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• Security model: Server learns nothing except leakage 

• Allows for tradeoffs: efficiency / security


• Common leakage:


- Setup: database size


- Search: query pattern, access pattern, number of matching IDs


- Update:

Leakage

L(      ) = N
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• Security model: Server learns nothing except leakage 

• Allows for tradeoffs: efficiency / security


• Common leakage:


- Setup: database size


- Search: query pattern, access pattern, number of matching IDs


- Update: query pattern, number of matching IDs

Leakage

L(      ) = NL(      ) = N
…

Non-Forward Secure SSE

No leakage about unqueried keywords
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memory

Security Problem

Here, list locations depend on other lists
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SSE
Standard Solution

Server 
memory

Efficiency

Retrieval induces many random memory accesses

Server 
memory

H(   , i)

id1 id2 id3 ...

Reverse index:

...

Encrypted reverse index:

...



Memory Efficiency

HDD

Page Efficiency:


Number of Read  
Pages per Query


Locality:


Number of Read 
(non-adjacent)  

Memory Locations


SSD

HDDs vs SSDs



….

Look at server memory as array Encrypted reverse index:

Locality

• Goal:


• Locality: read at most constant disjoint intervals


• Read Efficiency: read as little extra data as possible


• Storage Efficiency: At most constant blow-up of server memory



…

Look at server memory as pages Encrypted reverse index:

• Goal:


• Page Efficiency: Store identifier lists               in as little pages as possible 


• Storage Efficiency: At most constant blow-up of server memory

Page Efficiency

p



Current State of the Art

Page Efficiency:


• [BBFMR21]:  +O(1)

Read Efficiency:


• [ANSS16]:  *


• [ASS18]:  **


• [DPP18]: 


Õ(log log N)
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*  restriction on longest list

** even stronger restriction on longest list

Constant Storage Efficiency (and Locality)

+  logarithmic client storage
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Page Efficiency:


• [BBFMR21]:  +O(1)

Read Efficiency:


• [ANSS16]:  *


• [ASS18]:  **


• [DPP18]: 


Õ(log log N)

Õ(log log log N)

O(log2/3+ε N)

Exclusively static constructions

*  restriction on longest list

** even stronger restriction on longest list

Constant Storage Efficiency (and Locality)

+  logarithmic client storage



• Approach:       throw weighted balls    into bins via hash function


• Goal:               upper bound U on maximal bin load

Framework
Balls-into-Bins
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• Approach:       throw weighted balls    into bins via hash function


• Goal:               upper bound U on maximal bin load


• Locality: store IDs in consecutive bins [ANSS16]

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

 SSE with O(U) read efficiency, O(1) locality
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Two-Choice

O(log log n)

Throw  balls into  bins at randomn m = O(n)



Weighted Two-Choice
Throw balls with total weight  into  bins at randomn m = O(n)



Weighted Two-Choice
Throw balls with total weight  into  bins at randomn m = O(n)

• Require: weighted 2C 


• Problem: existing results on 2C are conditional (distributions, presorting, …)



Weighted Two-Choice

• Layered2C: modify comparison 

- behaves “almost” like standard two-choice


- no distributional assumption or presorting


- Tight upper bound U


• LayeredSSE: DSSE with  page efficiencyÕ(log log N/p)

Throw balls with total weight  into  bins at randomn m = O(n)

• Require: weighted 2C 


• Problem: existing results on 2C are conditional (distributions, presorting, …)



Generic Local Transform
Page-Efficient DSSE  Local DSSE→ Page-Efficient SSE

i ∈ [1, log N]
…

…


pi = 2i


plog N = N


p0 = 1

Overflowing SSE:


• local SSE with overflow 

• instantiation: variant of 2D-1C [ANSS16]


Page-Efficient SSE:


• deals with overflowing items


• instantiation: LayeredSSE Overflowing SSE

local

N = |𝖣𝖡|

overflow



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log N)



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)
[ASS18]



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

[ASS18]



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

i ∈ [1, log N]
…

…


p3 = 8
N3 = O(N/polylog N)

Page-Efficient SSE: LayeredSSE

[ASS18]



Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

i ∈ [1, log N]
…

…


p3 = 8
N3 = O(N/polylog N)

Page-Efficient SSE: LayeredSSE

 read efficiency * Õ(log log N)
*  restriction on longest list


[ASS18]
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• Goal: unconditional SSE


• State of the art:  read efficiency [DPP18]O(log2/3+ε N)
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Unconditional Local SSE

Remove bottleneck from [DPP18] via GLT: 

1. Generalize the local ORAM of [DPP18]


2. Handle lists with different sizes via different SSE schemes


• Small, Medium, Large, Huge

 read efficiency O(logε N)

• Goal: unconditional SSE


• State of the art:  read efficiency [DPP18]O(log2/3+ε N)



Recap

• Weighted 2C variant


• First dynamic memory-efficient schemes


• New connection between locality and page efficiency


• Best “unconditional” scheme



Open Problems

• Analysis of “pure” weighted 2C


• Forward secure memory-efficient SSE


• Lower bounds? ?


