Better than Advertised Security for
Non-Interactive Threshold Signatures

Mihir Bellare, Elizabeth Crites, Chelsea Komlo, Mary Maller,
Stefano Tessaro, Chenzhi Zhu

August 18, 2022

Threshold Signatures [DY90]

Single Key — Distributed Key

Single point of failure Tolerates some fraction of
corrupt signers

Cryptocurrency Wallets NIST Standardization

Our Focus: Non-Interactive Threshold Signatures

a n , # of signers

Skl — ! , reconstruction threshold

Vi(pk, m, o) — accept

Our Focus: Non-Interactive Threshold Signatures

a n , # of signers Examples: threshold BLS [Bol03]
sk, - [, reconstruction threshold threshold RSA [DSD+94, GJKR0O, Sho00]

Vi(pk, m, o) — accept

Our Focus: Non-Interactive Threshold Signatures

a n , # of signers Examples: threshold BLS [Bol03]
sk, - [, reconstruction threshold threshold RSA [DSD+94, GJKR0O, Sho00]

What about DL-based?

(Pairing-free)

Vi(pk, m, o) — accept

DL-based Threshold Signatures

DL-based Threshold Signatures

No fully non-interactive scheme yet

DL-based Threshold Signatures

No fully non-interactive scheme yet

Schnorr Signatures

Single message-dependent
round: FROST [KG20]

A single-round message-
independent pre-processing

“Partially non-interactive”

DL-based Threshold Signatures

No fully non-interactive scheme yet

Schnorr Signatures ECDSA
Single message-dependent Single message-dependent
round: FROST [KG20] round: [CGG+20]
A single-round message- A multi-round message-
independent pre-processing independent pre-processing

“Partially non-interactive”

DL-based Threshold Signatures

No fully non-interactive scheme yet

Schnorr Signatures ECDSA
Single message-dependent Single message-dependent
round: FROST [KG20] round: [CGG+20]
A single-round message- A multi-round message-
independent pre-processing independent pre-processing

: : : d
“Partially non-interactive”

This Paper

A formal framework for (partially)
non-interactive threshold signatures

Syntax Security notions

This Paper

This Paper

Security notions

/ | \ Why is this needed?

What's Missing & Our Contributions

What's Missing & Our Contributions

. No formalization for partially
non-interactive schemes

What's Missing & Our Contributions

. No formalization for partially . A formal syntax for (partially) non-
non-interactive schemes interactive threshold signatures

What's Missing & Our Contributions

. No formalization for partially . A formal syntax for (partially) non-
non-interactive schemes interactive threshold signatures

. EXisting security notions are
weaker than schemes can achieve

What's Missing & Our Contributions

. No formalization for partially . A formal syntax for (partially) non-
non-interactive schemes interactive threshold signatures

. Existing security notions are —— « Fine-grained security hierarchy with
weaker than schemes can achieve stronger notions

What's Missing & Our Contributions

. No formalization for partially . A formal syntax for (partially) non-

non-interactive schemes interactive threshold signatures
. Existing security notions are —— « Fine-grained security hierarchy with
weaker than schemes can achieve stronger notions

. Original proof for FROST [KG20]
relied on heuristic assumptions

What's Missing & Our Contributions

. No formalization for partially . A formal syntax for (partially) non-

—

non-interactive schemes interactive threshold signatures

. Existing security notions are —— « Fine-grained security hierarchy with
weaker than schemes can achieve stronger notions

. Original proof for FROST [KG20] . Analysis of FROST based on our

relied on heuristic assumptions security hierarchy

What's Missing & Our Contributions

. No formalization for partially

. . —>
non-interactive schemes

. EXxisting security notions are —
weaker than schemes can achieve

. Original proof for FROST [KG20] .
relied on heuristic assumptions

. A formal syntax for (partially) non-
interactive threshold signatures

Fine-grained security hierarchy with

stronger notions
Analysis of BLS for stronger security
Concurrent work [Gro21]

