
Dynamic Local Searchable Symmetric Encryption

• Brice Minaud

• Michael Reichle

INRIA — ENS — CNRS — PSL University

INRIA — ENS — CNRS — PSL University

RESEARCH UNIVERSITY PARIS

Roadmap Crypto’22

Searchable Symmetric Encryption

Roadmap Crypto’22Roadmap Crypto’22

Searchable Symmetric Encryption
Memory-Efficiency

Roadmap Crypto’22

Techniques & Results

Memory-Efficiency
Searchable Symmetric Encryption

Motivation
Outsource confidential information

id8

id1

id2

id3

id4

id5

id6

id7

id9

id10

id11

Motivation
Outsource confidential information

id8

id1

id2

id3

id4

id5

id6

id7

id9

id10

id11

Reverse Index:
“covid” ↦ id1, id3

“fire” ↦ id2, id3, id6
…

Motivation
Outsource confidential information

Reverse Index:

id8

id1

id2

id3

id4

id5

id6

id7

id9

id10

id11

…

Motivation
Outsource confidential information

id8

id1

id2

id3

id4

id5

id6

id7

id9

id10

id11

Encrypted Reverse Index:

…

Motivation

E

N

C

…

Setup
E

N

C

…

Outsource confidential information

…

…

Motivation

E

N

C

…

Setup
E

N

C

…

Outsource confidential information

…

…

Search

Motivation

E

N

C

…

Setup
E

N

C

…

Outsource confidential information

…

Update

…

Search

Motivation

E

N

C

…

Setup
E

N

C

…

Outsource confidential information

…

Search

Update

…

Honest-but-Curious

Motivation

E

N

C

…

Setup
E

N

C

…

Outsource confidential information

…

Search

Update

…

leakage

Honest-but-Curious

• Security model: Server learns nothing except leakage

• Allows for tradeoffs: efficiency / security

• Common leakage:

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update:

Leakage

L() = N

Forward Security

…

• Security model: Server learns nothing except leakage

• Allows for tradeoffs: efficiency / security

• Common leakage:

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update: query pattern, number of matching IDs

Leakage

L() = NL() = N
…

Non-Forward Secure SSE

• Security model: Server learns nothing except leakage

• Allows for tradeoffs: efficiency / security

• Common leakage:

- Setup: database size

- Search: query pattern, access pattern, number of matching IDs

- Update: query pattern, number of matching IDs

Leakage

L() = NL() = N
…

Non-Forward Secure SSE

No leakage about unqueried keywords

SSE
Non-Solution

id1 id2 id3 ...

Reverse index:

...

Encrypted reverse index:

...

Server
memory

SSE
Non-Solution

id1 id2 id3 ...

Reverse index:

...

Encrypted reverse index:

...

Server
memory

Security Problem

Here, list locations depend on other lists

SSE
Standard Solution

Server
memory
Server

memory
H(, i)

id1 id2 id3 ...

Reverse index:

...

Encrypted reverse index:

...

SSE
Standard Solution

Server
memory

Efficiency

Retrieval induces many random memory accesses

Server
memory

H(, i)

id1 id2 id3 ...

Reverse index:

...

Encrypted reverse index:

...

Memory Efficiency

HDD

Page Efficiency:

Number of Read  
Pages per Query

Locality:

Number of Read 
(non-adjacent)  

Memory Locations

SSD

HDDs vs SSDs

….

Look at server memory as array Encrypted reverse index:

Locality

• Goal:

• Locality: read at most constant disjoint intervals

• Read Efficiency: read as little extra data as possible

• Storage Efficiency: At most constant blow-up of server memory

…

Look at server memory as pages Encrypted reverse index:

• Goal:

• Page Efficiency: Store identifier lists in as little pages as possible

• Storage Efficiency: At most constant blow-up of server memory

Page Efficiency

p

Current State of the Art

Page Efficiency:

• [BBFMR21]: +O(1)

Read Efficiency:

• [ANSS16]: *

• [ASS18]: **

• [DPP18]:

Õ(log log N)

Õ(log log log N)

O(log2/3+ε N)
* restriction on longest list

** even stronger restriction on longest list

Constant Storage Efficiency (and Locality)

+ logarithmic client storage

Current State of the Art

Page Efficiency:

• [BBFMR21]: +O(1)

Read Efficiency:

• [ANSS16]: *

• [ASS18]: **

• [DPP18]:

