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Our Focus: Non-Interactive Threshold Signatures

a n , # of signers Examples: threshold BLS [Bol03]
sk, - [ , reconstruction threshold threshold RSA [DSD+94, GJKR0O, Sho00]

What about DL-based?

(Pairing-free)

Vi(pk, m, o) — accept
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/ | \ Why is this needed?
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What's Missing & Our Contributions

. No formalization for partially

. . —>
non-interactive schemes

. EXxisting security notions are —
weaker than schemes can achieve

. Original proof for FROST [KG20] .
relied on heuristic assumptions

. A formal syntax for (partially) non-
interactive threshold signatures

Fine-grained security hierarchy with

stronger notions
Analysis of BLS for stronger security
Concurrent work [Gro21]

Analysis of FROST based on our
security hierarchy
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Our Contributions

. Introduce FROST?2, an optimized version of FROST1

. Prove the security of FROST1/2 under OMDL + ROM
in trusted DKG setting

. Prove the security of FROST?2 together with
PedPoP DKG under OMDL + ROM + AGM

. Show separation of security of FROST1 vs 2
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FROST

. Flexible Round-Optimized Schnorr Threshold Signature [KG20]
. Consists of:
. PedPoP distributed key generation (DKG) protocol
. Two-round, concurrently secure signing protocol
. First round message-independent pre-processing
. Outputs standard, single-party Schnorr signature

. Prior attempts at two-round Schnorr threshold signatures -> ROS attacks
|BLLOR21 ], https:/github.com/mmaller/multi_and_threshold_signature_reductions



FROST

FROST [KG20]



FROST




FROST







FROST




PedPoP Distributed Key Generation

. PedPoP [KG20] = Pedersen DKG + Proofs of Possession
. Proofs of possession are Schnorr signatures

. Requires a Knowledge of Exponent assumption

. For simplicity, instead of adding rounds to DKG

. Allows any number of corrupt signers (not honest majority)
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Proving the Security of FROST?2 + PedPoP

» Security reductions for multi-party signatures have two moving parts:
1. Simulating honest users interacting with the adversary

2. Extracting a solution to some hard problem from the adversary’s
responses

* |dea: Separate the two parts for a more modular reduction



Proving the Security of FROST?2 + PedPoP
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Motivations

. No formalization for partially
non-interactive schemes

- Modeled as interactive protocols [KG20]

- Simpler abstraction only for fully non-
interactive schemes [Bol03, Wee11]

- Most works: m is considered signed
. EXisting security notions are

weaker than schemes can achieve

as long as one honest party signs it
[GJKR96, KY02, Bol03, Weel1, KG20, BGG+18]

- Only very few consider stronger
guarantees [Sho00, LJY14, Gro21]
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The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-(0) (m*, o) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
CS=09
r “\

Not ruled out by TS-UF-0

1, lreq = {m*, ...}
When|CS| <t —1,

there are stronger \ Should make queries
security considerations (m*, %) toat least ¢ signers|

Most of previous works consider this
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]
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v

TS-UF-1  (m*, %) is atrivial forgery :  |mSS(m*)| >t — | CS|

Even stronger?

Very few previous works consider this

[Sho00, LJY14, Gro21] Partial sigs for m™ but from

different /req can be combined
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Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Th fh t Sl
/SS(lreq) = (i - (i.Ireq) € L) e set of honest signers &
that answered [lreq

TS-UF-2 (m*,o%)is atrivial forgery: 3 lreq : lreq. msg = m*
| rSS(Ureq)| =2t — | CS|

v

TS-UF-4 (m*,0%*)is atrivial forgery : 3 lreq : lreq . msg = m*
Our Highest rSS(lreq) = lreq.SS \ CS
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