Analysis of FROST based on our
security hierarchy

Our Contributions

Our Contributions

. Introduce FROST?2, an optimized version of FROST1

Our Contributions

. Introduce FROST?2, an optimized version of FROST1

. Prove the security of FROST1/2 under OMDL + ROM
in trusted DKG setting

Our Contributions

. Introduce FROST?2, an optimized version of FROST1

. Prove the security of FROST1/2 under OMDL + ROM
in trusted DKG setting

. Prove the security of FROST?2 together with
PedPoP DKG under OMDL + ROM + AGM

Our Contributions

. Introduce FROST?2, an optimized version of FROST1

. Prove the security of FROST1/2 under OMDL + ROM
in trusted DKG setting

. Prove the security of FROST?2 together with
PedPoP DKG under OMDL + ROM + AGM

. Show separation of security of FROST1 vs 2

FROST

FROST

. Flexible Round-Optimized Schnorr Threshold Signature [KG20]

FROST

. Flexible Round-Optimized Schnorr Threshold Signature [KG20]
. Consists of:
. PedPoP distributed key generation (DKG) protocol
. Two-round, concurrently secure signing protocol
. First round message-independent pre-processing

. Outputs standard, single-party Schnorr signature

FROST

. Flexible Round-Optimized Schnorr Threshold Signature [KG20]
. Consists of:
. PedPoP distributed key generation (DKG) protocol
. Two-round, concurrently secure signing protocol
. First round message-independent pre-processing
. Outputs standard, single-party Schnorr signature

. Prior attempts at two-round Schnorr threshold signatures -> ROS attacks
|BLLOR21], https:/github.com/mmaller/multi_and_threshold_signature_reductions

FROST

FROST [KG20]

FROST

FROST

FROST

PedPoP Distributed Key Generation

. PedPoP [KG20] = Pedersen DKG + Proofs of Possession
. Proofs of possession are Schnorr signatures

. Requires a Knowledge of Exponent assumption

. For simplicity, instead of adding rounds to DKG

. Allows any number of corrupt signers (not honest majority)

FROST1

FROST1

)

.eader

RB’ S3

FROST1

R, 5,

R,=¢g"§, =g —m8 8

)

.eader

R;, 35

FROST1

sk

¥ RZ’ S2
— r p— \) ————————————————————————-

n B m, 12,3}, Rs, 53

—

)

.eader

Sk3 R. S R3, S3
—
O 373 m,{2,3},R,, S,
—

FROST1

R,, S
R2 =gr2,52 :gS2 #’

m, {293}9R3’ S3

pk output by DKG
— 1713 |
R = Hszij

c <« H(pk, m, R)

)

.eader

sky

Rs, 35

R, S e EEE—
O 323 m, {2,3},R,, S,
J{23}LRy. Sy

FROST1

sk,

R _ Iy S — \)y) #Sé;
P =8 50y =8 m,{2,3},R3,S3
ZZ «— I"2+d2S2+ Cﬁszz

pk output by DKG
— 1713 |
R = Hszij

c <« H(pk, m, R)

)

.eader

sk R;, S5
K3 53 (23).R,.S
O 2y Ty + dySy + CAysky o720

FROST1

sk,

RZ’ S2
R2 — gr2, S2 = gS2 - e

m, {293}9R3’ S3

%)
e ————————— e

ZZ <« 7'2 + szz + Cﬁszz

pk output by DKG
— 1713 |
R = HZR]-S].J

c <« H(pk, m, R)

)

