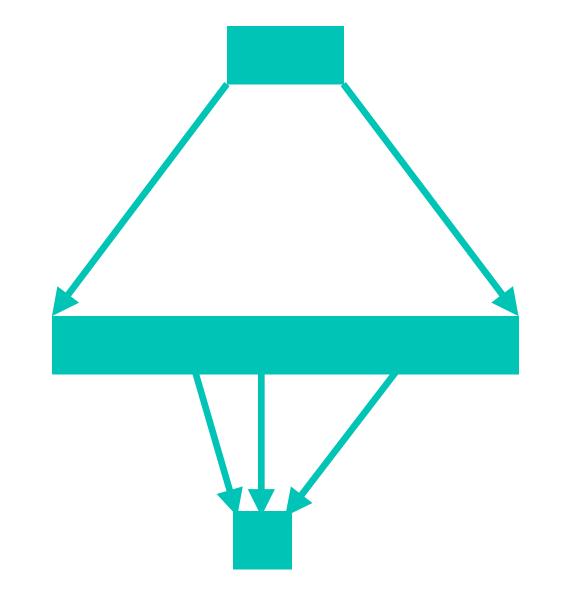
40 lookups + 1 hash per OT

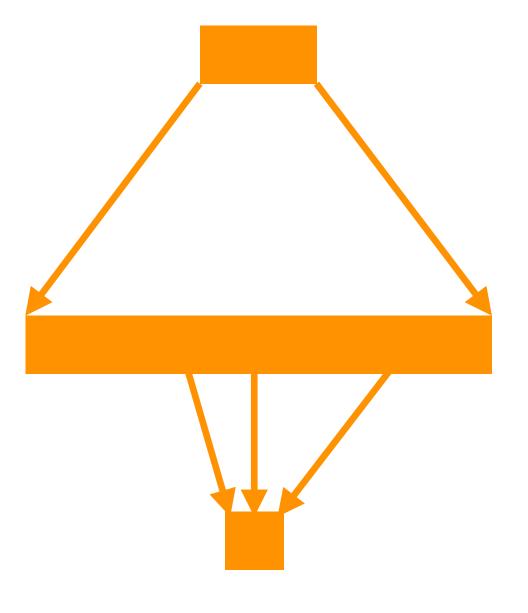
Experimentally

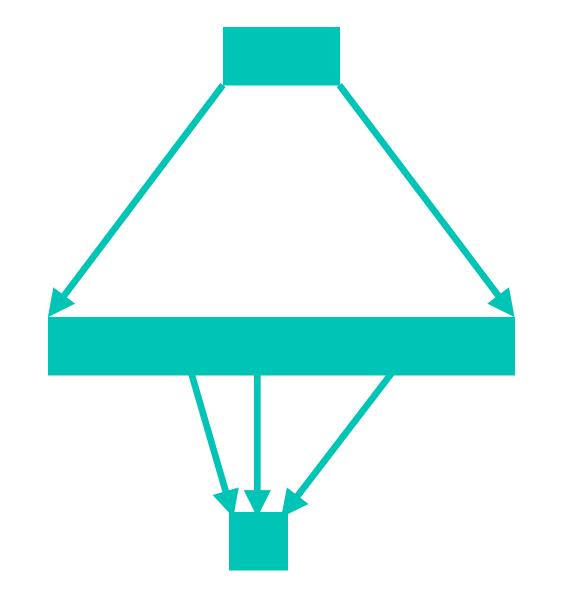
7 lookups + 1 hash per OT

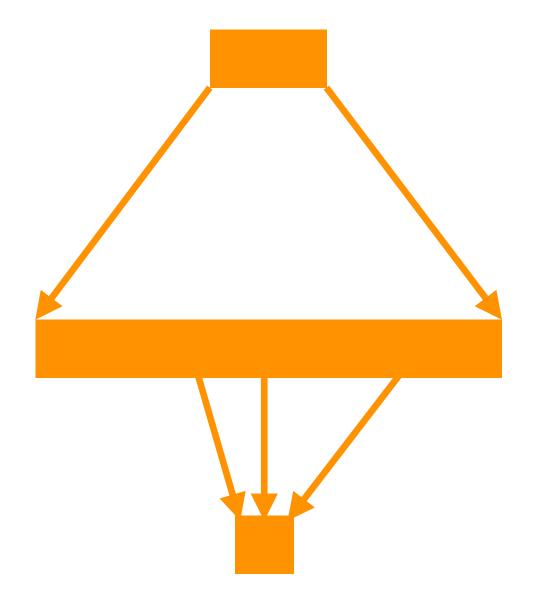
Good pseudodistance suffices Needs further cryptanalysis!

