
August 18, 2022

Better than Advertised Security for 
Non-Interactive Threshold Signatures

Mihir Bellare, Elizabeth Crites, Chelsea Komlo, Mary Maller,

Stefano Tessaro, Chenzhi Zhu



Threshold Signatures [DY90]

Cryptocurrency Wallets

Single Key Distributed Key

Single point of failure Tolerates some fraction of 
corrupt signers

NIST Standardization



Our Focus: Non-Interactive Threshold Signatures

sk1

sk2

sk3

Leader

m
psig2

m

psig3

σ

Vf , ,   accept(pk m σ) →

 , # of signers

 , reconstruction threshold

n
t



Our Focus: Non-Interactive Threshold Signatures

sk1

sk2

sk3

Leader

m
psig2

m

psig3

σ

Vf , ,   accept(pk m σ) →

 , # of signers

 , reconstruction threshold

n
t

Examples: threshold BLS [Bol03]
threshold RSA [DSD+94, GJKR00, Sho00]



Our Focus: Non-Interactive Threshold Signatures

sk1

sk2

sk3

Leader

m
psig2

m

psig3

σ

Vf , ,   accept(pk m σ) →

 , # of signers

 , reconstruction threshold

n
t

Examples: threshold BLS [Bol03]
threshold RSA [DSD+94, GJKR00, Sho00]

What about DL-based?
(Pairing-free)



DL-based Threshold Signatures



DL-based Threshold Signatures
No fully non-interactive scheme yet



DL-based Threshold Signatures

Schnorr Signatures

Single message-dependent 
round: FROST [KG20]

A single-round message-
independent pre-processing

“Partially non-interactive”

No fully non-interactive scheme yet



DL-based Threshold Signatures

Schnorr Signatures

Single message-dependent 
round: FROST [KG20]

A single-round message-
independent pre-processing

“Partially non-interactive”

No fully non-interactive scheme yet

ECDSA

Single message-dependent 
round: [CGG+20]

A multi-round message-
independent pre-processing



DL-based Threshold Signatures

Schnorr Signatures

Single message-dependent 
round: FROST [KG20]

A single-round message-
independent pre-processing

“Partially non-interactive”

No fully non-interactive scheme yet

ECDSA

Single message-dependent 
round: [CGG+20]

A multi-round message-
independent pre-processing

Not covered



This Paper

A formal framework for (partially) 
non-interactive threshold signatures

Syntax Security notions



This Paper

A formal framework for (partially) 
non-interactive threshold signatures

Syntax Security notions

…FROSTBLS



This Paper

A formal framework for (partially) 
non-interactive threshold signatures

Syntax Security notions

…FROSTBLS

Why is this needed?



What’s Missing & Our Contributions



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes




What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes

• A formal syntax for (partially) non-

interactive threshold signatures⟹



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes


• Existing security notions are 
weaker than schemes can achieve


• A formal syntax for (partially) non-
interactive threshold signatures⟹



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes


• Existing security notions are 
weaker than schemes can achieve


• A formal syntax for (partially) non-
interactive threshold signatures⟹

⟹ • Fine-grained security hierarchy with 
stronger notions



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes


• Existing security notions are 
weaker than schemes can achieve


• Original proof for FROST [KG20] 
relied on heuristic assumptions

• A formal syntax for (partially) non-
interactive threshold signatures⟹

⟹ • Fine-grained security hierarchy with 
stronger notions



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes


• Existing security notions are 
weaker than schemes can achieve


• Original proof for FROST [KG20] 
relied on heuristic assumptions

• A formal syntax for (partially) non-
interactive threshold signatures⟹

⟹

⟹

• Fine-grained security hierarchy with 
stronger notions

• Analysis of FROST based on our 
security hierarchy 



What’s Missing & Our Contributions
• No formalization for partially 

non-interactive schemes


• Existing security notions are 
weaker than schemes can achieve


• Original proof for FROST [KG20] 
relied on heuristic assumptions

• A formal syntax for (partially) non-
interactive threshold signatures⟹

⟹

⟹

Analysis of BLS for stronger security

Concurrent work [Gro21]