.eader

sk R;, S5

R3’S3
m,{2,3},.R,, S
O G Iyt dysy + csshs {Z —
3

—————————————————————————-

FROST1

sk,

RZ’ S2
R,=g"8 =g —m ———

m, 12,3}, Rs, S5

%)
—>

2y < Iy +dyrsy + cAysk,

pk output by DKG
R = HgRjS.df' o= (R,2)
J

c <« H(pk, m, R) | ender

sky R., S,

R3, S3 -_—
m,{2,3},.R,, S
O Z3 <« 7‘3 —+ d3S3 —+ C/13Sk3 42}4
3

————————————————————————————

FROST1

sk,

R,, S
R,=g".8,=g" ——————

m, 12,3}, Rs, S5

%)
—>

2y < Iy +dyrsy + cAysk,

pk output by DKG
R =TLR;S o= (R,2)
¢ < H(pk,m,R)
Leader
sky
R3, S3 —R;?HV Verify:
O 23 < 13+ dys3 + cAsysk; 4%# c < H(pk,m,R)
3 ?

- R - pk¢ = g°

FROST?2

Ry, 5,

R 52 (2.3),R., S

2y < Ir+ds, + cArsk, MR SRR LEA L
9

_—

pk output by DKG
d = I:I(pk, m, {Rj, Sj]}g) n 7+
R =TGRS’ 6= (R,2)
c <« H(pk,m,R) [eader
- R;, S, #L%» Verify:
O 23 « I3tdss + cAysk; M ¢ < H(pk, m, R)
3 ?

- R - pk¢ = g°

Proving the Security of FROST?2 + PedPoP

» Security reductions for multi-party signatures have two moving parts:
1. Simulating honest users interacting with the adversary

2. Extracting a solution to some hard problem from the adversary’s
responses

* |dea: Separate the two parts for a more modular reduction

Proving the Security of FROST?2 + PedPoP

PedPoP
(KeyGen)

v

Schnorr KoE
Assumption

Discrete Log
+ AGM

FROST?2
(Signing)

v

Bischnorr
Assumption

One-More Discrete Log
+ ROM

Multi-party

Single party

Framework &
Security Hierarchy

Motivations

. No formalization for partially
non-interactive schemes

. EXisting security notions are
weaker than schemes can achieve

Motivations

. No formalization for partially
non-interactive schemes

- Modeled as interactive protocols [KG20]

. EXisting security notions are
weaker than schemes can achieve

Motivations

. No formalization for partially
non-interactive schemes

- Modeled as interactive protocols [KG20]
- Simpler abstraction only for fully non-
interactive schemes [Bol03, Wee11]

. EXisting security notions are
weaker than schemes can achieve

Motivations

. No formalization for partially
non-interactive schemes

- Modeled as interactive protocols [KG20]
- Simpler abstraction only for fully non-
interactive schemes [Bol03, Wee11]

- Most works: m is considered signed
. EXisting security notions are

weaker than schemes can achieve

as long as one honest party signs it
[GJKR96, KY02, Bol03, Weel1, KG20, BGG+18]

Motivations

. No formalization for partially
non-interactive schemes

- Modeled as interactive protocols [KG20]

- Simpler abstraction only for fully non-
interactive schemes [Bol03, Wee11]

- Most works: m is considered signed
. EXisting security notions are

weaker than schemes can achieve

as long as one honest party signs it
[GJKR96, KY02, Bol03, Weel1, KG20, BGG+18]

- Only very few consider stronger
guarantees [Sho00, LJY14, Gro21]

(Partially) Non-interactive Threshold Sigs

n=31=2

)

Signer 1

-

Signer 2 O Leader

Signer 3

(Partially) Non-interactive Threshold Sigs

sk
sk, Signer 1
sk,

Signer 2 O

Signer 3

pk

.eader

n=31=2

(Partially) Non-interactive Threshold Sigs

Pre-processing token

5Ky ppy — n=3,t=2
sk, Signer 1
a PP,
. sk
Signer 2 Leader
o P

Signer 3

(Partially) Non-interactive Threshold Sigs

Pre-processing token

5Ky ppy — n=3,t=2
sk, Signer 1
a PP,
sk _
Signer 2 Leader
o -

Signer 3

(Partially) Non-interactive Threshold Sigs

Pre-processing token

5Ky ppy — n=3,t=2
sk, Signer 1
a PP,
sk _
Signer 2 Leader
o -

Signer 3

(Partially) Non-interactive Threshold Sigs

Pre-processing token

sk o
sk, (Signer 1)
a PP,

| sk,
Signer 2 [.eader
o P

(Signer 3)

