Dynamic Local Searchable Symmetric Encryption

* Brice Minaud INRIA — ENS — CNRS — PSL University

* Michael Reichle INRIA — ENS — CNRS — PSL University

PSL %

RESEARCH UNIVERSITY  PARIS



Roadmap Cry

Se: »0 able Symmetric Encryption

g\
b



Roadmap Cry

Se: »0 able Symmetric Encryption
iciency



Roadmap Cry

Se: »’ able Symmetric Encryption
iciency

Technic



Motivation

Outsource confidential information
Id6

ids 1d7

[oF

1d11



Motivation

Outsource confidential information
Id6

ids 1d7

Reverse Index:
“covid” » Id4, 1d3
“fire” » Ido, Id3, 1ds

[oF

1d11



Motivation

Outsource confidential information
Id6

ids 1d7

Reverse Index:
% I
MN I

[oF

1d11



Motivation

Outsource confidential information

Encrypted Reverse Index: ds dr
B EED
B )




Motivation

Outsource confidential information

E A B D




Motivation

Outsource confidential information

E A B D

Search



Motivation

Outsource confidential information

E A B D

Search

Update



Motivation

Outsource confidential information

E A B D

Search I

Update — @

Honest-but-Curious



Motivation

Outsource confidential information
leakage

E A B D

Honest-but-Curious



Leakage

Forward Security

* Security model: Server learns nothing except leakage

* Allows for tradeoffs: efficiency / security

* Common leakage: L( %f _- ) =N

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update:



Leakage

Non-Forward Secure SSE

* Security model: Server learns nothing except leakage

* Allows for tradeoffs: efficiency / security

* Common leakage: L( %f _- ) =N

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update: query pattern, number of matching IDs



Leakage

Non-Forward Secure SSE

* Security model: Server learns nothing except leakage
* Allows for tradeoffs: efficiency / security
 Common leakage: L( i% m ) = N

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update: query pattern, number of matching IDs

No leakage about unqueried keywords



SSE
Non-Solution

Reverse index: Encrypted reverse index:

>

Server
memory




SSE
Non-Solution

Reverse index: Encrypted reverse index:
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SSE
Standard Solution

Reverse index: Encrypted reverse index:
. D
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Efficiency
Retrieval induces many random memory accesses
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Memory Efficiency

HDDs vs SSDs

HDD

Locality:

Page Efficiency:

Number of Read
(non-adjacent) Number of Read

Memory Locations Pages per Query



Locality

Encrypted reverse index:
Look at server memory as array

e Goal:
e | ocality: read at most constant disjoint intervals
 Read Efficiency: read as little extra data as possible

o Storage Efficiency: At most constant blow-up of server memory



Page Efficiency

Encrypted reverse index:
Look at server memory as pages

p

e Goal:
o Page Efficiency: Store identifier lists HEEZ3 in as little pages as possible

o Storage Efficiency: At most constant blow-up of server memory
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Constant Storage Efficiency (and Locality)
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Framework

Balls-into-Bins

_ Encrypted reverse index:
Look at server memory as bins
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e Approach: throw weighted balls W3 into bins via hash function
e Goal: upper bound U on maximal bin load

e Locality: store IDs in consecutive bins [ANSS16]

=3 SSE with O(U) read efficiency, O(1) locality
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Two-Choice

Throw 7 balls iInto m = O(n) bins at random

O(log log n)
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Weighted Two-Choice

Throw balls with total weight » into m = O(n) bins at random
* Require: weighted 2C

* Problem: existing results on 2C are conditional (distributions, presorting, ...)

 Layered2C: modify comparison
- behaves “almost” like standard two-choice
- no distributional assumption or presorting

- Tight upper bound U

« LayeredSSE: DSSE with 0(log log N/p) page efficiency



Generic Local Transform
Page-Efficient DSSE — Local DSSE

Page-Efficient SSE

Piogn =N
Overflowing SSE:
* local SSE with overflow p;="2
e instantiation: variant of 2D-1C [ANSS16]}
Page-Efficient SSE: Po=1

* deals with overflowing items
overflow

Overflowing SSE

e instantiation: LayeredSSE
local

N = |DB|

1 € [1,log V]
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Generic Local Transform

Instantiation

Overflowing SSE: 2D-1C [ANSS16] with cut-off

--- BEEEEE
----------
O(N/loglog N)

.

loverflow| < O(N/polylog N)

O(loglog N)

Page-Efficient SSE: LayeredSSE

[ASS18]

p3 =3
= O(N/polylog N)

O(log log N) read efficiency *

*

restriction on longest list

A
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Unconditional Local SSE

 Goal: unconditional SSE

o State of the art: O(logZ/ 3¢ N) read efficiency [DPP18]

Remove bottleneck from [DPP18] via GLT:
1. Generalize the local ORAM of [DPP18]

2. Handle lists with different sizes via different SSE schemes

e Small, Medium, Large, Huge

O(log® N) read efficiency



Recap

* Weighted 2C variant
* First dynamic memory-efficient schemes
 New connection between locality and page efficiency

e Best “unconditional” scheme




Open Problems

* Analysis of “pure” weighted 2C
 Forward secure memory-efficient SSE

e Lower bounds?




