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1. HOMA: a new TBC-based AEAD mode
• small memory size for high-order masking side-channel 

countermeasures

• we protect only 𝑠/2 bits of the state, while we prove its 
security up to 𝑠 bits.

2. SKINNYee: a new SKINNY-based TBC instance
• 64-bit block, 128-bit key, 259-bit tweak

• Tweak and key should not be mixed in the schedule.

3. Hardware Implementation
• Slightly bigger than state-of-the-art without masking.

• Smallest for any protection order 𝑑 > 0.

Overview
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• Side-channel analysis (SCA): 

Besides the standard input/output of the function, 
the adversary steals some information from 
implementation features.

• Resistance against SCA is considered in the 
selection of future standards “lightweight 
cryptographic standardization process” by NIST.

Side-Channel Analysis 

1101

plaintext

ciphertext
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1. Leakage resilient
• use leak-free component in a part of computations

• minimize the use of such leak-free components

• typically aims at optimizing the speed, not the size

2. Masking-friendly primitive
• a primitive with a low multiplicative complexity

• Mode-level optimization is not considered.

3. Low-memory AEAD mode
• apply masking to all computations

• minimize the memory size after the masking

Directions on AEAD with SCA Protection
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Side-Channel Adversary (Probing Model)

The (first-order) adversary probes a wire to 
get data.
We assume the worst case scenario; the 
adversary fully gets the data on the wire.
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Masking Countermeasures

EN
C

O
D

E

D
D

C
O

D
E

randomness

?

Data is encoded to multiple shares.
Unable to get data only by probing a wire. 6



High-Order Masking

?

Powerful adversary may probe 𝑑 wires. (𝑑 > 1)
Such adversaries can be avoided by making more shares.
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Research Motivation

• Large memory overhead for multiple shares 
particularly for a high-order (large 𝑑).

• 𝑑 + 1 masking schemes encode a state into 
𝑑 + 1 shares.

• We need a new design that achieves a small 
memory size after a masking with 
protection order 𝑑.
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Minimum State Size

𝑠

state

𝑠

key

• To achieve 𝑠-bit security, the state size and the 
key size must be at least 𝑠 bits.

• Otherwise, the key or state can be guessed with 
a complexity less than 2𝑠.
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Folklore on the Memory Size for Masking
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By encoding the state and the key into d+1 shares, 
the total memory size is at least (𝑑 + 1)2𝑠 bits

Folklore

10



Overview of Our Approach 1
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1. Leave 𝑠/2 bits “unprotected”. Asymptotically 
achieves (𝑑 + 1)1.5𝑠 bits of memory.
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Overview of Our Approach 2
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2. Devise new operations to securely mix 
protected and unprotected values.
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General Description

• With a standard nonce-based AEAD, the 
construction is generally attacked with 20.5𝑠.

protected

𝐴 or 𝑀

Data Processing
Function (DPF)

0.5𝑠

0.5𝑠
unprotected
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Decryption with Unprotected State

• For any decryption query, unprotected 
values are leaked even with an invalid tag.

• The verify-then-decrypt policy cannot 
stand against SCA adversaries.
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An Attack for Fixed IV
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• Make 20.5𝑠 Dec 
queries (𝑁, 𝐴, 𝐶, 𝑇) to 
get unprotected 
values for various 𝐴.

• Find (𝐴1, 𝐴2) colliding 
in unprotected values.

• Make an Enc query 
(𝑁, 𝐴1, 𝑀∗) for any 
𝑀∗ to get (𝐶∗, 𝑇∗).

• (𝑁, 𝐴2, 𝐶∗, 𝑇∗) is a 
valid pair.
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Use of Random IV
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• We force IV to be 
randomly determined 
for each Enc query.

• Adversaries can no 
longer play with Dec 
oracle before IV is 
determined. 
(otherwise, random IV 
needs to be guessed.)  
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Primitive Choice

TBCtweak

plaintext

Plaintext/ciphertext: directly updated by a key, 
thus needs protection. 
 Protected state is assigned to plaintext.