pk

n=31=2

Set of signers, |SS| > ¢
\

/lreq T m, ES — {1,3h

_ %

(Partially) Non-interactive Threshold Sigs

Pre-processing token

Skl PP1—/ n=3,1=2
-_—

)

pk Set of signers, |SS| > ¢
\

N
sk, (Signer 1) /lieq: m, S = (13))

a PP>

sk; N G W,

Signer 2 [.eader <
0 PPs Auxiliary information

(Signer 3)

(Partially) Non-interactive Threshold Sigs

Pre-processing token

sk o
sk, (Signer 1)
a PP,

. sk
Signer 2 [.eader
o .

(Signer 3)

pk

n=31=2

Set of signers, |SS| > ¢
\

/lreq T m, ES — {1,3h

Auxiliary information

(Partially) Non-interactive Threshold Sigs

Pre-processing token

sky ppl_/ n=3,1t=72
e I .
pk Set of signers, |SS| > ¢
\
<
/lreq: m, SS = {1,3h

Leader N |
Auxiliary information

(Partially) Non-interactive Threshold Sigs

sk,

Signer 2

sk

(Signer 1)

a PP>

sk,

(Signer 3)

Pre-processing token

pp, —
lreq

—

psig,

pk

n=31=2

Set of signers, |SS| > ¢
\

/lreq T m, ES — {1,3h

L.eader
PP3

—_—

lreq

—

pSigs

—————————————————————————————-

Auxiliary information

(Partially) Non-interactive Threshold Sigs

sk,

Signer 2

sk

(Signer 1)

a PP>

sk,

(Signer 3)

Pre-processing token

pp, —
lreq

—

psig,

pk

n=31=2

Set of signers, |SS| > ¢
\

/lreq T m, ES — {1,3h

.eader

N

Verify(pk, m, o) — accept

PPs

—_—

lreq

—

pSigs

—————————————————————————————-

Auxiliary information

Unforgeability

sk

th

sk, Signer 1

-

sk,

Signer 2 O Leader

Signer 3

Unforgeability

sk

th

sk, Signer 1

-

sk,

Signer 2 0 Adversary

Signer 3

Unforgeability

sk

th

Signer 1

sk,

Signer 3

Adversary

Unforgeability

sk

pk sks

th

Signer 1

Adversary

Signer 3

U
nforgeability

sk

PP

——————_—

lreq
pk sks

—

psig,

—_—

sk |
, Signer 1

-~
N PP>

Signer 3

Signer 2

Adversary

U
nforgeability

sk

PP

——————_—

lreq
pk sks

—

psig,

—_—

sk |
, Signer 1

-~
N PP>

Signer 3

Signe
r2
Adversary W
(m™
, 07™)

Unforgeability

sk

PP

—_——

Ireq pk sk

—

psig,

—_—

sk, Signer 1

Adversary
~ (m*, 6™)
The adversary cannot forge

any non-trivial signature

Signer 3

Unforgeability

sk

nr.

This work:
What is a trivial forgery?

Signer 3

Signe. —

FA\GUaveloal)’

™ (m*, %)

The adversary cannot forge
any non-trivial signature

(General) Unforgeability Game (TS-UF)

(General) Unforgeability Game (TS-UF)

CS, Set of corrupted signers

Pk, {8k;}iccs l

(General) Unforgeability Game (TS-UF)

CS, Set of corrupted signers

pk, {Ski}iecg l 1 is an honest signer
, lreq
pSig. -PSignO

(m*, o)

(General) Unforgeability Game (TS-UF)

CS, Set of corrupted signers

pk, {Ski}iecg l 1 is an honest signer

Arbitrary number of times

/

«—
s |2
5 (3
~, ’Q
-
2
Q
>
O

(General) Unforgeability Game (TS-UF)

CS, Set of corrupted signers

pk, {Ski}iecs l 1 is an honest signer
s R B

Arbitrary number of times

, lreq

(m*, o)

Adversary wins iff (m™, 6*) is not a trivial forgery

(General) Unforgeability Game (TS-UF)

CS, Set of corrupted signers

pk, {Ski}ieCS l 1 is an honest signer
s R B

Arbitrary number of times

, lreq

What is a trivial forgery?

