
Public Randomness Extraction with
Ephemeral Roles and Worst-Case Corruptions

Jesper Buus Nielsen

Aarhus

João Ribeiro

CMU

Maciej Obremski

CQT & NUS

Cryptography needs randomness!

Randomness
generator

How do we generate it?

Cryptography needs randomness!

Randomness
generator

How do we generate it?

Cryptography needs randomness!

Randomness
generator

How do we generate it?

b ← {0,1}

b

Cryptography needs randomness!

b

b

b

b

Randomness
generator

How do we generate it?

b ← {0,1}

b

Cryptography needs randomness!
How do we generate it?

b

b

b

b

Randomness
generator

b ← {0,1}

b

Cryptography needs randomness!
How do we generate it?

but maintaining stateful environments is hard,
especially under targeted denial-of-service attacks!

b

b

b

b

Randomness
generator

b ← {0,1}

b

Cryptography needs randomness!
How do we generate it?

but maintaining stateful environments is hard,
especially under targeted denial-of-service attacks!

b

b

b

b

Randomness
generator

b ← {0,1}

b

Cryptography needs randomness!
How do we generate it?

but maintaining stateful environments is hard,
especially under targeted denial-of-service attacks!

b

b

b

b

Randomness
generator

b ← {0,1}

b

Ground set

of partiesN

R1 R2 R3 … ephemeral roles, n
n ≪ N

Ground set

of partiesN

R1 R2 R3 …

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

R1 R2 R3 …

role selection
mechanism

X1

M1→2

M1→3

broadcast

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

R1 R2 R3 …

role selection
mechanism

X1

M1→2

M1→3

broadcast

 ephemeral roles, n
n ≪ N

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…R2 R3

X2

M2→3

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…R2 R3

X2

M2→3

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…R2 R3

X2

M2→3

P2

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…R3

X2

M2→3

P2

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…

X3

R3

X2

M2→3

P2

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…

X3

R3

abstracted
away

X2

M2→3

P2 P3

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…

X3

abstracted
away

role selection mechanism
assumed uniformly random

 MPC with corruptions!⟹ t = (1/2 − δ)N
X2

M2→3

P2 P3

X1

M1→2

M1→3

role selection
mechanism

 ephemeral roles, n
n ≪ N

Ground set

of partiesN

…

X3

YOSO public randomness extraction with worst-case corruptions

R2 R3R1 R4

Replace i.i.d. random corruptions by static chosen corruptions

YOSO public randomness extraction with worst-case corruptions

R2 R3R1 R4

Replace i.i.d. random corruptions by static chosen corruptions

YOSO public randomness extraction with worst-case corruptions

R2 R3R1 R4

X1

private messages

broadcast

Replace i.i.d. random corruptions by static chosen corruptions

YOSO public randomness extraction with worst-case corruptions

X2

Replace i.i.d. random corruptions by static chosen corruptions

X1

R2 R3R1 R4

YOSO public randomness extraction with worst-case corruptions

X3

Replace i.i.d. random corruptions by static chosen corruptions

X2X1

R2 R3R1 R4

YOSO public randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

Why study worst-case corruptions?

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

Why study worst-case corruptions?

• Role selection mechanism may be
biased!

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

Why study worst-case corruptions?

• Role selection mechanism may be
biased!

• Go beyond round-based MPC
techniques

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

Why study worst-case corruptions?

• Role selection mechanism may be
biased!

• Go beyond round-based MPC
techniques

• Clean model

R3R1

YOSO public randomness extraction with worst-case corruptions

B = 𝖤𝗑𝗍(X1, X2, X3, X4) ≈ 𝖴𝗇𝗂𝖿
only public values

Replace i.i.d. random corruptions by static chosen corruptions

X3 X4

P2 P4

X1 X2

Why study worst-case corruptions?

• Role selection mechanism may be
biased!

• Go beyond round-based MPC
techniques

• Clean model

• Relationship to other randomness
extraction settings

R3R1

How are “messages to the future” implemented?

P2 R3R1 P4

X1

private messages

broadcast

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen ’21]

Simple models inspired by
concrete implementations
of such a mechanism.