Tweak: a public value, thus no need of protection.
 Unprotected state and other public data 

(nonce, ctr, data input) are assigned to tweak.

ciphertext
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• HOMA applies the protection only for the 
plaintext-ciphertext of TBC with 0.5𝑠-bit block.

• The idea of PFB_plus helps to ensure 𝑠-bit 
security by using 0.5𝑠-bit block TBC.

BBB Security of PFB_plus [NSS,EC20]

0.5𝑠

0.5𝑠

TBC
𝑡𝑤𝑖

𝐴𝑖
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PFB_plus is Broken If Unprotected 

By unprotecting a half of the state of PFB_plus,  
the construction is broken only by 20.5𝑠.

protected

unprotected

The protected value 𝑣3 is recovered from unprotected 
values 𝑣1 and 𝑣2.

0.5𝑠

TBC
𝑡𝑤𝑖

𝐴𝑖

𝑣3

𝑣1 𝑣2
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Overview of DPFA

• A TBC-call generates 0.5𝑠-bit unpredictable value. 
To mix the 𝑠-bit state, 2 TBC calls are needed.

• Compared to PFB_plus:
• bigger tweak       more memory for 𝑑 = 0.
• smaller protected state       less memory for 𝑑 > 0.
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Overview of DPFM

• For DPFM,  the first TBC generates a key stream, 
and other 2 TBC calls mix the state.
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Security Proof Overview

• Strong tweakable PRP (STPRP) assumption for 
the underlying TBC with 0.5𝑠-bit block.

• 𝑠-bit security is proved.

Intuition of authenticity
• For each DPF, we ensure that s-bit

unpredictable value is produced.

Intuition of privacy
• Independence of each TBC invocation is 

ensured by the nonce and the counter.
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New TBC: SKINNYee

• For 128-bit security, HOMA needs a TBC with
64-bit block, 128-bit key, and 259-bit tweak.

• “Unprotected values (tweak)” and “protected 
values (key)” defined by the mode must not be 
mixed inside the primitive.

No exiting TBC supports those parameters.

“Tweakey” framework is useful.

• 387-bit tweakey is too large for 64-bit block (TK7). 
(No efficient way exists to support TK7) 23



Design Features

• Tweakey supports variable tweak and key sizes.
• This is not important for HOMA so we drop it:

- use TK4 of SKINNYe to handle 256-bit tweak
- inject key to the lower half of the state.
- MILP ensures limited number of active S-boxes.

• The remaining 3-bit tweak is processed by the 
elastic-tweak [CDJMNS,Indocrypt2019], but we 
improve it to achieve a smaller memory.
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A Sketch of Round Function
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Implementation Features

• ASIC hardware performance evaluation with 
HPC2* masking scheme for 𝑑 ∈ {0,… , 5}

*Cassiers, G., Gregoire, B., Levi, I., Standaert, F.X.: Hardware Private Circuits: From Trivial 
Composition to Full Verification. IEEE Transactions on Computers pp. 1–1 (2020) 

• Comparison with 
PFB_Plus with the 
same impl. policy
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Implementation Results with SKINNY Variants

• HOMA’s memory size is bigger than PFB_Plus for 
implementations without SCA protection 𝑑 = 0.

• HOMA is advantageous for any 𝑑 > 0.
• The Improved factor is bigger than the S-box size.

Our results cannot be reached by improving S-box.
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• We proposed a new TBC-based AEAD mode HOMA, 
which achieves small memory for high-order masking.

• Our hardware implementations show that HOMA with 
our SKINNY-based variants is
• slightly bigger than state-of-the-art without masking, and

• smallest for any protection order 𝑑 > 0.

Future Work
• New modes to ensure 𝑠-bit security based on a TBC 

with a smaller block size than 0.5𝑠 bits, along with a 
specific TBC design to support such configuration. 

Concluding Remarks

Thank you for your attention!!
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