(m*, o)

Adversary wins iff (m™, 6*) is not a trivial forgery

Set of trivial forgeries

Set of trivial forgeries Security levels

TS-UF-0

_—

TFO

Set of trivial forgeries Security hierarchy

TS-UF-0

_—

TFO

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, 0*) is a trivial forgery :
(i, lreq) € L : lreq . msg = m*

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, 0*) is a trivial forgery :
(i, lreq) € L : lreq . msg = m*

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, o) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
N\ :
1, lreq = {m*, ...}

\ (m*, o™*) /

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, 6*) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
Most of previous works consider this : \

o\ :
IGJKR96, KY02, Bol03, Wee11, KG20, BGG+18] ,
1, lreq = {m*, ...}
psig; PSignO

\ (m*, o™*) /

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, 6*) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
Most of previous works consider this \

IGJKR96, KY02, Bol03, Wee11, KG20, BGG+18] ’ \ ,
1, lreq = {m*, ...}
psig: -PSignO
When|CS| <t —1,

there are stronger

security considerations \ (m*, 6%) /

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-0 (m*, 6*) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*

Most of previous works consider this
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

When|CS| <t —1,
there are stronger
security considerations

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-(0) (m*, o) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
CS=09
r “\

Not ruled out by TS-UF-0

1, lreq = {m*, ...}
psig; PSignO

security considerations (m*, 6%)

Most of previous works consider this
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

When|CS| <t -1,
there are stronger \

The Simplest

L : set of (i, [req) queries to PSignO

TS-UF-(0) (m*, o) is a trivial forgery :
At least one honest
3@, lreq) € L : lreq.msg = m* signer signed m*
CS=09
r “\

Not ruled out by TS-UF-0

1, lreq = {m*, ...}
When|CS| <t —1,

there are stronger \ Should make queries
security considerations (m*, %) toat least ¢ signers|

Most of previous works consider this
[GJKR96, KY02, Bol03, Wee11, KG20, BGG+18]

Next One

Next One

mSS(m) := {i : dlreg s.t. (i,lreq) € L, lreq.msg = m}

Next One

The set of honest
mSS(m) = {i : Alreg s.t. (i,lreq) € L, lreq.msg = m} < signers that signed m

Next One

The set of honest
mSS(m) = {i: dlreq st. (i,lreq) € L, lreq.msg = m} <_signers that signed m

TS-UF-0) (m*,0%) is a trivial forgery : | mSS(m*)| > O

Next One

The set of honest
mSS(m) = {i: dlreq st. (i,lreq) € L, lreq.msg = m} <_signers that signed m

TS-UF-0) (m*,0%) is a trivial forgery : | mSS(m*)| > O

v

TS-UF-1 (m*, %) is atrivial forgery : |mSS(m*)| >t — | CS|

Next One

The set of honest
mSS(m) = {i: dlreq st. (i,lreq) € L, lreq.msg = m} <_signers that signed m

TS-UF-0) (m*,0%) is a trivial forgery : | mSS(m*)| > O

v

TS-UF-1 (m*, %) is atrivial forgery : |mSS(m*)| >t — | CS|

Very few previous works consider this
[Sho00, LJY14, Gro21]

Next One

The set of honest
mSS(m) = {i: dlreq st. (i,lreq) € L, lreq.msg = m} <_signers that signed m

TS-UF-0) (m*,0%) is a trivial forgery : | mSS(m*)| > O

v

TS-UF-1 (m*, %) is atrivial forgery : |mSS(m*)| >t — | CS|

g
Very few previous works consider this Even stronger:

[Sho00, LJY14, Gro21]

Next One

The set of honest
mSS(m) = {i: dlreq st. (i,lreq) € L, lreq.msg = m} <_signers that signed m

TS-UF-0) (m*,0%) is a trivial forgery : | mSS(m*)| > O

v

TS-UF-1 (m*, %) is atrivial forgery : |mSS(m*)| >t — | CS|

Even stronger?