• Fine-grained security hierarchy with 
stronger notions

• Analysis of FROST based on our 
security hierarchy 



Our Contributions



Our Contributions

• Introduce FROST2, an optimized version of FROST1



Our Contributions

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting



Our Contributions

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM



Our Contributions

• Show separation of security of FROST1 vs 2

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM



FROST



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]

• Consists of:


• PedPoP distributed key generation (DKG) protocol


• Two-round, concurrently secure signing protocol


• First round message-independent pre-processing


• Outputs standard, single-party Schnorr signature



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]

• Consists of:


• PedPoP distributed key generation (DKG) protocol


• Two-round, concurrently secure signing protocol


• First round message-independent pre-processing


• Outputs standard, single-party Schnorr signature

• Prior attempts at two-round Schnorr threshold signatures -> ROS attacks 
[BLLOR21], https://github.com/mmaller/multi_and_threshold_signature_reductions



FROST

FROST [KG20]



FROST

FROST [KG20]

Cryptocurrency 
Wallets



FROST

FROST [KG20]
NIST 

Standardization

Cryptocurrency 
Wallets



FROST

FROST [KG20]

IETF Draft

NIST 
Standardization

Cryptocurrency 
Wallets



FROST

FROST [KG20]

IETF Draft

NIST 
Standardization

5+ 
Implementations

Cryptocurrency 
Wallets



PedPoP Distributed Key Generation
• PedPoP [KG20] = Pedersen DKG + Proofs of Possession


• Proofs of possession are Schnorr signatures


• Requires a Knowledge of Exponent assumption


• For simplicity, instead of adding rounds to DKG


• Allows any number of corrupt signers (not honest majority)



FROST1
sk2

Leader

sk3



FROST1
sk2

Leader

sk3

R2 = gr2, S2 = gs2

R3, S3



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

 output by DKG







pk
dj = H̃( j, pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

z2 ← r2 + d2s2 + cλ2sk2

z3 ← r3 + d3s3 + cλ3sk3

 output by DKG







pk
dj = H̃( j, pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

z2 ← r2 + d2s2 + cλ2sk2

z3 ← r3 + d3s3 + cλ3sk3

 output by DKG







pk
dj = H̃( j, pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)

z2

z3



FROST1
sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

z2 ← r2 + d2s2 + cλ2sk2

z3 ← r3 + d3s3 + cλ3sk3

 output by DKG







pk
dj = H̃( j, pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)

z2

z3


z ← z2 + z3
σ = (R, z)



FROST1

Verify:


c ← H(pk, m, R)

R ⋅ pkc ?= gz

sk2

Leader

sk3

R2, S2

R3, S3

R2 = gr2, S2 = gs2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

z2 ← r2 + d2s2 + cλ2sk2

z3 ← r3 + d3s3 + cλ3sk3

 output by DKG







pk
dj = H̃( j, pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)

z2

z3


z ← z2 + z3
σ = (R, z)



FROST2

Verify:


c ← H(pk, m, R)

R ⋅ pkc ?= gz

sk2

Leader

sk3

R2, S2

R3, S3

R2, S2

R3, S3

m, {2,3}, R3, S3

m, {2,3}, R2, S2

z2 ← r2+ds2 + cλ2sk2

z3 ← r3+ds3 + cλ3sk3

 output by DKG







pk
d = H̃(pk, m, {Rj, Sj}3

2)
R = Π3

2RjS
dj
j

c ← H(pk, m, R)

z2

z3


z ← z2 + z3
σ = (R, z)



Proving the Security of FROST2 + PedPoP

• Security reductions for multi-party signatures have two moving parts:


1. Simulating honest users interacting with the adversary


2. Extracting a solution to some hard problem from the adversary’s 
responses


• Idea: Separate the two parts for a more modular reduction



Proving the Security of FROST2 + PedPoP



(KeyGen)  
𝖯𝖾𝖽𝖯𝗈𝖯   


(Signing)
𝖥𝖱𝖮𝖲𝖳𝟤

Schnorr KoE 

Assumption 

Bischnorr

Assumption 

Discrete Log 

+ AGM 

 One-More Discrete Log 

+ ROM

Single party

Multi-party



Framework &

Security Hierarchy



Motivations
• No formalization for partially 

non-interactive schemes

• Existing security notions are 
weaker than schemes can achieve



Motivations
• No formalization for partially 

non-interactive schemes
 - Modeled as interactive protocols [KG20]