REGAP

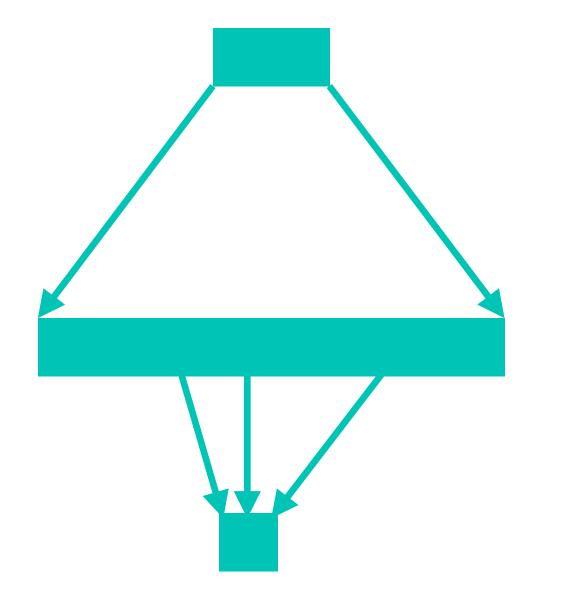


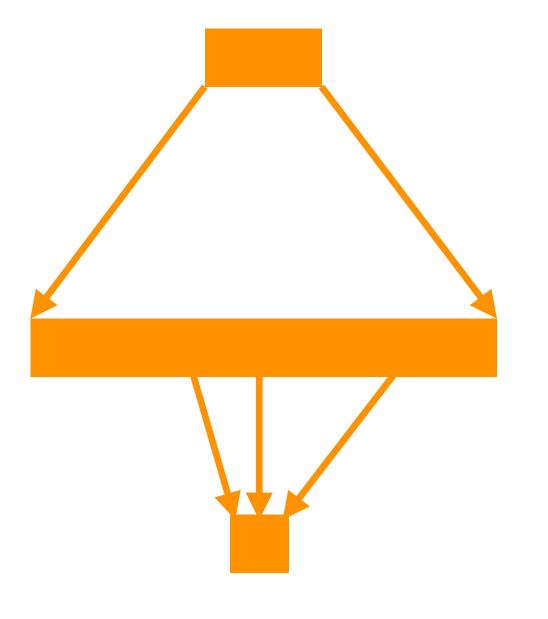






Offline Phase Highly parallelizable Cache friendly



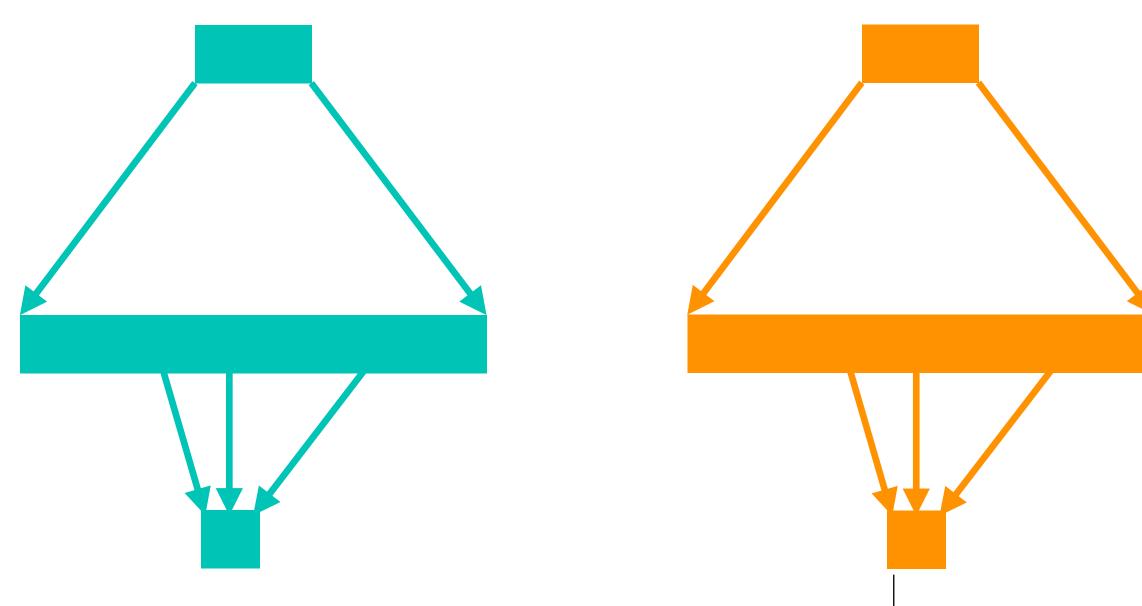


Offline Phase

Highly parallelizable

Cache friendly

Online Phase



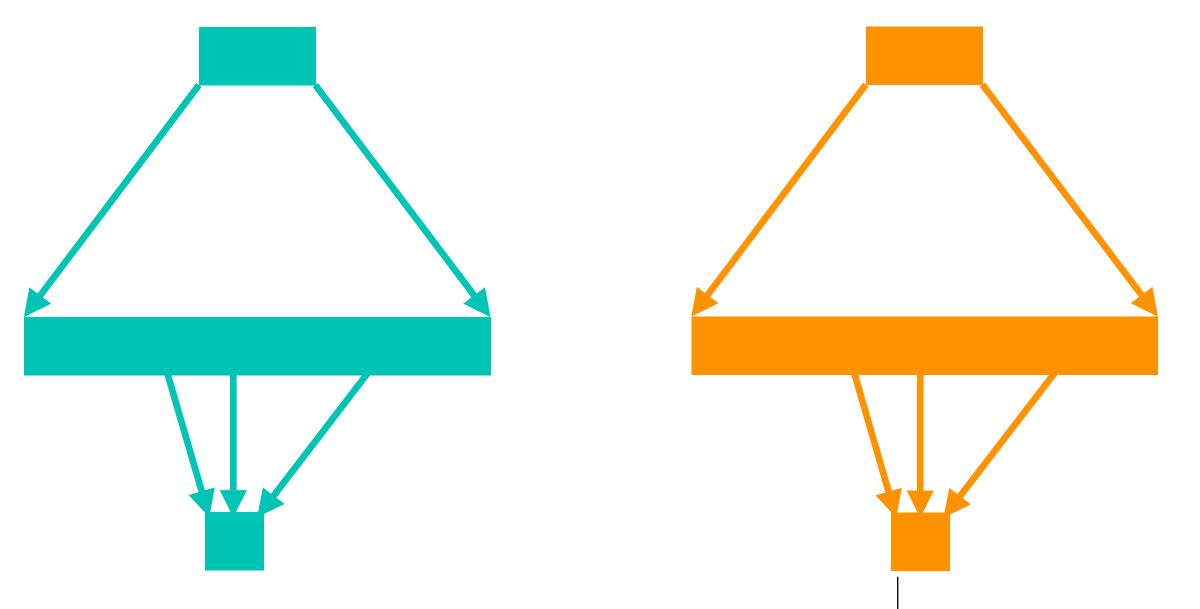
Offline Phase

Highly parallelizable

Cache friendly

Online Phase

	Cache-friendly?	Parallelizable?
Silver [CouteauRindalRaghuaman'21]		
RAA Codes		
This work		



Offline Phase

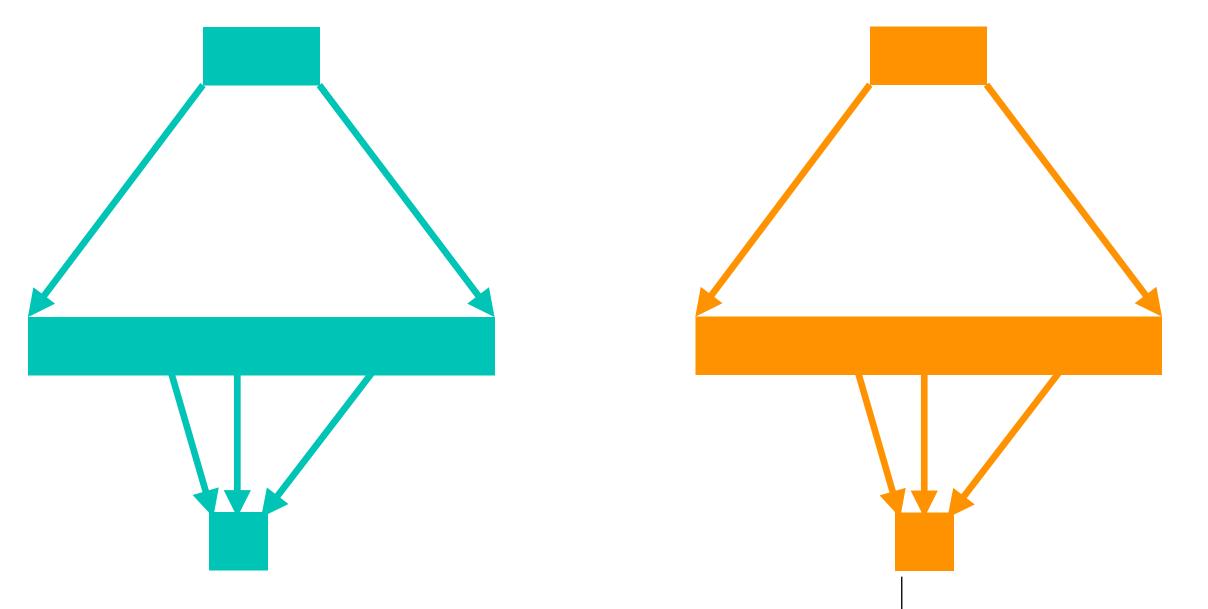
Highly parallelizable

Cache friendly

Online Phase

	Cache-friendly?	Parallelizable?
Silver [CouteauRindalRaghuaman'21]		
RAA Codes		
This work		