Very few previous works consider this

[Sho00, LJY14, Gro21] Partial sigs for m™ but from

different /req can be combined

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

rSS(lreqg) :={i: (i,lreq) € L}

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Th fh t si
rSS(lreq) := {i : (i, lreq) € L) e set of honest signers
that answered [lreq

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Th fh t Sl
/SS(lreq) = (i - (i.Ireq) € L) e set of honest signers &
that answered [lreq

TS-UF-2 (m*,o%)is atrivial forgery: 3 lreq : lreq. msg = m*
| rSS(Ureq)| =2t — | CS|

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Th fh t Sl
/SS(lreq) = (i - (i.Ireq) € L) e set of honest signers &
that answered [lreq

TS-UF-2 (m*,o%)is atrivial forgery: 3 lreq : lreq. msg = m*
| rSS(Ureq)| =2t — | CS|

v

TS-UF-4 (m*,0%*)is atrivial forgery : 3 lreq : lreq . msg = m*
rSS(lreq) = lreq.SS \ CS

Go Beyond

TS-UF-1 (m*,0%)is atrivial forgery : |mSS(m™*)| > t— | CS|

Th fh t Sl
/SS(lreq) = (i - (i.Ireq) € L) e set of honest signers &
that answered [lreq

TS-UF-2 (m*,o%)is atrivial forgery: 3 lreq : lreq. msg = m*
| rSS(Ureq)| =2t — | CS|

v

TS-UF-4 (m*,0%*)is atrivial forgery : 3 lreq : lreq . msg = m*
Our Highest rSS(lreq) = lreq.SS \ CS

Strong Unforgeability

Strong Unforgeability

-

_

FFor signature schemes N
m
—_—
—C

The adversary cannot forge 6*(# o) for m

t1

Signer

Strong Unforgeability

-

For threshold signatures g » <
req
—_—
psig;

_

Signer 1

Strong Unforgeability

-

For threshold signatures ; o~ '

_

req

—_—

psig;

—

What is the issued signature?

Signer 1

Strong Unforgeability

-

For threshold signatures

Ve \

req

—_—

psig;

—

What is the issued signature?

_

Signer 1

For schemes with deterministic signing

(pk, lreq) — (m, o)

Strong Unforgeability

-

For threshold signatures

Ve \

req

—_—

psig;

—

What is the issued signature?

_

Signer 1

For schemes with deterministic signing

O
(pk,lreq) ~ —> (m,0)

Strong Unforgeability

-

For threshold signatures

Ve \

req

—_—

psig;

—

What is the issued signature?

_

Signer 1

For schemes with deterministic signing

O
(pk,lreq) ~ —> (m,0)
A

[m = [req . msg]

Strong Unforgeability

-

For threshold signatures

Ve \

req

—_—

psig;

—

Signer 1

What is the issued signature?

_

For schemes with deterministic signing [D epends on [req so not unique for mJ

A

= lreq . msg]

) v
(pk, lreq) — (m, o)
[m

Strong Unforgeability
4 N

For threshold signatures g » <
req
—_—
psig;
Signer 1
What is the issued signature?

