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Threshold Signatures [DY90]

Cryptocurrency Wallets

Single Key Distributed Key

Single point of failure Tolerates some fraction of 
corrupt signers

NIST Standardization
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• No formalization for partially 
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• Existing security notions are 
weaker than schemes can achieve


• Original proof for FROST [KG20] 
relied on heuristic assumptions

• A formal syntax for (partially) non-
interactive threshold signatures⟹

⟹

⟹

Analysis of BLS for stronger security

Concurrent work [Gro21]

• Fine-grained security hierarchy with 
stronger notions

• Analysis of FROST based on our 
security hierarchy 



Our Contributions



Our Contributions

• Introduce FROST2, an optimized version of FROST1



Our Contributions

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting



Our Contributions

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM



Our Contributions

• Show separation of security of FROST1 vs 2

• Introduce FROST2, an optimized version of FROST1

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST1/2 under OMDL + ROM 
in trusted DKG setting

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM

• Prove the security of FROST2 together with 
PedPoP DKG under OMDL + ROM + AGM



FROST



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]

• Consists of:


• PedPoP distributed key generation (DKG) protocol


• Two-round, concurrently secure signing protocol


• First round message-independent pre-processing


• Outputs standard, single-party Schnorr signature



FROST
• Flexible Round-Optimized Schnorr Threshold Signature [KG20]

• Consists of:


• PedPoP distributed key generation (DKG) protocol


• Two-round, concurrently secure signing protocol


• First round message-independent pre-processing


• Outputs standard, single-party Schnorr signature

• Prior attempts at two-round Schnorr threshold signatures -> ROS attacks 
[BLLOR21], https://github.com/mmaller/multi_and_threshold_signature_reductions
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FROST [KG20]

IETF Draft

NIST 
Standardization

5+ 
Implementations

Cryptocurrency 
Wallets



PedPoP Distributed Key Generation
• PedPoP [KG20] = Pedersen DKG + Proofs of Possession


• Proofs of possession are Schnorr signatures


• Requires a Knowledge of Exponent assumption


• For simplicity, instead of adding rounds to DKG


• Allows any number of corrupt signers (not honest majority)
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Verify:
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Proving the Security of FROST2 + PedPoP

• Security reductions for multi-party signatures have two moving parts:


1. Simulating honest users interacting with the adversary


2. Extracting a solution to some hard problem from the adversary’s 
responses


• Idea: Separate the two parts for a more modular reduction



Proving the Security of FROST2 + PedPoP
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Motivations
• No formalization for partially 

non-interactive schemes
 - Modeled as interactive protocols [KG20]
 - Simpler abstraction only for fully non-     


interactive schemes [Bol03, Wee11] 

 - Most works:  is considered signed      

   as long as one honest party signs it

 [GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

m

 - Only very few consider stronger 

   guarantees [Sho00, LJY14, Gro21]

• Existing security notions are 
weaker than schemes can achieve
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The Simplest

  is a trivial forgery : (m*, σ*)

Most of previous works consider this 
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

 : set of  queries to PSignOL (i, lreq)

, i lreq = {m*, …}
psigi PSignO

(m*, σ*)

When ,

 there are stronger 

security considerations

|CS | < t − 1

TS-UF-0
∃(i, lreq) ∈ L : lreq . msg = m*

CS = ∅ Not ruled out by TS-UF-0

Should make queries 
to at least  signers!t

At least one honest 
signer signed m*
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Very few previous works consider this 
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The set of honest 

signers that signed m

Partial sigs for  but from 
different  can be combined

m*
lreq

Even stronger?
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  is a trivial forgery : (m*, σ*)TS-UF-2

|mSS(m*) | ≥ t − |CS |

|rSS(lreq) | ≥ t − |CS |

∃ lreq : lreq . msg = m*

rSS(lreq) := {i : (i, lreq) ∈ L}

∃ lreq : lreq . msg = m*  is a trivial forgery : (m*, σ*)TS-UF-4
rSS(lreq) = lreq . SS ∖ CSOur Highest

The set of honest signers 
that answered lreq
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Strong Unforgeability 

For threshold signatures
lreq

Signer i
psigi

(pk, lreq) (m, σ)⟶
Φ

For schemes with deterministic signing

FROST1/2 have this property
Depends on  so not unique for lreq m

What is the issued signature?

m = lreq . msg
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Strong Unforgeability 

  is a trivial forgery : (m*, σ*)TS-SUF-2
|rSS(lreq) | ≥ t − |CS |

  ∃ lreq : Φ(pk, lreq) = (m*, σ*)

  is a trivial forgery : (m*, σ*)TS-SUF-4
rSS(lreq) = lreq . SS ∖ CS

  ∃ lreq : Φ(pk, lreq) = (m*, σ*)



Full Picture 

TS-UF-  0 TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4



Full Picture 

TS-UF-  0

Loose reduction

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor

Previous 
works



Full Picture 

TS-UF-  0

FROST1 is TS-SUF-  secure 
but not TS-UF-

3
4

FROST2 is TS-SUF-  secure 
but not TS-UF-

2
3

Under OMDL and ROM

General transformation from 
TS-(S)UF-  to TS-(S)UF-3 4

Loose reduction

BLS is TS-UF-  secure 
but not TS-UF-

1
2

Under -VCDH and ROMt

Hard in GGM 

Loosely implied by CDH

TS-UF-  1 TS-UF-  2 TS-UF-  3 TS-UF-  4

TS-SUF-  2 TS-SUF-  3 TS-SUF-  4

(n
t )with factor

Previous 
works



Separation of FROST1/2



Separation of FROST1/2
An adversary for FROST2



Separation of FROST1/2

n = 4, t = 3
An adversary for FROST2



Separation of FROST1/2

1 3 4

n = 4, t = 3

2

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
pk, sk3, sk4

1 3 4

n = 4, t = 3

2 3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

n = 4, t = 3

2 3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

PPO
pk, sk3, sk4

1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 4

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

For FROST1, the adversary has 
to query both signer 1 and 2

An adversary for FROST2



Separation of FROST1/2

CS = {3,4}
1,2

, 1 lreq
z1

PPO

PSignO

(m*, (R*, z*))

pk, sk3, sk4
1 3 4

m*, SS = {1,2,3} :lreq

n = 4, t = 3

2

(R1, S1), (R2, S2)

 
1 : (R1, S1)
2 : (R2, S2)
3 : (R3, S3)

3 41

For FROST1, the adversary has 
to query both signer 1 and 2

An adversary for FROST2



Conclusion & Future work



Conclusion & Future work

Framework &

Security Hierarchy



Conclusion & Future work

Framework &

Security Hierarchy FROST2



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮
Adaptive security?



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

TS-UF-   ApplicationsX ↔

⋮ ⋮
UC models?Adaptive security?



Conclusion & Future work

Framework &

Security Hierarchy FROST2

Better-than-advertised 
security of BLS, FROST

Security with 
PedPoP DKG

Framework for general DKG protocols?

TS-UF-   ApplicationsX ↔

⋮ ⋮
UC models?Adaptive security?



Thank you!


