
Secret Can Be Public:
Low-Memory AEAD Mode
for High-Order Masking

Yusuke Naito (Mitsubishi Electric Corporation)

Yu Sasaki (NTT Social Informatics Laboratories)

Takeshi Sugawara (The University of Electro-Communications)

Wednesday, August 17, 10:00-11:40, Lotte Lehmann Hall
Session: Cryptanalysis II

1. HOMA: a new TBC-based AEAD mode
• small memory size for high-order masking side-channel

countermeasures

• we protect only 𝑠/2 bits of the state, while we prove its
security up to 𝑠 bits.

2. SKINNYee: a new SKINNY-based TBC instance
• 64-bit block, 128-bit key, 259-bit tweak

• Tweak and key should not be mixed in the schedule.

3. Hardware Implementation
• Slightly bigger than state-of-the-art without masking.

• Smallest for any protection order 𝑑 > 0.

Overview

2

• Side-channel analysis (SCA):

Besides the standard input/output of the function,
the adversary steals some information from
implementation features.

• Resistance against SCA is considered in the
selection of future standards “lightweight
cryptographic standardization process” by NIST.

Side-Channel Analysis

1101

plaintext

ciphertext

3

1. Leakage resilient
• use leak-free component in a part of computations

• minimize the use of such leak-free components

• typically aims at optimizing the speed, not the size

2. Masking-friendly primitive
• a primitive with a low multiplicative complexity

• Mode-level optimization is not considered.

3. Low-memory AEAD mode
• apply masking to all computations

• minimize the memory size after the masking

Directions on AEAD with SCA Protection

4

Side-Channel Adversary (Probing Model)

The (first-order) adversary probes a wire to
get data.
We assume the worst case scenario; the
adversary fully gets the data on the wire.

5

Masking Countermeasures

EN
C

O
D

E

D
D

C
O

D
E

randomness

?

Data is encoded to multiple shares.
Unable to get data only by probing a wire. 6

High-Order Masking

?

Powerful adversary may probe 𝑑 wires. (𝑑 > 1)
Such adversaries can be avoided by making more shares.

EN
C

O
D

E

D
D

C
O

D
E

randomness

7

Research Motivation

• Large memory overhead for multiple shares
particularly for a high-order (large 𝑑).

• 𝑑 + 1 masking schemes encode a state into
𝑑 + 1 shares.

• We need a new design that achieves a small
memory size after a masking with
protection order 𝑑.

8

Minimum State Size

𝑠

state

𝑠

key

• To achieve 𝑠-bit security, the state size and the
key size must be at least 𝑠 bits.

• Otherwise, the key or state can be guessed with
a complexity less than 2𝑠.

9

Folklore on the Memory Size for Masking

𝑠

state

𝑠

key

(𝑑 + 1)𝑠

(𝑑 + 1)𝑠

By encoding the state and the key into d+1 shares,
the total memory size is at least (𝑑 + 1)2𝑠 bits

Folklore

10

Overview of Our Approach 1

0.5𝑠
protected

state

𝑠

key

(𝑑 + 1)𝑠

(𝑑 + 1)0.5𝑠

unprotected
state

0.5𝑠

1. Leave 𝑠/2 bits “unprotected”. Asymptotically
achieves (𝑑 + 1)1.5𝑠 bits of memory.

11

Overview of Our Approach 2

protected
state

𝑠

key

(𝑑 + 1)𝑠

unprotected
state

2. Devise new operations to securely mix
protected and unprotected values.

0.5𝑠
(𝑑 + 1)0.5𝑠

0.5𝑠

12

General Description

• With a standard nonce-based AEAD, the
construction is generally attacked with 20.5𝑠.

protected

𝐴 or 𝑀

Data Processing
Function (DPF)

0.5𝑠

0.5𝑠
unprotected

13

Decryption with Unprotected State

• For any decryption query, unprotected
values are leaked even with an invalid tag.

• The verify-then-decrypt policy cannot
stand against SCA adversaries.

IV

𝐴1

DPFA

0.5𝑠

0.5𝑠

𝐴2

DPFA

𝑀1

DPFM

𝑀2

DPFM

𝐶1 𝐶2

14

An Attack for Fixed IV

IV

𝐴1

DPFA

0.5𝑠

0.5𝑠

𝑀

DPFM

𝐶

IV

𝐴2

DPFA

0.5𝑠

0.5𝑠

𝑀

DPFM

𝐶

• Make 20.5𝑠 Dec
queries (𝑁, 𝐴, 𝐶, 𝑇) to
get unprotected
values for various 𝐴.

• Find (𝐴1, 𝐴2) colliding
in unprotected values.

• Make an Enc query
(𝑁, 𝐴1, 𝑀∗) for any
𝑀∗ to get (𝐶∗, 𝑇∗).

• (𝑁, 𝐴2, 𝐶∗, 𝑇∗) is a
valid pair.