_ /

For schemes with deterministic signing [D epends on [req so not unique for mJ

A

= lreq . msg]

0
(pk, lreq) — (m, GV) FROST1/2 have this property
[

Strong Unforgeability

Strong Unforgeability

TS—SUF—2 (m™*, 0*) is a trivial forgery : 3 lreq : ©(pk,lreq) = (m*, c*)
| rSS(lreq)| > 1 — | CS|

lreq . ©(pk,lreq) = (m*, 6*)
rSS(lreq) = lreqg.SS \ CS

TS-SUF-4 (m*,c*) is a trivial forgery :

Full Picture

TS-SUF-2 «—TS-SUF-3 «— TS-SUF-4

]

TS-UF-0 «— TS-UF-1 «— TS-UF-2 +— TS-UF-3 «+— TS-UF4

Full Picture

TS-SUF-2 «— TS-SUF-3 «— TS-SUF-4

]

TS-UF-0 «— TS-UF-1 «— TS-UF-2 +— TS-UF-3 «+— TS-UF4

> 4

~
~ -

.oose reduction

with factor ()

Full Picture

BLS is TS-UF-1 secure 1 9-SUF-2 «—TS-SUF-3 «— TS-SUF-4

but not TS-UF-2 1 J l
"""")(A

TS—UFTO +— TS-UF-1 +— TS-UF-2 +— TS-UF-3 «— TS-UF-4

> 4

~
“ >
.......

.oose reduction

with factor ()

Full Picture

Hard in GGM
Loosely implied by CDH
',
Under 7-VCDH and ROM

BLS is TS-UF-1 secure 1 9-SUF-2 «—TS-SUF-3 «— TS-SUF-4

but not TS-UF-2 1 J l
"""")(Tt
TS—UFTO +— TS-UF-1 «— TS-UF-2 «— TS-UF-3 «— TS-UF-4

.oose reduction

with factor (")

Full Picture

[L Ta-rd ir:.Gth.)\A CDH) FROST1is TS-SUF-3 secure
— Ir{]/p — but not TS-UF-4

Under r-VCDH and ROM

BLS is TS-UF-1 secure 1 9-SUF-2 «—TS-SUF-3 «— TS-SUF-4

but not TS-UF-2 1 J —\' l
—————)(T \\A
TS—UFTO +— TS-UF-1 «— TS-UF-2 «— TS-UF-3 «— TS-UF4

.oose reduction

with factor (/)

Full Picture

[Hard in GGM) FROST2 is TS-SUF-2 secure FROST1is TS-SUF-3 secure
Loosely ir\n/plied by CDH bUt not TS-UF-3 but Cot TS_UF_4

Under --VCDH and ROM

BLS is TS-UF-1 secure 1 9-SUF-2 «—TS-SUF-3 «— TS-SUF-4

but not TS-UF-2 l _‘_ J __ l
.....)(A \\x \\\
T S—UFT() +«— TS-UF-1 «— TS-UF-2 +— TS-UF-3 «+— TS-UF-4

.oose reduction

with factor (/)

Full Picture

/Under OMDL and ROM \
(ard 7 GGM) FROST?2 is TS-SUF-2 secure FROST1 is TS-SUF-3 secure
Loosely ir\n/plied by CDH bUt not TS-UF-3 but not TS-UF—4

Under --VCDH and ROM

BLS is TS-UF-1 secure ~ 19-SUF-2 «+— TS-SUF-3 «— TS-SUF-4

but not TS-UF-2 l _‘_ J __ l
.....)(A \\x \\\
T S—UFT() +«— TS-UF-1 «— TS-UF-2 +— TS-UF-3 «+— TS-UF-4

> 4

~
~ -

.oose reduction

with factor (")

Full Picture

(

Hard in GGM)

Loosely implied by CDH

\

Under --VCDH and ROM

4)
Previous

_ works

~

\f

BLS is TS-UF-1 secure

/Under OMDL and ROM \

FROST2 is TS-SUF-2 secure FROST1is TS-SUF-3 secure
but not TS-UF-3 but not TS-UF-4

but not TS-UF-2

- -~
- Ny
. b

TS-SUF-2 «—TS-SUF-3 «— TS-SUF-4

5
5
) 5
5 5
5 5
A
5
L 2
A &
5 5
5 5
A 5
5)
5 D

TS—UFTO +— TS-UF-1 +— TS-UF-2 +— TS-UF-3 «— TS-UF-4

> 4

~
~ -

.oose reduction

with factor (")

