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> Parties build a total order using a lottery.

> If a party wins the lottery without knowing about
a previous extension of the order, a fork is
created.

» Adversaries can also create forks.

> Isolated honest blocks must outgrow
adversarial blocks.
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» Any message input at time 7 must be delivered
before time t + A.

> Assumed to prove NSBs secure
[GKL15,GKL17,PSs17,DGKR18].
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0-DELAYED ADVERSARIES

Adversary gains
control over P,

» Time

t t+0

> Informally introduced by [PS17] for long-lived committees.
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Abstract

Many decentralized systems rely on flooding protocols for message dissemination. In such
a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
again send the message to their randomly selected peers, until every network participant
has received the message. This type of protocols clearly fail in face of an adaptive adversary
who can simply corrupt all peers of the sender and thereby prevent the message from being
delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
be cryptographically secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the
setting of a blockchain that is supposed to run for an extended period of time.

To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call §-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time § from
when an adversary decides to corrupt a party until they succeed in overtaking control of the
party. Within this model, we formally prove the intuitive result that flooding protocols are
secure against d-delayed adversaries when ¢ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a d-delayed adversary to a static
experiment with an Erdés-Rényi graph. Using the established theory of Erdés—Rényi graphs,
we provide upper bounds on the propagation time of the flooding functionality for different
neighborhood sizes of the gossip network. More concretely, we show the following for security
parameter £, point-to-point channels with delay at most A, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to (k) parties on average, then we can realize a flooding functionality with
maximal delay O(A -log(n)); and if all parties send to Q(\/ﬁ) parties on average, we can
realize a flooding functionality with maximal delay O(A).

*Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).




Formalizing Delayed Adaptive Corruptions and the

Security of Flooding Networks
Christian Matt®, Jesper Buus Nielsen*?, and Sgren Eller Thomsen?

!Concordium, Zurich, Switzerland
cm@concordium. com
2Concordium Blockchain Research Center, Aarhus University, Denmark
{jbn, sethomsen}@cs.au.dk

1. Semantics for 0-delayed adversaries within UC. June 27, 2022

Abstract

Many decentralized systems rely on flooding protocols for message dissemination. In such
a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
again send the message to their randomly selected peers, until every network participant
has received the message. This type of protocols clearly fail in face of an adaptive adversary
who can simply corrupt all peers of the sender and thereby prevent the message from being
delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
be cryptographically secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the
setting of a blockchain that is supposed to run for an extended period of time.

To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call §-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time § from
when an adversary decides to corrupt a party until they succeed in overtaking control of the
party. Within this model, we formally prove the intuitive result that flooding protocols are
secure against d-delayed adversaries when ¢ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a d-delayed adversary to a static
experiment with an Erdés-Rényi graph. Using the established theory of Erdés—Rényi graphs,
we provide upper bounds on the propagation time of the flooding functionality for different
neighborhood sizes of the gossip network. More concretely, we show the following for security
parameter £, point-to-point channels with delay at most A, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to (k) parties on average, then we can realize a flooding functionality with
maximal delay O(A -log(n)); and if all parties send to Q(\/ﬁ) parties on average, we can
realize a flooding functionality with maximal delay O(A).

*Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).




Formalizing Delayed Adaptive Corruptions and the

Security of Flooding Networks
Christian Matt®, Jesper Buus Nielsen*?, and Sgren Eller Thomsen?

!Concordium, Zurich, Switzerland
cm@concordium. com
2Concordium Blockchain Research Center, Aarhus University, Denmark
{jbn, sethomsen}@cs.au.dk

1. Semantics for 0-delayed adversaries within UC. June 27, 2022

Abstract

2. Two instantiations of flooding networks secure Many deentoalid systms el o Booding potools for s diseminaton. T uch

a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
H H - again send the message to their randomly selected peers, until every network participant
ag al n St a n ad a ptlve ad Ve rsa ry th at IS d e I ayed fo r has received the message. This type of protocols clearly fail in face of an adaptive adversary
« who can simply corrupt all peers of the sender and thereby prevent the message from being
’ ’ - ’ ’ delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
the tlme It takes tO Send + the tlme It takes tlme to be cryptographically secure, misl:: notably in blockchain protocols. VI\;hilc it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the

r e S e n d 7. setting of a blockchain that is supposed to run for an extended period of time.

