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a previous extension of the order, a fork is 
created.
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FLOODING FOR NSBS

‣ Any message input at time  must be delivered 
before time .

‣ Assumed to prove NSBs secure 
[GKL15,GKL17,PSs17,DGKR18].
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For each party, three additional commands: 

‣ Precorrupt: Time for precorruption is noted. 

‣ Corrupt: Checks if current time is at least  time after precorruption and 

otherwise ignores input.

δ

‣ (Initialize, ): If given as the first command, the precorruption time is 

updated to be .

τ

τ
37

SF𝒟δ
IdealP1 A𝒟δ

Real



THEOREMS

38

Theorem 1. Security against a byzantine adversary implies 
security against a 0-delayed adversary.



THEOREMS

38

Theorem 1. Security against a byzantine adversary implies 
security against a 0-delayed adversary.

Theorem 2. Security against a fast adversary implies 
security against a slow adversary.
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Theorem 3. The protocol  implements a flooding network against an 
adversary that is delayed for the time it takes to send plus the time it takes to resend 
with either:

1.  neighborhood and a diameter of 2.

2.  neighborhood and a logarithmic diameter.

πERFlood

Ω( κ ⋅ n)

Ω(κ)
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‣ Messages input at time  must be 
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t
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‣ Delayed Adversary: 
‣ It takes  time from an adversary 

decides to corrupt a party, to control of 
the party is given to the adversary.

Δ + σ

t + σ

Possible to corrupt sender 
and prevent delivery.

t + Δ + σ

Min. corruption delay.

t

Message is 
immediately leaked.

t + Δ Latest delivery of message.
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Adversary has not initiated the corruption.
t

t + Δ′￼ Latest delivery of message.

Message is 
immediately leaked.
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