Full Picture

/Under OMDL and ROM \
(ard 7 GGM) FROST?2 is TS-SUF-2 secure FROST1 is TS-SUF-3 secure
Loosely ir\n/plied by CDH bUt not TS-UF-3 but not TS-UF—4

Under --VCDH and ROM

~ BLSis TS-UF-1 secure TS-SUF-2 < TS'SUF — S‘SUF'4

Previous H)
| works ut not TS-UF- _\— J __ l
\f K- T T

TS-UF-0 «— TS-UF-1 «+—— TS-UF-2 +— TS- UF—3 D TS UF-4

'
~ o

.oose reduction General transformation from
with factor (/) TS-(S)UF-3 to TS-(S)UF-4

Separation of FROST1/2

Separation of FROST1/2

An adversary for FROST?2

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23
CS = {3,4}

pk, sk, sk,
Ve \

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23

CS = {3.4)

pk, sk, sk, 1,2 -

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23

CS = {3.4)

pk, sk, sk, 1,2 -

Separation of FROST1/2

An adversary for FROST?2

n=4,rtr=23

CS = {3,4}
pk, sk, sk,
Ve \

1,2

1

2

3

A

_

/lreq: m*,SS = {1,2,3}\

/

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23
= {3,4}
pk, sk, sk,

Ve \

1,2

ok

req m*, 88 = {1,2,3}

_

/

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23
= {3,4}
pk, sk, sk,

Ve \

1,2

ok

_

req m*, 88 =1{1,2,3}
|
2
3:

(R, $/)

(R, $5)
(R3, $3)

/

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23
= {3,4}
pk, sk, sk,

Ve \

1,2

ok

_

req m*, 88 =1{1,2,3}
|
2
3:

(R, $/)

(R, $5)
(R3, $3)

/

Separation of FROST1/2

An adversary for FROST?2
n=4,rtr=23
= {3,4}
pk, sk, sk,

Ve \

\

(m*, (R*, z¥))

1,2

1, lreq
Zq -PSIQHO

ok

_

req m*, 88 = {1,2,3}

1: (R,$))
2: (R, S))
3: (R3,85) /

Separation of FROST1/2

An adversary for FROST?2
n=4,1t=3 to query both signer 1 and 2

CS = {3,4)
pk, sksy, sk, 1,2
g :-(Rl’sl)’ (RQ’SQ) (ireq: me,s5 - {T 2.3)

1: (R,$))

1, lreq :
Zi -PSignO 21 (Ry,5))
\ 3: (R, 83)

(m*, (R*, z¥)) -

For FROST1, the adversary has

/

Separation of FROST1/2

An adversary for FROST?2
n=4,1t=3 to query both signer 1 and 2

CS = {3,4)
pk, sksy, sk, 1,2
g :-(Rl’sl)’ (RQ’SQ) (ireq: me,s5 - {T 2.3)

1: (R,$))

1, lreq :
2 -PSignO 21 (Ry,5))
\ 3: (R, 83)

(m*, (R*, z¥)) -

For FROST1, the adversary has

/

Conclusion & Future work

Conclusion & Future work

Framework &
Security Hierarchy

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Better-than-advertised
security of BLS, FROST

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Security with
PedPoP DKG

Better-than-advertised
security of BLS, FROST

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Security with
PedPoP DKG

Better-than-advertised
security of BLS, FROST

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Security with
PedPoP DKG

Better-than-advertised
security of BLS, FROST

TS-UF-X < Applications

......................
. |
LI
1
1

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Security with
PedPoP DKG

Better-than-advertised
security of BLS, FROST

Conclusion & Future work

Framework &
Security Hierarchy FROST?

Security with
PedPoP DKG

Better-than-advertised
security of BLS, FROST

--

--