. To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call §-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time § from
when an adversary decides to corrupt a party until they succeed in overtaking control of the
party. Within this model, we formally prove the intuitive result that flooding protocols are
secure against d-delayed adversaries when ¢ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a d-delayed adversary to a static
experiment with an Erdés—Rényi graph. Using the established theory of Erdés—Rényi graphs,
we provide upper bounds on the propagation time of the flooding functionality for different
neighborhood sizes of the gossip network. More concretely, we show the following for security
parameter £, point-to-point channels with delay at most A, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to (k) parties on average, then we can realize a flooding functionality with
maximal delay O(A -log(n)); and if all parties send to Q(\/ﬁ) parties on average, we can
realize a flooding functionality with maximal delay O(A).

*Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).




Formalizing Delayed Adaptive Corruptions and the

Security of Flooding Networks
Christian Matt®, Jesper Buus Nielsen*?, and Sgren Eller Thomsen?

!Concordium, Zurich, Switzerland
cm@concordium. com
2Concordium Blockchain Research Center, Aarhus University, Denmark
{jbn, sethomsen}@cs.au.dk

1. Semantics for 0-delayed adversaries within UC. June 27, 2022

Abstract

2. Two instantiations of flooding networks secure Many deentoalid systms el o Booding potools for s diseminaton. T uch

a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
H H - again send the message to their randomly selected peers, until every network participant
ag al n St a n ad a ptlve ad Ve rsa ry th at IS d e I ayed fo r has received the message. This type of protocols clearly fail in face of an adaptive adversary
who can simply corrupt all peers of the sender and thereby prevent the message from being
11 h - y k d h - y k ’ delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
t e tlme It ta eS tO Sen + t e tlme It ta eS tlme to be cryptographically secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the

r e S e n d 7. setting of a blockchain that is supposed to run for an extended period of time.

. To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call §-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time § from

Q . h b . h @ 1 . when an adversary decides to corrupt a party until they succeed in overtaking control of the
party. Within this model, we formally prove the intuitive result that flooding protocols are
> (K) n e I g O rS Wlt Og (n) d I a m ete r' secure against d-delayed adversaries when ¢ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a d-delayed adversary to a static
experiment with an Erdés—Rényi graph. Using the established theory of Erdés—Rényi graphs,
we provide upper bounds on the propagation time of the flooding functionality for different
neighborhood sizes of the gossip network. More concretely, we show the following for security
parameter £, point-to-point channels with delay at most A, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to (k) parties on average, then we can realize a flooding functionality with
maximal delay O(A -log(n)); and if all parties send to Q(\/ﬁ) parties on average, we can
realize a flooding functionality with maximal delay O(A).

*Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).




Formalizing Delayed Adaptive Corruptions and the

Security of Flooding Networks
Christian Matt®, Jesper Buus Nielsen*?, and Sgren Eller Thomsen?

!Concordium, Zurich, Switzerland
cm@concordium. com
2Concordium Blockchain Research Center, Aarhus University, Denmark
{jbn, sethomsen}@cs.au.dk

1. Semantics for 0-delayed adversaries within UC. June 27, 2022

Abstract

2. Two instantiations of flooding networks secure Many deentoalid systms el o Booding potools for s diseminaton. T uch

a protocol, the sender of a message sends it to a randomly selected set of peers. These peers
H H - again send the message to their randomly selected peers, until every network participant
ag al n St a n ad a pt I Ve ad Ve rsa ry th at IS d e I ayed fo r has received the message. This type of protocols clearly fail in face of an adaptive adversary
« who can simply corrupt all peers of the sender and thereby prevent the message from being
- y - y ’ delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to
the tlme It takes tO Send + the tlme It takes tlme to be cryptographically secure, most notably in blockchain protocols. While it is possible to
revert to static corruptions, this gives unsatisfactory security guarantees, especially in the

r e S e n d 7. setting of a blockchain that is supposed to run for an extended period of time.