REGAP



Offline Phase

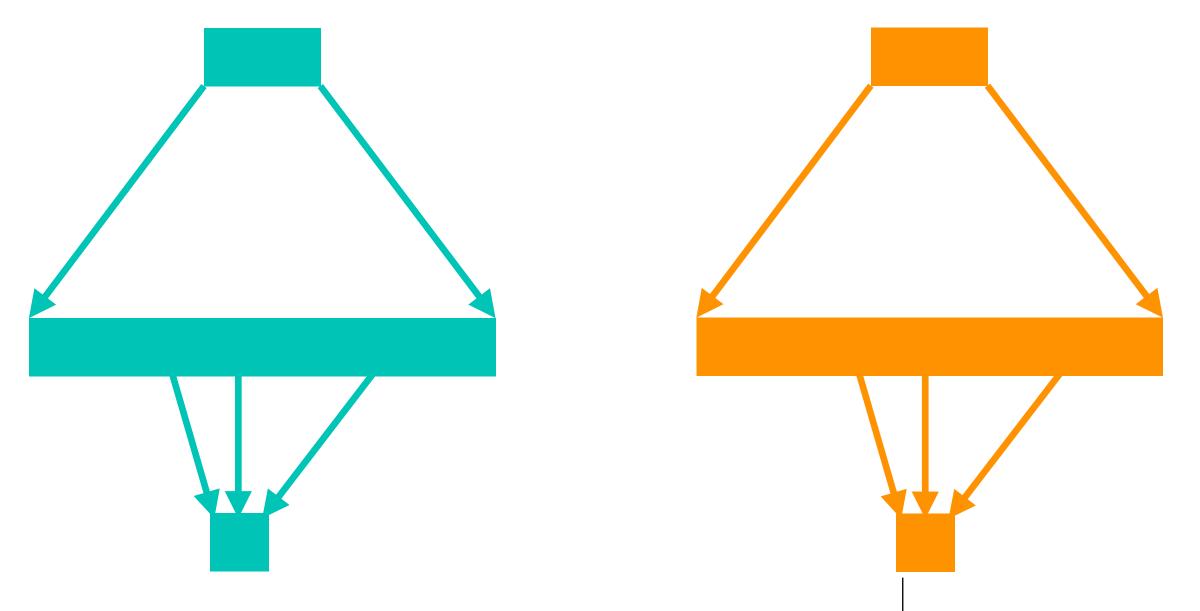
Highly parallelizable

Cache friendly

Online Phase

	Cache-friendly?	Parallelizable?
Silver [CouteauRindalRaghuaman'21]		
RAA Codes		
This work		

REGAP



Offline Phase

Highly parallelizable

Cache friendly

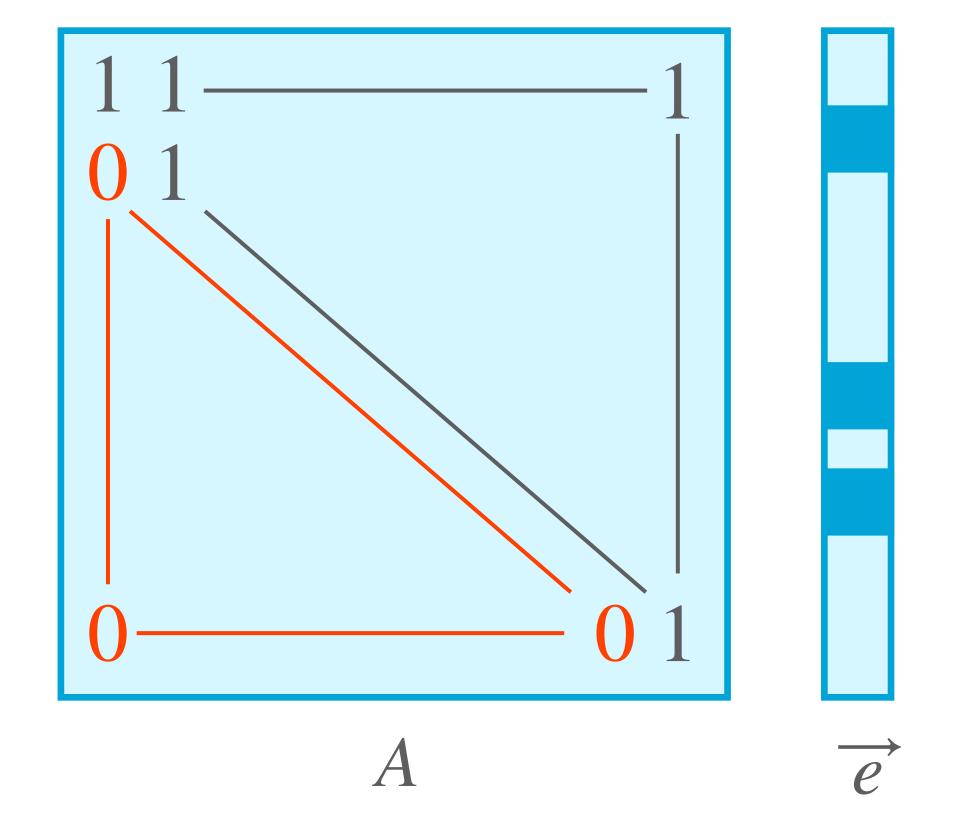
Online Phase

	Cache-friendly?	Parallelizable?
Silver [CouteauRindalRaghuaman'21]		
RAA Codes		
This work		

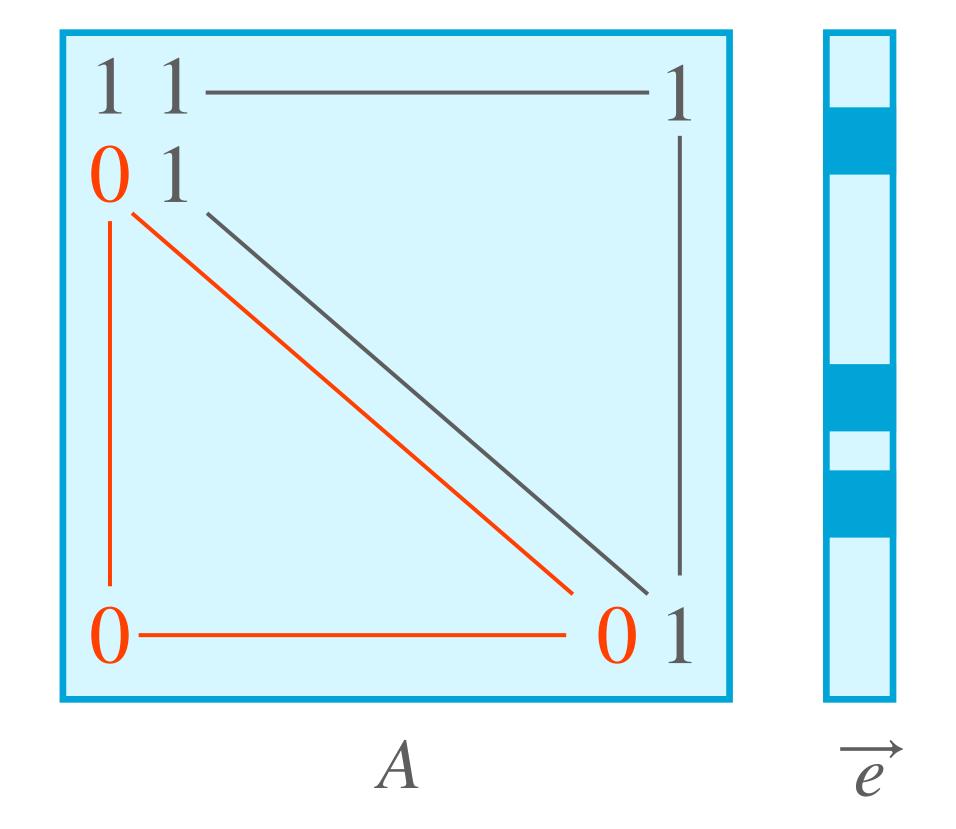
FURTHER RESULTS & RECAP

- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!

