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m OTP

c=m@dOTP

= Correlated Randomness: (OTP, OTP) "equality" correlation
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Goal:

jointly compute f(x, y),
without revealing
anything more about
private inputs x and y

= Today: focus on case of 2 parties (2PC)
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GORRELATION FOR 2PG (ANI])

X, (D, mb)

Ny — 0 if x =0
° FAYE y=d@®m, else

- Correlated randomness: ( (b, m,), (1, m,) ) EROIINV/IVERIEHE(EIA(0d)

MPC with preprocessing: exchange correlated

randomness first, then run (fast!) protocol
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GOMPRESSING RANDOMNESS

= Problem: typically need long correlated random strings

= Secure Communication: |OTP| = | message|

Solution ['80's]: exchange short seeds, stretch with

pseudorandom generator / function

= Secure Computation: 2 OT's per AND gate

= Traditionally, need preprocessing phase with high communication

Solution [2015—]: exchange short seeds, stretch with

pseudorandom correlation generator / function
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PSEUDORANDOM CORRELATION GENERATOR (PGG)

= PCG = (Gen, Expand) for correlation C
= For (s,, 55) < Gen(1%):

- Correctness: N indep. OT's

- (Expand(s,), Expand(sy)) € ch

= Pseudorandomness:

S
SA Sp - Expand(s,), Expand(sz) pseudorand.
= Security:
= Other party's output looks
pseudorandom up to correlation

Expand(s,) Expand(s;)
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PSEUDORANDOM CORRELATION FUNGTION (PGF)

- For (k,, kp) < Gen(1%)

ky

Eval(k,, x) Eval(k,, x)

= Analogous correctness, pseudorandomness and security guarantees
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PCG's: all work in offline phase | PCF's: all work in online phase

More flexibility: offline-online PCG's

= PCG = (Gen, Offline, Online)
- (KSR, K, k2T) « Gen(1%)
= Low storage: |Y | <N

= Output locality: Online reads < ¢
entries of ¥

= Analogous correctness,
pseudorandomness & security

Online(k;",Y,,x)  Online(k;",Y s, x)
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OUR (MAIN) CONTRIBUTION

Offline-online PCG's from Expand-Accumulate Codes

Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality
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Goal: construct PCG for vector OLE (VOLE) correlation

(a’,cy) € F¥ x ¥ and

< I
d
—
¢ I

c Xl st D a=

Consider function F : [N]| — |

~defined by F(x) = b - a,

|dea: additively share [ between Alice and
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(ADDITIVE) FUNCTION SECRET-SHARING (FSS)

= Share function F s.t. V inputs x

Eval(K,, x) + Eval(K, x) — F(x)

= Goal: [K,|, |K;| small (secret-sharing truth-table too expensive!)
= Efficient FSS for point functions [Gilboalshai'14], or small sums

a Ifx = a- Ifx=yv.
Fi(x) = { Y Fylr i) = { | T ¢ smal
e 0O else

- Can efficiently share F(x) = b - a_if @ is sparse
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H linear

SARSEVOLE |

compressing map

N )
.
_)-H
Cl_

sparse VOLE

LPN: /1 uniformly

random works!

Better efficiency?

[BoyleCouteauGilboalshaiKohlScholl'19, '20,
CouteauRindalRaghuraman'21]

How to choose H?
Need a =, Unif
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HOW T0 GhOOSE h?

Want: H - "¢ efficiently
C computable

Choose 1 sparse?

N\
N/

—

Problem: { - ¢
also sparse!
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accumulator matrix A
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()1
0 01
N —

Offline: Parallelizable & cache-friendly
b—\ ~

Online: Low locality



SEGURITY?



SEGURITY?

- Why should we believe H - ¢ pseudorandom?



SEGURITY?

- Why should we believe H - ¢ pseudorandom?

Ideally:

Reduce to known
hard problem (LPN)




SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks




SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

=  Almost all* attacks boil down to following strategy:

*relevant to our parameters which don't exploit algebraic structure



SEGURITY?

—= Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known

hard problem (LPN) attacks

= Almost all* attacks boil down to following strategy:
- Look at H and find vector X ' st. X ' H is sparse

*relevant to our parameters which don't exploit algebraic structure



SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

=  Almost all* attacks boil down to following strategy:

—

- Look at H and find vector X ' st. X ' H is sparse

—>[—>

— Compute X 'y, where y is (i) H - € or (ii) unif. rand.

*relevant to our parameters which don't exploit algebraic structure



SEGURITY?

- Why should we believe H - ¢ pseudorandom?

|ldeally: Alternatively:

Reduce to known Rule out known
hard problem (LPN) attacks

=  Almost all* attacks boil down to following strategy: 1 ,
Linear tests

J framework

—

- Look at H and find vector X ' st. X ' H is sparse

—>[—>

— Compute X 'y, where y is (i) H - € or (ii) unif. rand.

*relevant to our parameters which don't exploit algebraic structure
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Resistance to linear tests

No low-weight (non-zero)
vector in code { X 'H)
< good min. dist.

This work: rule out linear attacks

- For i.i.d. Bernoulli matrix with p = O(IOgZN/N), get minimum distance
Q(N) with probability 1 — 1/N®M 1 — 1/N“D
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GONGRETE EFFIGIENGY

Offline Phase
Estimated ~100ms to generate ¥ _for 10 million OTs

Factor ~ k speedup if kK processors available

Online Phase

Theoretically Experimentally
40 lookups + 1 hash per OT 7 lookups + 1 hash per OT

Good pseudo- Needs further
distance suffices cryptanalysis!







Offline Phase
Highly parallelizable

Cache friendly




Offline Phase
Highly parallelizable
Cache friendly

Online Phase
Low output locality



Offline Phase
Highly parallelizable
Cache friendly

Online Phase

Low output locality

Cache-friendly? Parallelizable?

Silver [CouteauRindalRaghuaman'21]

RAA Codes

This work




Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality

Cache-friendly? Parallelizable?

X

Silver [CouteauRindalRaghuaman'21] V

RAA Codes

This work




Offline Phase
Highly parallelizable

Cache friendly

Online Phase
Low output locality

Cache-friendly? Parallelizable?

X

Silver [CouteauRindalRaghuaman'21] V

v

RAA Codes x

This work




Silver [CouteauRindalRaghuaman'21]

Offline Phase
Highly parallelizable

Cache friendly

Online Phase

Low output locality

Cache-friendly?

v

Parallelizable?

X

RAA Codes

X
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This work

v
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Also get efficient PCFs for

GONSTRUGTING PGFS

- Problem: if | e | = 2% A - @ too expensive to compute!
- Solution: use FSS for F(x) :==b-(A- 7€),

general degree-2/circuit-
dependent correlations

(1) i ! Corresponds to (small sum
of) comparison functions
Fry=a-1{x<yl=d & =7
VW =a IESyE=0 15y
0 01

Efficient FSS due to [BGI'"9,BCGGIKR'21]
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SPEEDING UP OFFLINE

Eval(K,,,1) punctured function
Eval(K_,2)
| ne hashing laver:
= Bulk of offline work: EvalAll(K ) := One has aye
yields genuine
= FSS built from punctured PRF , punctured PRF
= Basically: corresponds to computing entire GGM tree

k
H(k) H(k) @ k

15(0:(09) H(H(k)) & H(k) HHk) @ k) Buwaw e v oG @k
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