. To be able to provide meaningful security guarantees in such settings, we give precise
semantics to what we call §-delayed adversaries in the Universal Composability (UC) frame-
work. Such adversaries can adaptively corrupt parties, but there is a delay of time § from

. . . when an adversary decides to corrupt a party until they succeed in overtaking control of the
> s ! (K) n e I g h bo rS Wlth @ log (n) d I a m ete r party. Within this model, we formally prove the intuitive result that flooding protocols are
" secure against d-delayed adversaries when ¢ is at least the time it takes to send a message
from one peer to another plus the time it takes the recipient to resend the message. To
this end, we show how to reduce the adaptive setting with a d-delayed adversary to a static
experiment with an Erdés—Rényi graph. Using the established theory of Erdés—Rényi graphs,
. . . we provide upper bounds on the propagation time of the flooding functionality for different
s ! K ° n n e I g h bo r S Wlth @ ( 1 ) d I a m ete r neighborhood sizes of the gossip network. More concretely, we show the following for security
> - parameter k, point-to-point channels with delay at most A, and n parties in total, with a
sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all
parties send to (k) parties on average, then we can realize a flooding functionality with
maximal delay O(A -log(n)); and if all parties send to Q(\/ﬁ) parties on average, we can
realize a flooding functionality with maximal delay O(A).

*Partially funded by The Concordium Foundation; The Danish Independent Research Council under Grant-ID
DFF-8021-00366B (BETHE); The Carlsberg Foundation under the Semper Ardens Research Project CF18-112
(BCM).




DELAYED ADVERSARIES IN UC



DELAYED ADVERSARIES IN UC




DELAYED ADVERSARIES IN UC




DELAYED ADVERSARIES IN UC




DELAYED ADVERSARIES IN UC

2
S




DELAYED ADVERSARIES IN UC

2
S




DELAYED ADVERSARIES IN UC

2
S




DELAYED ADVERSARIES IN UC




DELAY SHELLS

09




DELAY SHELLS

09

For each party, three additional commands:




DELAY SHELLS

09

For each party, three additional commands:

> Precorrupt: Time for precorruption is noted.



DELAY SHELLS

09

For each party, three additional commands:

> Precorrupt: Time for precorruption is noted.

» Corrurt: Checks if current time is at least 0 time after precorruption and

otherwise ignores input.



DELAY SHELLS

09

For each party, three additional commands:

> Precorrupt: Time for precorruption is noted.

» Corrurt: Checks if current time is at least 0 time after precorruption and

otherwise ignores input.

> (Inrm1aLIZE, 7): If given as the first command, the precorruption time is

updated to be 7.



DELAY SHELLS

0 00

For each party, three additional commands:

> Precorrupt: Time for precorruption is noted.

» Corrurt: Checks if current time is at least 0 time after precorruption and

otherwise ignores input.

> (Inrm1aLIZE, 7): If given as the first command, the precorruption time is

updated to be 7.



THEOREMS

Theorem 1. Security against a byzantine adversary implies

security against a 0-delayed adversary.




THEOREMS

Theorem 1. Security against a byzantine adversary implies
security against a 0-delayed adversary.

Theorem 2. Security against a fast adversary implies

security against a slow adversary.
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MAIN RESULT (INFORMAL)

Theorem 3. The protocol TeRF|p0q iMplements a flooding network against an
adversary that is delayed for the time it takes to send plus the time it takes to resend

with either:

1. Q \/ K - n) neighborhood and a diameter of 2.

2. (k) neighborhood and a logarithmic diameter.
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Adversary has not initiated the corruption.

Any message input by an honest party at time t must be
delivered to all other honest parties before time t + A’.

t+ A ¢

Message is
immediately leaked.

G

Latest delivery of message.
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PROOF IDEA UC
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DYNAMIC SIZE IS AN ADVANTAGE
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