• Existing security notions are 
weaker than schemes can achieve



Motivations
• No formalization for partially 

non-interactive schemes
 - Modeled as interactive protocols [KG20]
 - Simpler abstraction only for fully non-     


interactive schemes [Bol03, Wee11] 

• Existing security notions are 
weaker than schemes can achieve



Motivations
• No formalization for partially 

non-interactive schemes
 - Modeled as interactive protocols [KG20]
 - Simpler abstraction only for fully non-     


interactive schemes [Bol03, Wee11] 

 - Most works:  is considered signed      

   as long as one honest party signs it

 [GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

m
• Existing security notions are 

weaker than schemes can achieve



Motivations
• No formalization for partially 

non-interactive schemes
 - Modeled as interactive protocols [KG20]
 - Simpler abstraction only for fully non-     


interactive schemes [Bol03, Wee11] 

 - Most works:  is considered signed      

   as long as one honest party signs it

 [GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

m

 - Only very few consider stronger 

   guarantees [Sho00, LJY14, Gro21]

• Existing security notions are 
weaker than schemes can achieve



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2

Signer 2

Signer 1

Signer 3



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

sk2

pk

Signer 2

Signer 1

Signer 3



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

Pre-processing token



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

 :lreq

Pre-processing token



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

 :lreq ,m

Pre-processing token



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq ,m

Pre-processing token

Set of signers, |SS | ≥ t



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq ,m

Pre-processing token

Auxiliary information

Set of signers, |SS | ≥ t



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2sk1

sk3

pp3

sk2

pk
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq

 {1 : pp1

3 : pp3}
,m

Pre-processing token

Auxiliary information

Set of signers, |SS | ≥ t



(Partially) Non-interactive Threshold Sigs 

Leader

n = 3, t = 2

lreq

sk1

sk3

pp3

sk2

pklreq
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq

 {1 : pp1

3 : pp3}
,m

Pre-processing token

Auxiliary information

Set of signers, |SS | ≥ t



(Partially) Non-interactive Threshold Sigs 

Leader

psig3

n = 3, t = 2

lreq

sk1

sk3

pp3

sk2

pk
psig1

lreq
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq

 {1 : pp1

3 : pp3}
,m

Pre-processing token

Auxiliary information

Set of signers, |SS | ≥ t



(Partially) Non-interactive Threshold Sigs 

Leader

psig3

σ
Verify , ,   accept(pk m σ) →

n = 3, t = 2

lreq

sk1

sk3

pp3

sk2

pk
psig1

lreq
pp1

pp2

Signer 2

Signer 1

Signer 3

SS = {1,3} :lreq

 {1 : pp1

3 : pp3}
,m

Pre-processing token

Auxiliary information

Set of signers, |SS | ≥ t



Unforgeability
sk1

sk3

sk2

Signer 2

Signer 1

Signer 3

Leader

pk



Unforgeability
sk1

sk3

sk2

Signer 2

Signer 1

Signer 3

pk

Adversary



Unforgeability
sk1

sk3

sk2

Signer 2

Signer 1

Signer 3

Corrupted

pk

Adversary



Unforgeability
sk1

sk2

Signer 2

Signer 1

Signer 3

Corrupted

sk3pk

Adversary



Unforgeability
sk1

sk2

Signer 2

Signer 1

Signer 3

psig1

lreq
pp1

Corrupted

sk3

pp2

pk

Adversary



Unforgeability
sk1

sk2

Signer 2

Signer 1

Signer 3

psig1

lreq
pp1

Corrupted

sk3

(m*, σ*)

pp2

pk

Adversary



Unforgeability
sk1

sk2

Signer 2

Signer 1

Signer 3

psig1

lreq
pp1

Corrupted

sk3

(m*, σ*)
The adversary cannot forge 

any non-trivial signature

pp2

pk

Adversary



Unforgeability
sk1

sk2

Signer 2

Signer 1

Signer 3

psig1

lreq
pp1

Corrupted

sk3

(m*, σ*)
The adversary cannot forge 

any non-trivial signature

pp2

pk

Adversary

This work: 

What is a trivial forgery?