Õ(log log N)

Õ(log log log N)

O(log2/3+ε N)

Exclusively static constructions

* restriction on longest list

** even stronger restriction on longest list

Constant Storage Efficiency (and Locality)

+ logarithmic client storage

• Approach: throw weighted balls into bins via hash function

• Goal: upper bound U on maximal bin load

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

• Approach: throw weighted balls into bins via hash function

• Goal: upper bound U on maximal bin load

• Page Efficiency: interpret bins as pages [BBFMR21]

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

• Approach: throw weighted balls into bins via hash function

• Goal: upper bound U on maximal bin load

• Page Efficiency: interpret bins as pages [BBFMR21]

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

 SSE with O(U) page efficiency

• Approach: throw weighted balls into bins via hash function

• Goal: upper bound U on maximal bin load

• Locality: store IDs in consecutive bins [ANSS16]

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

• Approach: throw weighted balls into bins via hash function

• Goal: upper bound U on maximal bin load

• Locality: store IDs in consecutive bins [ANSS16]

Framework
Balls-into-Bins

…

Look at server memory as bins Encrypted reverse index:

U

 SSE with O(U) read efficiency, O(1) locality

Two-Choice
Throw balls into bins at randomn m = O(n)

Two-Choice
Throw balls into bins at randomn m = O(n)

Two-Choice
Throw balls into bins at randomn m = O(n)

Two-Choice

O(log log n)

Throw balls into bins at randomn m = O(n)

Weighted Two-Choice
Throw balls with total weight into bins at randomn m = O(n)

Weighted Two-Choice
Throw balls with total weight into bins at randomn m = O(n)

• Require: weighted 2C

• Problem: existing results on 2C are conditional (distributions, presorting, …)

Weighted Two-Choice

• Layered2C: modify comparison

- behaves “almost” like standard two-choice

- no distributional assumption or presorting

- Tight upper bound U

• LayeredSSE: DSSE with page efficiencyÕ(log log N/p)

Throw balls with total weight into bins at randomn m = O(n)

• Require: weighted 2C

• Problem: existing results on 2C are conditional (distributions, presorting, …)

Generic Local Transform
Page-Efficient DSSE Local DSSE→ Page-Efficient SSE

i ∈ [1, log N]
…

…

pi = 2i

plog N = N

p0 = 1

Overflowing SSE:

• local SSE with overflow

• instantiation: variant of 2D-1C [ANSS16]

Page-Efficient SSE:

• deals with overflowing items

• instantiation: LayeredSSE Overflowing SSE

local

N = |𝖣𝖡|

overflow

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log N)

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)
[ASS18]

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

[ASS18]

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

i ∈ [1, log N]
…

…

p3 = 8
N3 = O(N/polylog N)

Page-Efficient SSE: LayeredSSE

[ASS18]

Generic Local Transform
Instantiation

…

O(N/log log N)

Overflowing SSE: 2D-1C [ANSS16] with cut-off

O(log log N)

|𝗈𝗏𝖾𝗋𝖿𝗅𝗈𝗐| ≤ O(N/polylog N)

i ∈ [1, log N]
…

…

p3 = 8
N3 = O(N/polylog N)

Page-Efficient SSE: LayeredSSE

 read efficiency * Õ(log log N)
* restriction on longest list

[ASS18]

Unconditional Local SSE
• Goal: unconditional SSE

• State of the art: read efficiency [DPP18]O(log2/3+ε N)

Unconditional Local SSE

Remove bottleneck from [DPP18] via GLT:

1. Generalize the local ORAM of [DPP18]

2. Handle lists with different sizes via different SSE schemes

• Small, Medium, Large, Huge

• Goal: unconditional SSE

• State of the art: read efficiency [DPP18]O(log2/3+ε N)

Unconditional Local SSE

Remove bottleneck from [DPP18] via GLT:

1. Generalize the local ORAM of [DPP18]

2. Handle lists with different sizes via different SSE schemes

• Small, Medium, Large, Huge

 read efficiency O(logε N)

• Goal: unconditional SSE

• State of the art: read efficiency [DPP18]O(log2/3+ε N)

Recap

• Weighted 2C variant

• First dynamic memory-efficient schemes

• New connection between locality and page efficiency

• Best “unconditional” scheme

Open Problems

• Analysis of “pure” weighted 2C

• Forward secure memory-efficient SSE

• Lower bounds? ?