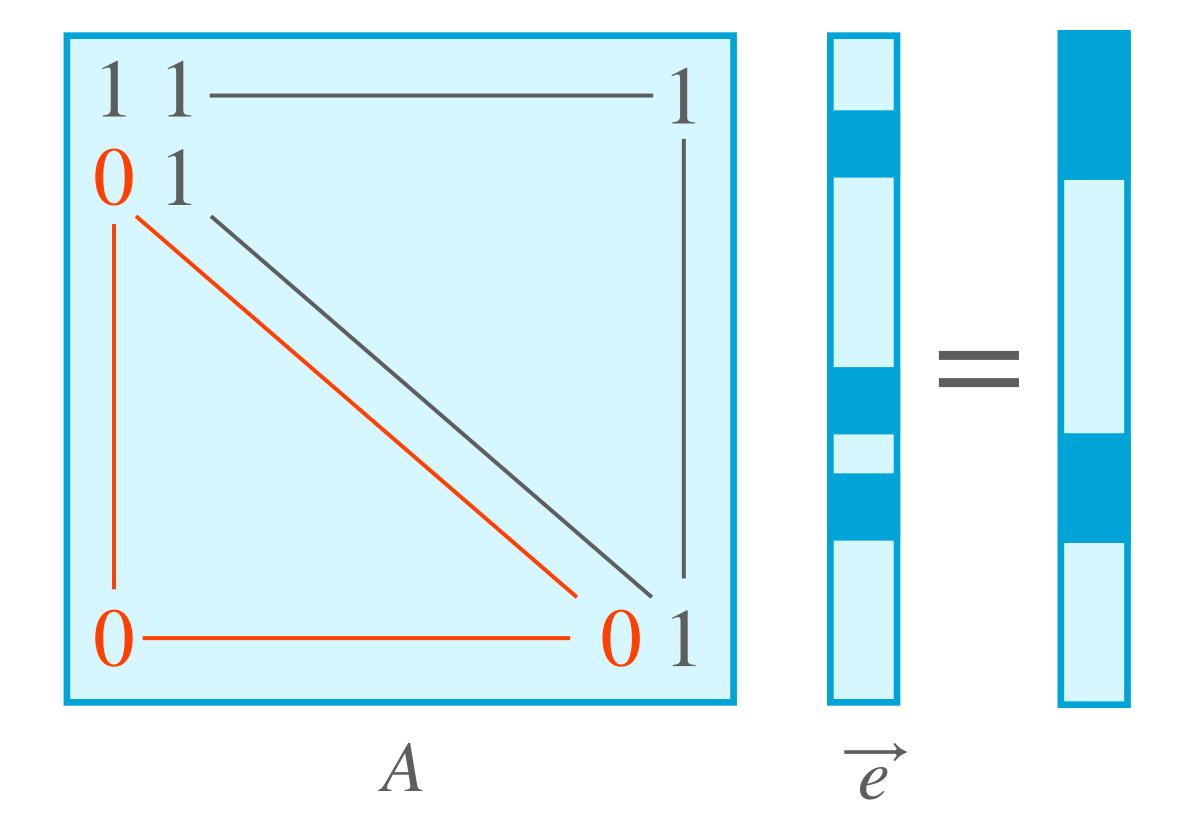
- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!



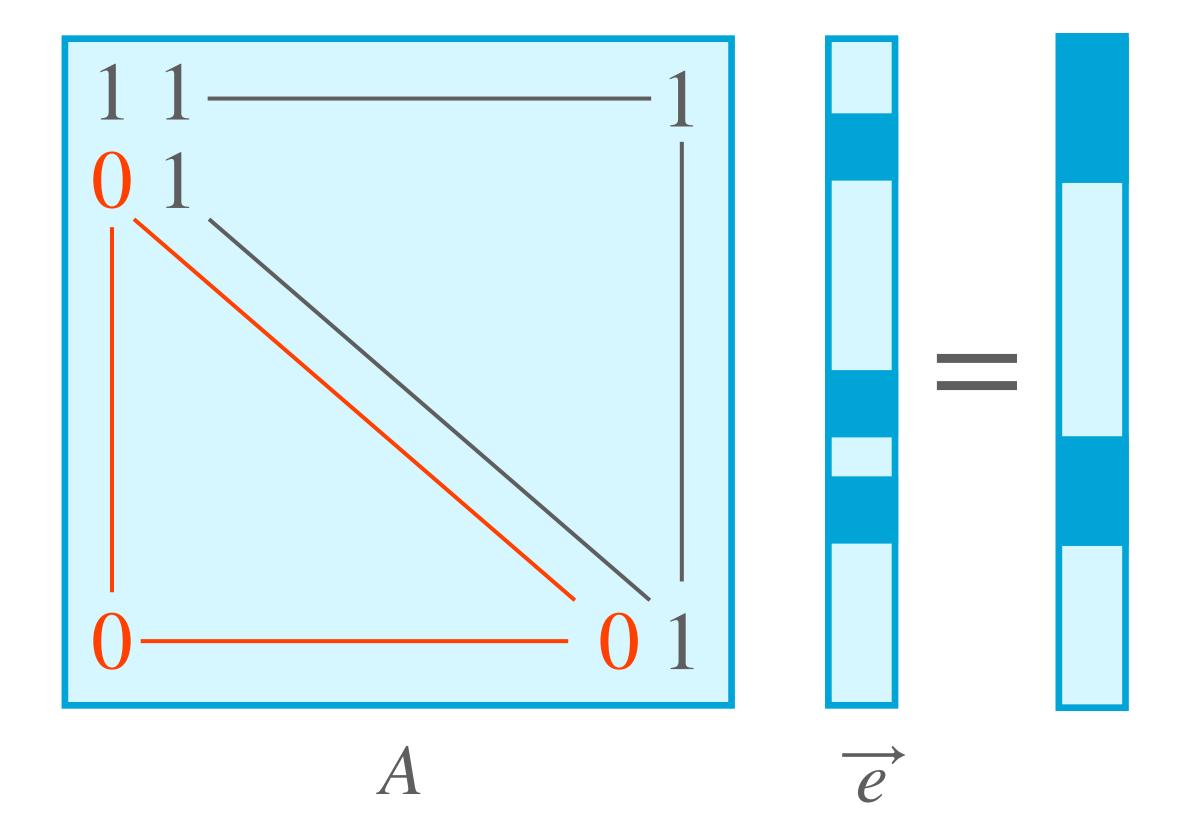
- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$



- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$

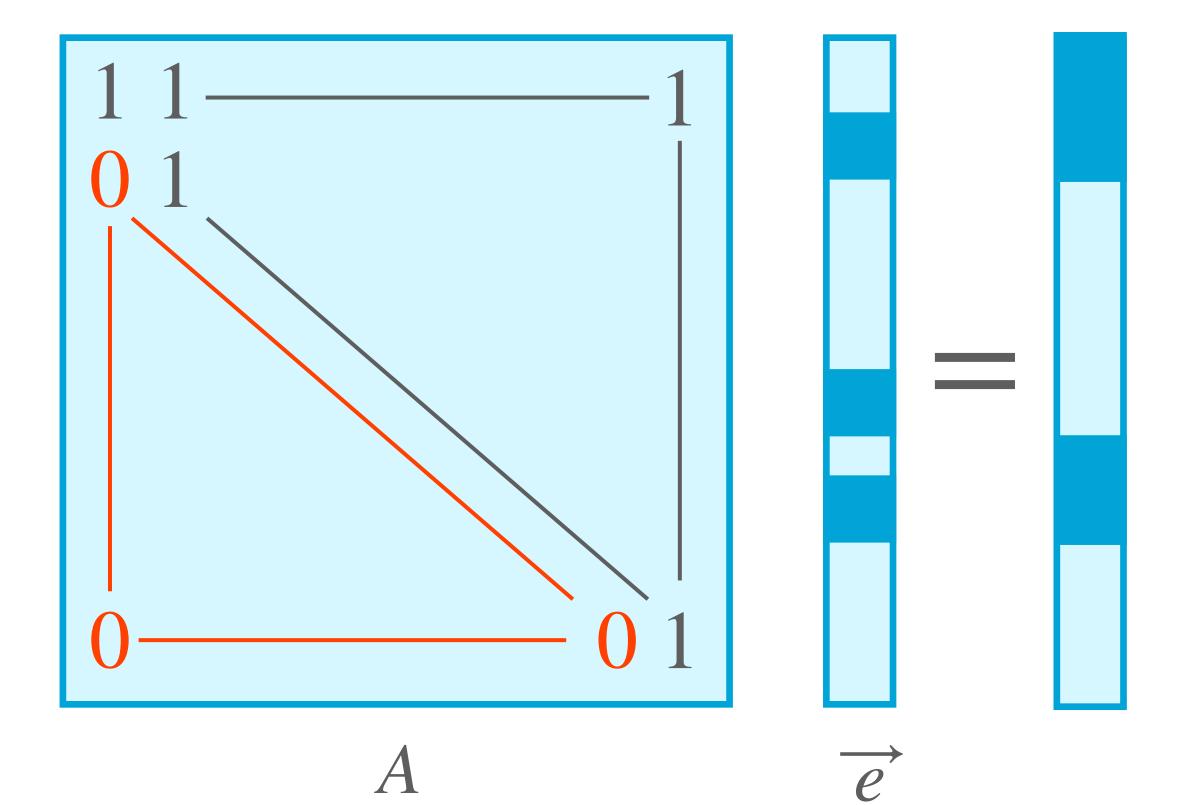


- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$



Corresponds to (small sum of) comparison functions

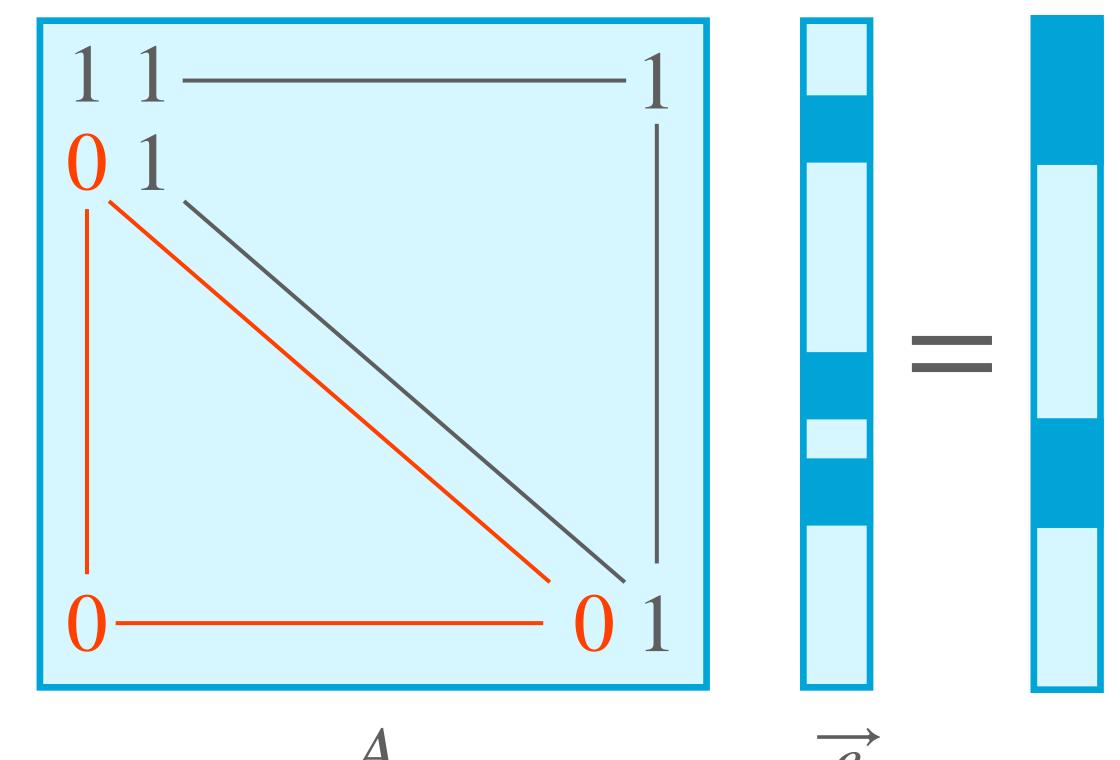
- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$



Corresponds to (small sum of) comparison functions

$$F_y^{\alpha}(x) = \alpha \cdot 1\{x \le y\} = \begin{cases} \alpha & x \le y \\ 0 & x > y \end{cases}$$

- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$



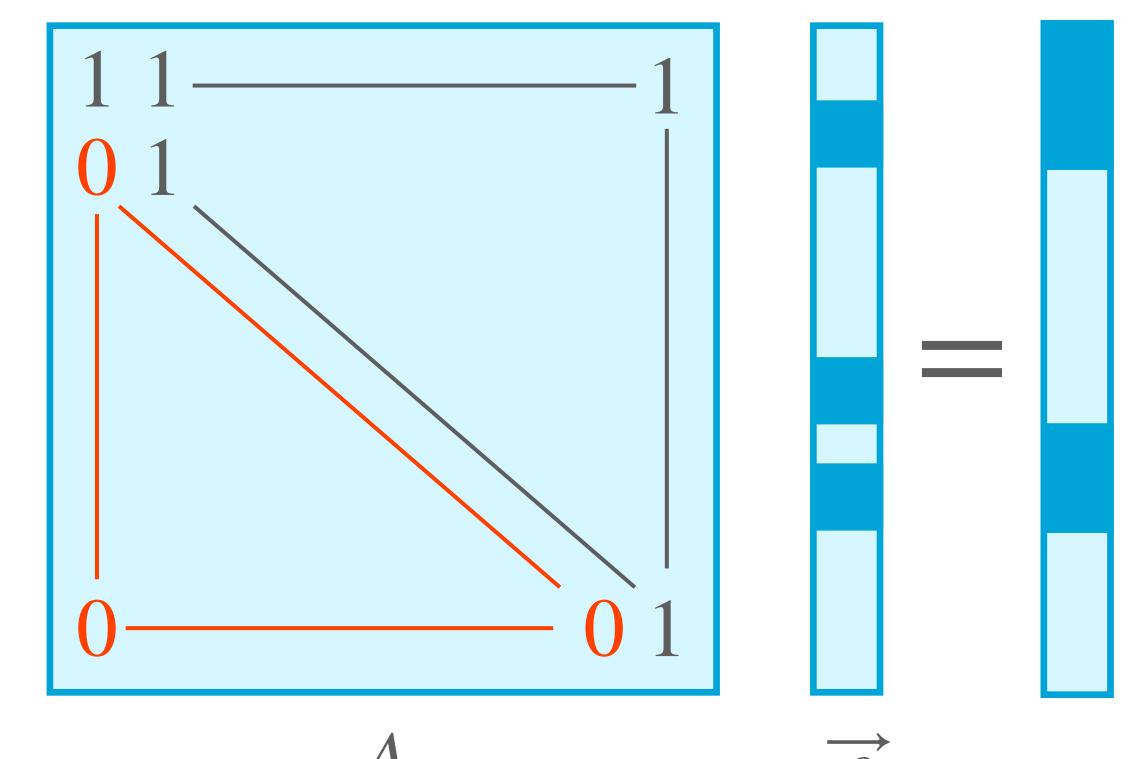
Corresponds to (small sum of) comparison functions