(General) Unforgeability Game (TS-UF) 



(General) Unforgeability Game (TS-UF) 

i
ppi

, i lreq
psigi

PPO

PSignO

(m*, σ*)

, Set of corrupted signersCS

pk, {ski}i∈CS



(General) Unforgeability Game (TS-UF) 

i
ppi

, i lreq
psigi

PPO

PSignO

(m*, σ*)

, Set of corrupted signersCS

pk, {ski}i∈CS  is an honest signeri



(General) Unforgeability Game (TS-UF) 

i
ppi

, i lreq
psigi

PPO

PSignO

(m*, σ*)

Arbitrary number of times

, Set of corrupted signersCS

pk, {ski}i∈CS  is an honest signeri



(General) Unforgeability Game (TS-UF) 

i
ppi

, i lreq
psigi

PPO

PSignO

(m*, σ*)

Adversary wins iff  is not a trivial forgery(m*, σ*)

Arbitrary number of times

, Set of corrupted signersCS

pk, {ski}i∈CS  is an honest signeri



(General) Unforgeability Game (TS-UF) 

i
ppi

, i lreq
psigi

PPO

PSignO

(m*, σ*)

Adversary wins iff  is not a trivial forgery(m*, σ*)

Arbitrary number of times

, Set of corrupted signersCS

pk, {ski}i∈CS  is an honest signeri

What is a trivial forgery?



Set of trivial forgeries

⋯TF0

TF1

TF4



Set of trivial forgeries Security levels

TS-UF-0

TS-UF-1

TS-UF-4

⋯

⋮

TF0

TF1

TF4



Set of trivial forgeries

TS-UF-0

TS-UF-1

TS-UF-4

⋯

⋮

TF0

TF1

TF4

Security hierarchy



The Simplest

  is a trivial forgery : (m*, σ*)

 : set of  queries to PSignOL (i, lreq)

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*



The Simplest

  is a trivial forgery : (m*, σ*)

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

⋮

⋮



The Simplest

  is a trivial forgery : (m*, σ*)

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

⋮

⋮

At least one honest 
signer signed m*



The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

⋮

⋮

At least one honest 
signer signed m*



The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

When ,

 there are stronger 

security considerations

|CS | < t − 1

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

⋮

⋮

At least one honest 
signer signed m*



The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

When ,

 there are stronger 

security considerations

|CS | < t − 1

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

CS = ∅

At least one honest 
signer signed m*



The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

When ,

 there are stronger 

security considerations

|CS | < t − 1

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

CS = ∅ Not ruled out by TS-UF-0

At least one honest 
signer signed m*



The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

When ,

 there are stronger 

security considerations

|CS | < t − 1

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

CS = ∅ Not ruled out by TS-UF-0

Should make queries 
to at least  signers!t

At least one honest 
signer signed m*



Next One



Next One

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}



Next One

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m



Next One

  is a trivial forgery : (m*, σ*)TS-UF-0 |mSS(m*) | > 0

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m



Next One

  is a trivial forgery : (m*, σ*)TS-UF-0 |mSS(m*) | > 0

  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m



Next One

  is a trivial forgery : (m*, σ*)TS-UF-0 |mSS(m*) | > 0

Very few previous works consider this 
[Sho00, LJY14, Gro21]

  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m



Next One

  is a trivial forgery : (m*, σ*)TS-UF-0 |mSS(m*) | > 0

Very few previous works consider this 
[Sho00, LJY14, Gro21]

  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m

Even stronger?



Next One

  is a trivial forgery : (m*, σ*)TS-UF-0 |mSS(m*) | > 0

Very few previous works consider this 
[Sho00, LJY14, Gro21]

  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

mSS(m) := {i : ∃lreq s.t. (i, lreq) ∈ L, lreq . msg = m}
The set of honest 

signers that signed m

Partial sigs for  but from 
different  can be combined

m*
lreq

Even stronger?