How are “messages to the future” implemented?

P2 R3R1 P4

X1

private messages

broadcast

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen ’21]

pk

sk
Secret

sharing Reconstruct

at execution time

Simple models inspired by
concrete implementations
of such a mechanism.

How are “messages to the future” implemented?

P2 R3R1 P4

X1

private messages

broadcast

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen ’21]

C1→4 = 𝖤𝗇𝖼(M1→4, pk)

pk

sk
Secret

sharing Reconstruct

at execution time

Simple models inspired by
concrete implementations
of such a mechanism.

How are “messages to the future” implemented?

P2 R3R1 P4

X1

private messages

broadcast

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen ’21]

C1→4 = 𝖤𝗇𝖼(M1→4, pk)

pk

sk
Secret

sharing Reconstruct

at execution time

Simple models inspired by
concrete implementations
of such a mechanism.

M1→4 = 𝖣𝖾𝖼(C1→4, sk)

Our central question

What is the maximum corruption rate that allows for
low-bias randomness extraction?

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

emulate round 1

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

emulate round 1

 sends secret state to P(j)
i P(j+1)

i

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

emulate round 2 emulate round remulate round 1

 sends secret state to P(j)
i P(j+1)

i

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

emulate round 2 emulate round remulate round 1

 sends secret state to P(j)
i P(j+1)

i

Tolerated corruption rate decreased from to δ δ/r

A naive approach to YOSO protocols
Starting point: Round-based -party -round protocol secure against corruptions.n r t = δn

Emulate rounds in YOSO:

 P(1)
1 … P(1)

n P(2)
1 … P(2)

n … P(r)
1 … P(r)

n

emulate round 2 emulate round remulate round 1

 sends secret state to P(j)
i P(j+1)

i

Tolerated corruption rate decreased from to δ δ/r

3 rounds, corruption rate YOSO protocol secure against corruption rateδ ≈ 1/3 ⟹ ≈ 1/9

Our results

Feasibility

Impossibility

Our results

Zero-error randomness extraction against corruptions
with roles

(or roles against stronger adversary)

t
n = 5t

n = 6t + 1
Feasibility

Impossibility

Our results

Zero-error randomness extraction against corruptions
with roles

(or roles against stronger adversary)

t
n = 5t

n = 6t + 1

Randomness extraction with bias

against corruptions requires roles

< 0.01
t n ≥ 4t + 1

Feasibility

Impossibility

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

… R′ 1 R′ 2 R′ 2t+1…R1 R2 R3t+1

samplers publishers

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

… R′ 1 R′ 2 R′ 2t+1…R1 R2 R3t+1

samplers publishers

High-level idea:

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

… R′ 1 R′ 2 R′ 2t+1…R1 R2 R3t+1

samplers publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

… R′ 1 R′ 2 R′ 2t+1…R1 R2 R3t+1

samplers publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;
2. Publishers broadcast whatever they receive;

Protocol

There is a zero-error randomness extraction protocol secure against chosen
corruptions in the with roles.

t
n = 5t + 2

YOSOfied version of Maurer’s “Secure MPC made simple”

… R′ 1 R′ 2 R′ 2t+1…R1 R2 R3t+1

samplers publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;
2. Publishers broadcast whatever they receive;
3. Extract random bit by taking majorities and XOR.

Protocol

…Ri1 Ri2 Rij Ri2t+1
… R′ 1 R′ 2t+1…

samplers

publishers

Protocol
S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

…Ri1 Ri2 Rij

x1 ← {0,1}

Ri2t+1
… R′ 1 R′ 2t+1…

samplers

publishers

Protocol
S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

…Ri1 Ri2 Rij

x1 ← {0,1}

Ri2t+1
…

x1

R′ 1 R′ 2t+1…

samplers

publishers

Protocol
S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

x1 ← {0,1}

x1 x1→2

publishers

…Ri1 Ri2 Rij Ri2t+1
…

Protocol

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

x1 ← {0,1}

x1 x1→2

publishers

…Ri1 Ri2 Rij Ri2t+1
…

Protocol

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

publishers

…Ri1 Ri2 Rij Ri2t+1
…

Protocol

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

If all equal some , send to all publishersz z

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

publishers

…Ri1 Ri2 Rij Ri2t+1
… …R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

publishers

…Ri1 Ri2 Rij Ri2t+1
… …R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

publishers

…Ri1 Ri2 Rij Ri2t+1
… …R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

publishers

…Ri1 Ri2 Rij Ri2t+1
… …R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:
• Every set has a strict honest majority;S