$$F_y^{\alpha}(x) = \alpha \cdot 1\{x \le y\} = \begin{cases} \alpha & x \le y \\ 0 & x > y \end{cases}$$

Efficient FSS due to [BGI'19,BCGGIKR'21]

Also get efficient PCFs for general degree-2/circuit-dependent correlations

- Problem: if $|\overrightarrow{e}| = 2^{\lambda}$, $A \cdot \overrightarrow{e}$ too expensive to compute!
- Solution: use FSS for $F(x) := b \cdot (A \cdot \overrightarrow{e})_x$



Corresponds to (small sum of) comparison functions

$$F_y^{\alpha}(x) = \alpha \cdot 1\{x \le y\} = \begin{cases} \alpha & x \le y \\ 0 & x > y \end{cases}$$

Efficient FSS due to [BGI'19,BCGGIKR'21]

- Bulk of offline work: $\operatorname{EvalAll}(K_{\sigma}) :=$

 $\mathsf{Eval}(K_\sigma,1)$ $\mathsf{Eval}(K_\sigma,2)$

Eval (K_{σ},N)

- Bulk of offline work: $\operatorname{EvalAll}(K_{\sigma}):=$

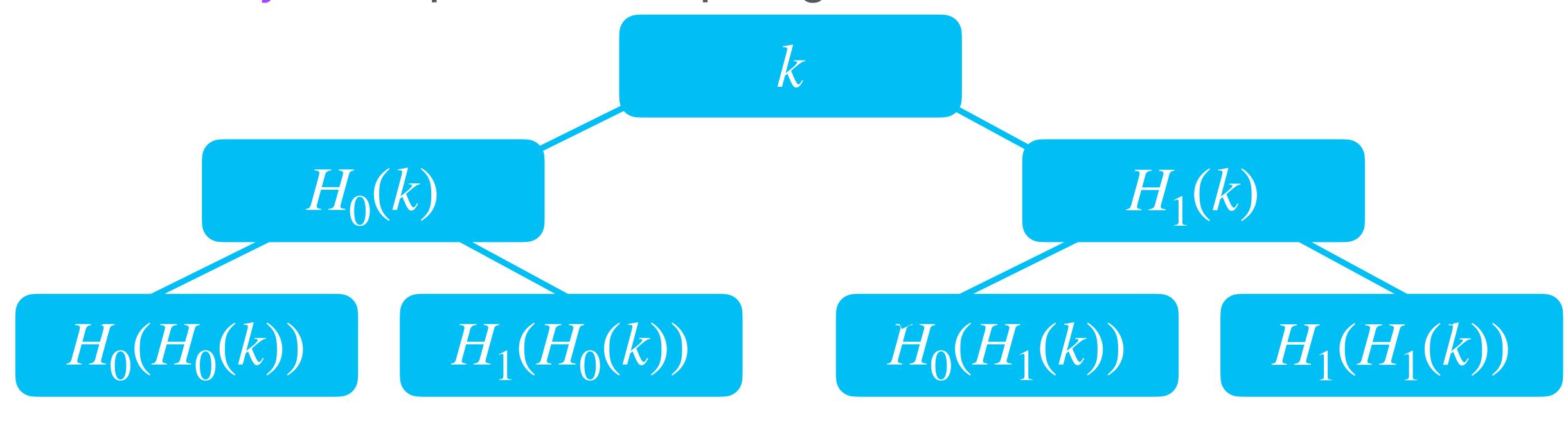
FSS built from punctured PRF

 $\mathbf{Eval}(K_{\sigma},1)$ $\mathbf{Eval}(K_{\sigma},2)$

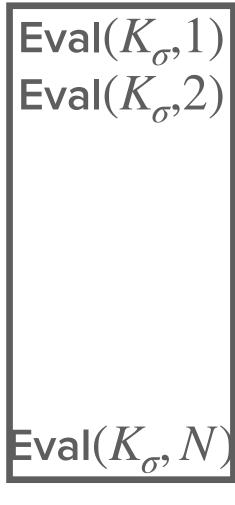
- Bulk of offline work: $\operatorname{EvalAll}(K_{\sigma}) :=$
- FSS built from punctured PRF
- Basically: corresponds to computing entire GGM tree

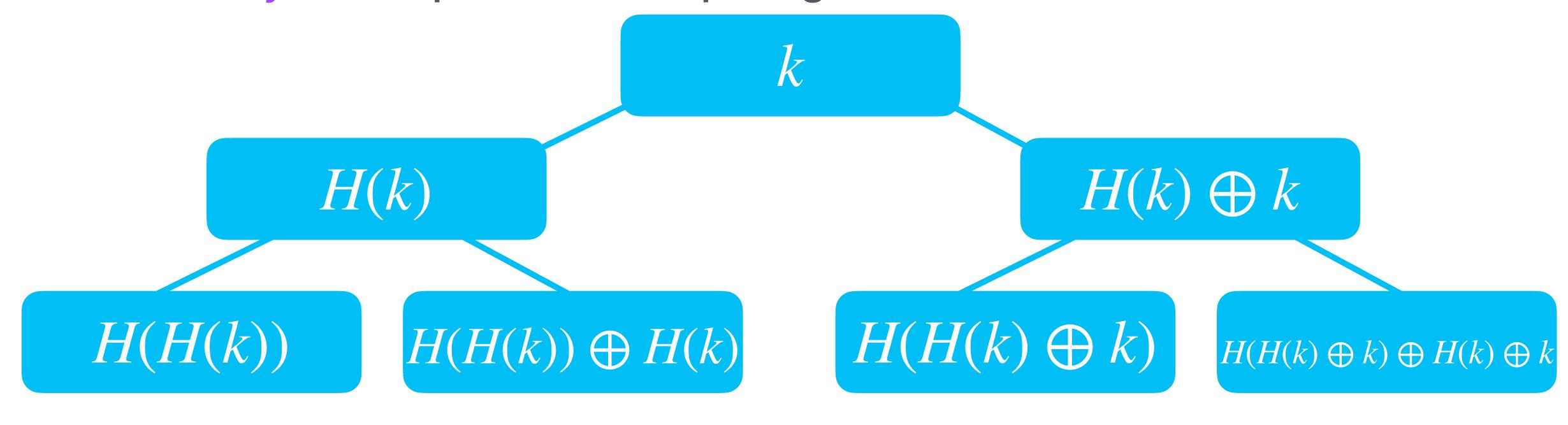


- Bulk of offline work: EvalAll $(K_{\sigma}) :=$
- FSS built from punctured PRF
- Basically: corresponds to computing entire GGM tree