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

rSS(lreq) := {i : (i, lreq) ∈ L}



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1 |mSS(m*) | ≥ t − |CS |

rSS(lreq) := {i : (i, lreq) ∈ L} The set of honest signers 
that answered lreq



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1

  is a trivial forgery : (m*, σ*)TS-UF-2

|mSS(m*) | ≥ t − |CS |

|rSS(lreq) | ≥ t − |CS |

∃ lreq : lreq . msg = m*

rSS(lreq) := {i : (i, lreq) ∈ L} The set of honest signers 
that answered lreq



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1

  is a trivial forgery : (m*, σ*)TS-UF-2

|mSS(m*) | ≥ t − |CS |

|rSS(lreq) | ≥ t − |CS |

∃ lreq : lreq . msg = m*

rSS(lreq) := {i : (i, lreq) ∈ L}

∃ lreq : lreq . msg = m*  is a trivial forgery : (m*, σ*)TS-UF-4
rSS(lreq) = lreq . SS ∖ CS

The set of honest signers 
that answered lreq



Go Beyond
  is a trivial forgery : (m*, σ*)TS-UF-1

  is a trivial forgery : (m*, σ*)TS-UF-2

|mSS(m*) | ≥ t − |CS |

|rSS(lreq) | ≥ t − |CS |

∃ lreq : lreq . msg = m*

rSS(lreq) := {i : (i, lreq) ∈ L}

∃ lreq : lreq . msg = m*  is a trivial forgery : (m*, σ*)TS-UF-4
rSS(lreq) = lreq . SS ∖ CSOur Highest

The set of honest signers 
that answered lreq



Strong Unforgeability 



Strong Unforgeability 

For signature schemes
m
σ

Signer
The adversary cannot forge  for σ*( ≠ σ) m



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

What is the issued signature?



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶

For schemes with deterministic signing

What is the issued signature?



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶
Φ

For schemes with deterministic signing

What is the issued signature?



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶
Φ

For schemes with deterministic signing

What is the issued signature?

m = lreq . msg



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶
Φ

For schemes with deterministic signing Depends on  so not unique for lreq m

What is the issued signature?

m = lreq . msg



Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶
Φ

For schemes with deterministic signing

FROST1/2 have this property
Depends on  so not unique for lreq m

What is the issued signature?

m = lreq . msg



Strong Unforgeability 



Strong Unforgeability 

  is a trivial forgery : (m*, σ*)TS-SUF-2
|rSS(lreq) | ≥ t − |CS |

  ∃ lreq : Φ(pk, lreq) = (m*, σ*)

  is a trivial forgery : (m*, σ*)TS-SUF-4
rSS(lreq) = lreq . SS ∖ CS

  ∃ lreq : Φ(pk, lreq) = (m*, σ*)



Full Picture 

TS-UF-  0 TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4



Full Picture 

TS-UF-  0

Loose reduction

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor

Previous 
works



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

General transformation from 
TS-(S)UF-  to TS-(S)UF-3 4

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor

Previous 
works



Separation of FROST1/2



Separation of FROST1/2
An adversary for FROST2



Separation of FROST1/2

n = 4, t = 3
An adversary for FROST2



Separation of FROST1/2

1 3 4

n = 4, t = 3

2

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
pk, sk3, sk4

1 3 4

n = 4, t = 3

2 3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

n = 4, t = 3

2 3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

For FROST1, the adversary has 
to query both signer 1 and 2

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

For FROST1, the adversary has 
to query both signer 1 and 2

An adversary for FROST2



Conclusion & Future work



Conclusion & Future work

Framework &

Security Hierarchy



Conclusion & Future work

Framework &

Security Hierarchy FROST2



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮
Adaptive security?



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮
UC models?Adaptive security?



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

Framework for general DKG protocols?

TS-UF-   ApplicationsX ↔

⋮ ⋮
UC models?Adaptive security?



Thank you!