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:
• Every set has a strict honest majority;S
• If did not receive a complaint, then all honest roles in agree

on the same value;
S S

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:
• Every set has a strict honest majority;S
• If did not receive a complaint, then all honest roles in agree

on the same value;
S S

• There is a set such that all roles are honest.S⋆ (Pi)i∈S⋆

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

Protocol

z1→1
z2→1

⋮
z2t+1→1

w1 = 𝗆𝖺𝗃{zj→1}

…

z1→2t+1
z2→2t+1

⋮
z2t+1→2t+1

w2t+1 = 𝗆𝖺𝗃{zj→2t+1}

If all equal some , send to all publishersz z

z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast ,
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:
• Every set has a strict honest majority;S
• If did not receive a complaint, then all honest roles in agree

on the same value;
S S

• There is a set such that all roles are honest.S⋆ (Pi)i∈S⋆

 is uniform and independent of .⟹ wS⋆ (wS)S≠S⋆

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers

A simple improved protocol for one corruption

R1 R2 R′ 1 R′ 2 R′ 3

samplers publishers

A simple improved protocol for one corruption

R1 R2 R′ 1 R′ 2 R′ 3

x1 ← {0,1}

samplers publishers

A simple improved protocol for one corruption

R1 R2 R′ 1 R′ 2 R′ 3

x1 ← {0,1}

x1

samplers publishers

A simple improved protocol for one corruption

x1 ← {0,1}

x1

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1 ← {0,1}

x1

x2 ← {0,1}

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1→1
x2→1

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1→1
x2→1

x1→2
x2→2

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1→1
x2→1

x1→2
x2→2

x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1→1
x2→1

x1→2
x2→2

x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

y1 = 𝗆𝖺𝗃(x1→1, x1→2, x1→3)

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

x1→1
x2→1

x1→2
x2→2

x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

y1 = 𝗆𝖺𝗃(x1→1, x1→2, x1→3)

y2 = 𝗆𝖺𝗃(x2→1, x2→2, x2→3)

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

b = y1 ⊕ y2

x1→1
x2→1

x1→2
x2→2

x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

y1 = 𝗆𝖺𝗃(x1→1, x1→2, x1→3)

y2 = 𝗆𝖺𝗃(x2→1, x2→2, x2→3)

R1 R2 R′ 1 R′ 2 R′ 3

samplers

A simple improved protocol for one corruption

b = y1 ⊕ y2

x1→1
x2→1

x1→2
x2→2

x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

y1 = 𝗆𝖺𝗃(x1→1, x1→2, x1→3)

y2 = 𝗆𝖺𝗃(x2→1, x2→2, x2→3)

Can be generalized using roles.n = 5t

R1 R2 R′ 1 R′ 2 R′ 3

samplers

Impossibility result

Every randomness extraction protocol with bias against corruptions
requires roles.

< 0.01 t
n ≥ 4t + 1

Impossibility result

Every randomness extraction protocol with bias against corruptions
requires roles.

< 0.01 t
n ≥ 4t + 1

Stronger adversary: 4t + 1 ≤ n⋆ ≤ 6t + 1

Weaker adversary (this talk): 4t + 1 ≤ n⋆ ≤ 5t

Smallest number of roles for which we can handle corruptionsn⋆ = n⋆(t) = t

Impossibility for 3 roles, 1 corruption

R1 R2 R3

Impossibility for 3 roles, 1 corruption

R1 R2 R3

X1

Impossibility for 3 roles, 1 corruption

X1 X2

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2 X3

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2 X3

B = 𝖤𝗑𝗍(X1, X2, X3)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2

B = 𝖤𝗑𝗍(X1, X2, X3)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

B = 𝖤𝗑𝗍(X1, X2, X3)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

B = 𝖤𝗑𝗍(X1, X2, X3)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1 X2
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

B = 𝖤𝗑𝗍(X1, X2, X3)

 must fully
determine output

w/ high prob

X1, X2

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Bias!