- Bulk of offline work: EvalAll $(K_{\sigma}):=$
- FSS built from punctured PRF
- Basically: corresponds to computing entire GGM tree



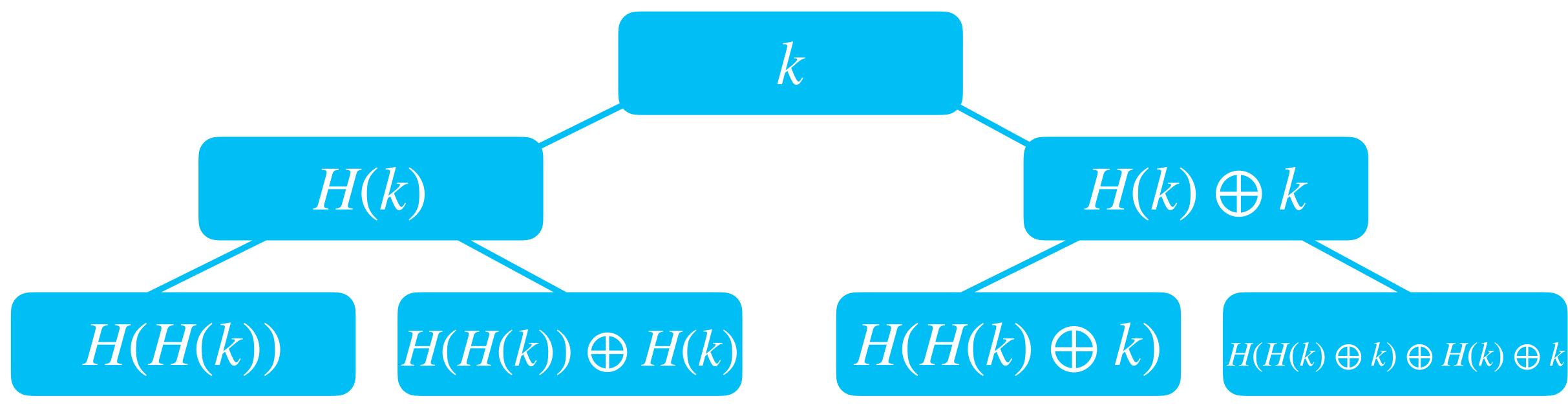


- Bulk of offline work: EvalAll $(K_{\sigma}) :=$
- FSS built from punctured PRF
- Basically: corresponds to computing entire GGM tree

Eval $(K_{\sigma},1)$ Eval $(K_{\sigma},2)$

 $Eval(K_{\sigma}, N)$

Yields: unpredictable punctured function



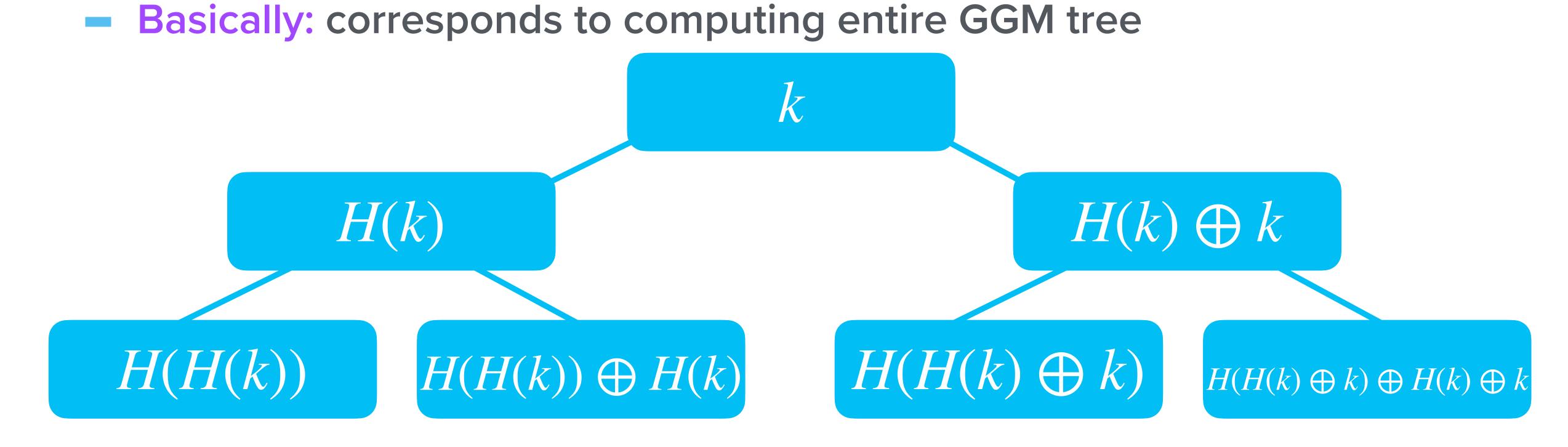
- Bulk of offline work: EvalAll $(K_{\sigma}):=$
- FSS built from punctured PRF
- FCC built from purposture of DDF

 $\begin{aligned} & \mathsf{Eval}(K_\sigma, 1) \\ & \mathsf{Eval}(K_\sigma, 2) \end{aligned}$

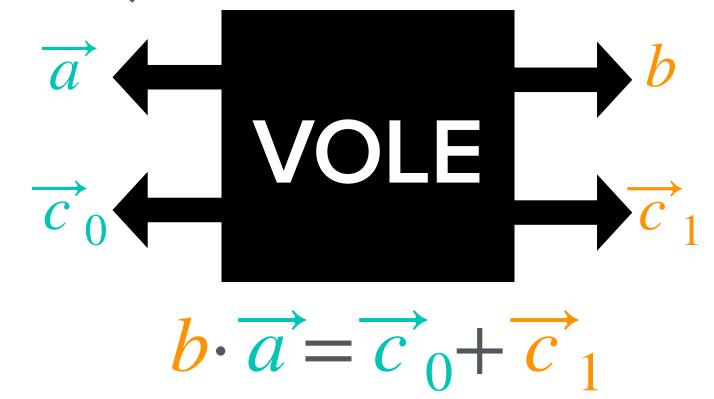
 $\mathsf{Eval}(K_\sigma, \mathcal{X})$

Yields: unpredictable punctured function

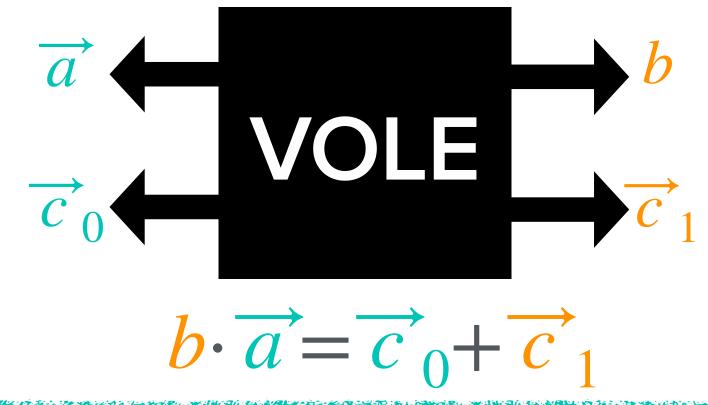
One hashing layer:
yields genuine
punctured PRF