15

Use of Random IV

RIV

𝐴1

DPFA

0.5𝑠

0.5𝑠

𝑀

DPFM

𝐶

RIV

𝐴2

DPFA

0.5𝑠

0.5𝑠

𝑀

DPFM

𝐶

• We force IV to be
randomly determined
for each Enc query.

• Adversaries can no
longer play with Dec
oracle before IV is
determined.
(otherwise, random IV
needs to be guessed.)

16

Primitive Choice

TBCtweak

plaintext

Plaintext/ciphertext: directly updated by a key,
thus needs protection.
 Protected state is assigned to plaintext.

Tweak: a public value, thus no need of protection.
 Unprotected state and other public data

(nonce, ctr, data input) are assigned to tweak.

ciphertext

17

• HOMA applies the protection only for the
plaintext-ciphertext of TBC with 0.5𝑠-bit block.

• The idea of PFB_plus helps to ensure 𝑠-bit
security by using 0.5𝑠-bit block TBC.

BBB Security of PFB_plus [NSS,EC20]

0.5𝑠

0.5𝑠

TBC
𝑡𝑤𝑖

𝐴𝑖

18

PFB_plus is Broken If Unprotected

By unprotecting a half of the state of PFB_plus,
the construction is broken only by 20.5𝑠.

protected

unprotected

The protected value 𝑣3 is recovered from unprotected
values 𝑣1 and 𝑣2.

0.5𝑠

TBC
𝑡𝑤𝑖

𝐴𝑖

𝑣3

𝑣1 𝑣2

19

0.5𝑠

Overview of DPFA

• A TBC-call generates 0.5𝑠-bit unpredictable value.
To mix the 𝑠-bit state, 2 TBC calls are needed.

• Compared to PFB_plus:
• bigger tweak more memory for 𝑑 = 0.
• smaller protected state less memory for 𝑑 > 0.

0.5𝑠

0.5𝑠

TBC
𝑡𝑤𝑖,1

𝐴𝑖 TBC
𝑡𝑤𝑖,2

𝐴𝑖

20

Overview of DPFM

• For DPFM, the first TBC generates a key stream,
and other 2 TBC calls mix the state.

TBC
𝑡𝑤𝑖,2

′

𝐶𝑖 TBC
𝑡𝑤𝑖,3

′

𝐶𝑖TBC
𝑡𝑤𝑖,1

′

𝐶𝑖−1

0.5𝑠

0.5𝑠
𝑀𝑖

𝐶𝑖

21

Security Proof Overview

• Strong tweakable PRP (STPRP) assumption for
the underlying TBC with 0.5𝑠-bit block.

• 𝑠-bit security is proved.

Intuition of authenticity
• For each DPF, we ensure that s-bit

unpredictable value is produced.

Intuition of privacy
• Independence of each TBC invocation is

ensured by the nonce and the counter.
22

New TBC: SKINNYee

• For 128-bit security, HOMA needs a TBC with
64-bit block, 128-bit key, and 259-bit tweak.

• “Unprotected values (tweak)” and “protected
values (key)” defined by the mode must not be
mixed inside the primitive.

No exiting TBC supports those parameters.

“Tweakey” framework is useful.

• 387-bit tweakey is too large for 64-bit block (TK7).
(No efficient way exists to support TK7) 23

Design Features

• Tweakey supports variable tweak and key sizes.
• This is not important for HOMA so we drop it:

- use TK4 of SKINNYe to handle 256-bit tweak
- inject key to the lower half of the state.
- MILP ensures limited number of active S-boxes.

• The remaining 3-bit tweak is processed by the
elastic-tweak [CDJMNS,Indocrypt2019], but we
improve it to achieve a smaller memory.

24

A Sketch of Round Function

25

Implementation Features

• ASIC hardware performance evaluation with
HPC2* masking scheme for 𝑑 ∈ {0,… , 5}

*Cassiers, G., Gregoire, B., Levi, I., Standaert, F.X.: Hardware Private Circuits: From Trivial
Composition to Full Verification. IEEE Transactions on Computers pp. 1–1 (2020)

• Comparison with
PFB_Plus with the
same impl. policy

26

Implementation Results with SKINNY Variants

• HOMA’s memory size is bigger than PFB_Plus for
implementations without SCA protection 𝑑 = 0.

• HOMA is advantageous for any 𝑑 > 0.
• The Improved factor is bigger than the S-box size.

Our results cannot be reached by improving S-box.
27

• We proposed a new TBC-based AEAD mode HOMA,
which achieves small memory for high-order masking.

• Our hardware implementations show that HOMA with
our SKINNY-based variants is
• slightly bigger than state-of-the-art without masking, and

• smallest for any protection order 𝑑 > 0.

Future Work
• New modes to ensure 𝑠-bit security based on a TBC

with a smaller block size than 0.5𝑠 bits, along with a
specific TBC design to support such configuration.

Concluding Remarks

Thank you for your attention!!
28