R1 R2 R3

Impossibility for 3 roles, 1 corruption

X1
If there are

such that

x(0)

3 , x(1)
3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Bias!

W/ high prob over sampling

must have
X(0)

2 , X(1)
2

i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≡ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

If there are
such that

x(0)
3 , x(1)

3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Bias!

W/ high prob over sampling

must have
X(0)

2 , X(1)
2

i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≡ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

R1 R2 R3

Impossibility for 3 roles, 1 corruption

If there are
such that

x(0)
3 , x(1)

3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Bias!

W/ high prob over sampling

must have
X(0)

2 , X(1)
2

i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≡ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Sample

With prob lead to different

coin values and can predict
values w/ high prob

X(0)
1 , X(1)

1
i.i.d.∼ X1

≈ 1/2
R1

R1 R2 R3

Impossibility for 3 roles, 1 corruption

If there are
such that

x(0)
3 , x(1)

3

𝖤𝗑𝗍(X1, X2, x(b)
3) = b

Bias!

 must fully
determine output

w/ high prob

X1, X2

B = 𝖤𝗑𝗍(X1, X2, X3)

Sample

If
and both are constant

X(0)
2 , X(1)

2
i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≢ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Bias!

W/ high prob over sampling

must have
X(0)

2 , X(1)
2

i.i.d.∼ (X2 |X1, M1→2)

𝖤𝗑𝗍(X1, X(0)
2 , ⋅) ≡ 𝖤𝗑𝗍(X1, X(1)

2 , ⋅)

Sample

With prob lead to different

coin values and can predict
values w/ high prob

X(0)
1 , X(1)

1
i.i.d.∼ X1

≈ 1/2
R1

Bias!

R1 R2 R3

Impossibility for 4 roles, 1 corruption

R1 R2 R3

X1

R4

Impossibility for 4 roles, 1 corruption

X1 X2

R1 R2 R3 R4

Impossibility for 4 roles, 1 corruption

X1 X2 X3

R1 R2 R3 R4

Impossibility for 4 roles, 1 corruption

X1 X2 X3 X4

R1 R2 R3 R4

Impossibility for 4 roles, 1 corruption

X1
• must be able to influence

final output;

• must be able to predict

which path leads to each value.

R2

R2

R1 R2 R3 R4

Impossibility for 4 roles, 1 corruption

X1
• must be able to influence

final output;

• must be able to predict

which path leads to each value.

R2

R2

 doesn’t know !R2 M1→3

R1 R2 R3 R4

Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks

• Public randomness extraction in YOSO with worst-case corruptions:

• Still secure if role selection mechanism is biased

• Go beyond round-based MPC techniques

• Related to prior work on multi-source randomness extraction

Stronger adversary:

Weaker adversary:

4t + 1 ≤ n⋆ ≤ 6t + 1

4t + 1 ≤ n⋆ ≤ 5t

Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks

• Public randomness extraction in YOSO with worst-case corruptions:

• Still secure if role selection mechanism is biased

• Go beyond round-based MPC techniques

• Related to prior work on multi-source randomness extraction

Stronger adversary:

Weaker adversary:

4t + 1 ≤ n⋆ ≤ 6t + 1

4t + 1 ≤ n⋆ ≤ 5t

Open problems:

• Close gap between our upper and lower bounds

• Protocols with communication complexity

• More functionalities!

𝗉𝗈𝗅𝗒(n)

Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks

• Public randomness extraction in YOSO with worst-case corruptions:

• Still secure if role selection mechanism is biased

• Go beyond round-based MPC techniques

• Related to prior work on multi-source randomness extraction

Stronger adversary:

Weaker adversary:

4t + 1 ≤ n⋆ ≤ 6t + 1

4t + 1 ≤ n⋆ ≤ 5t

Open problems:

• Close gap between our upper and lower bounds

• Protocols with communication complexity

• More functionalities!

𝗉𝗈𝗅𝗒(n)

Thanks!