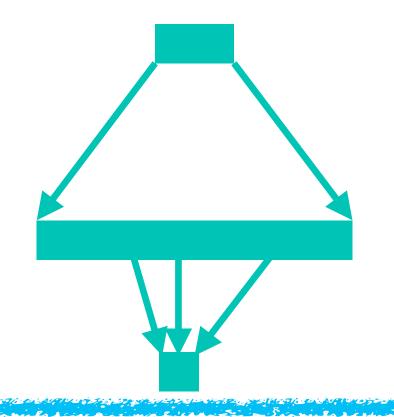
(Pseudo)random correlations

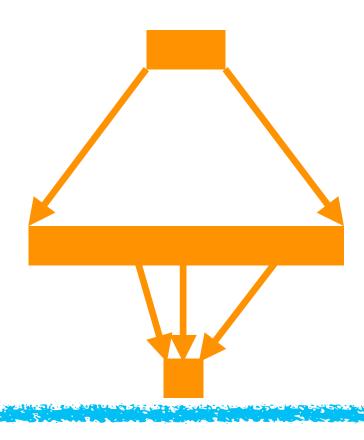


(Pseudo)random correlations

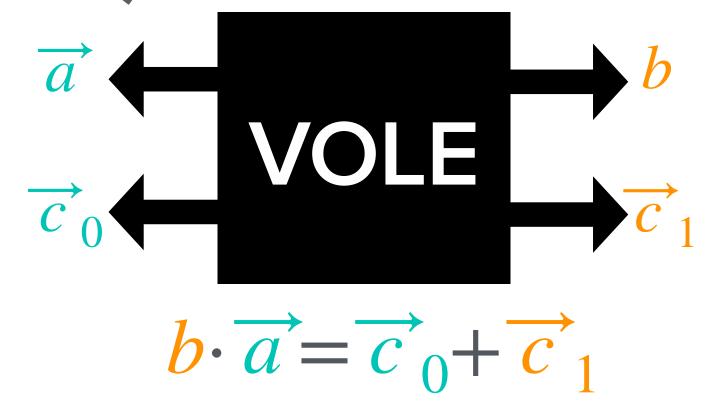


Offline-Online PCGs





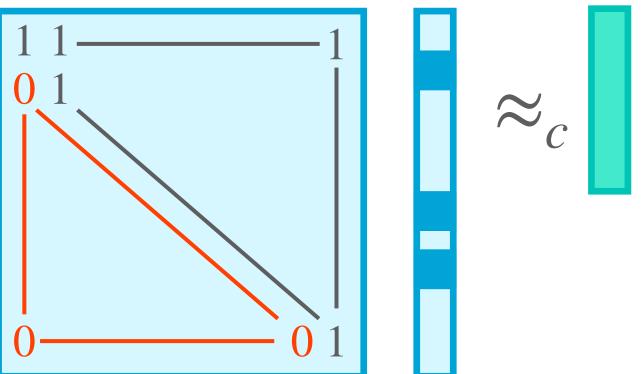
(Pseudo)random correlations



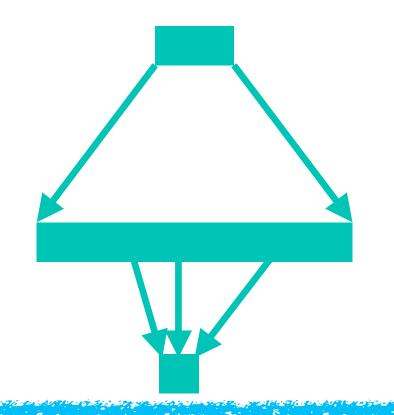
Expand-Accumulate

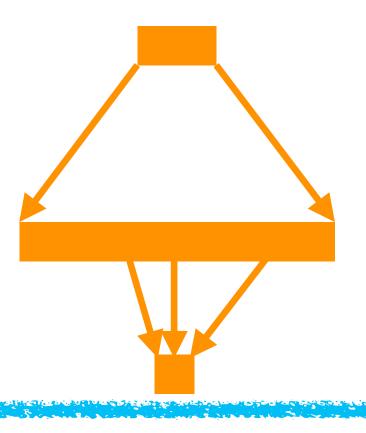
and the second second and the second second second second second and second second second second second second

sparse

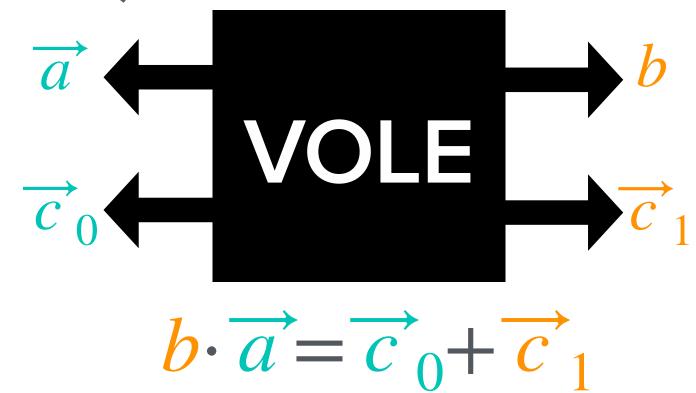


Offline-Online PCGs



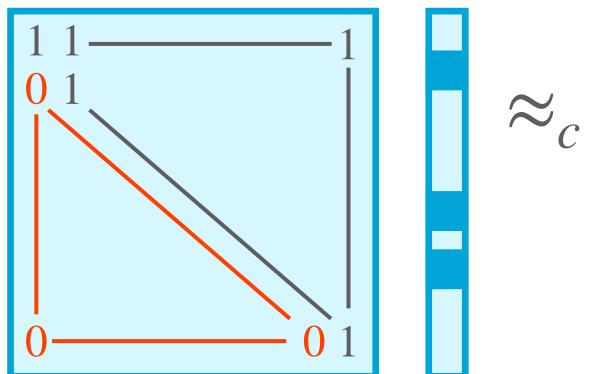


(Pseudo)random correlations

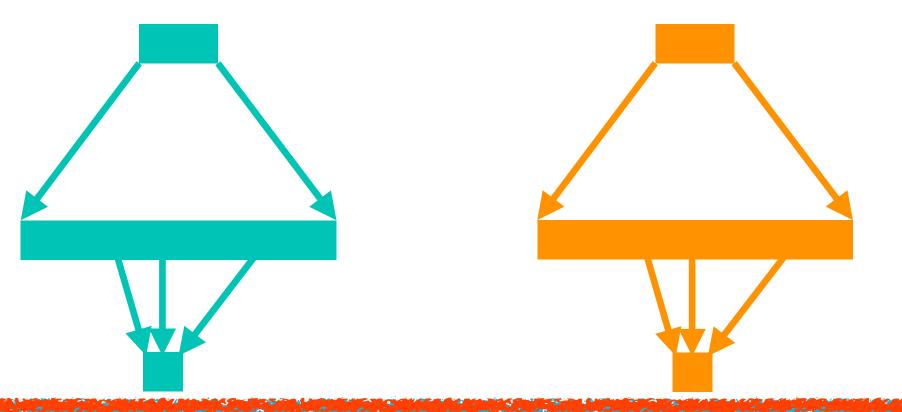


Expand-Accumulate

sparse



Offline-Online PCGs



Other results

- Concretely efficient PCF's
- New correlations
- Sped-up offline phase

