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Our central question

What is the maximum corruption rate that allows for  
low-bias randomness extraction?
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n

emulate round 2 emulate round remulate round 1

 sends secret state to P( j)
i P( j+1)

i

Tolerated corruption rate decreased from  to δ δ/r

3 rounds,  corruption rate  YOSO protocol secure against  corruption rateδ ≈ 1/3 ⟹ ≈ 1/9
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(or  roles against stronger adversary)

t
n = 5t

n = 6t + 1

Randomness extraction with bias  

against  corruptions requires  roles

< 0.01
t n ≥ 4t + 1

Feasibility

Impossibility
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z

x1 ← {0,1}

x1 x1→2

x1→j
x2→j

⋮
xj−1→j

consistency

check

If not all equal, broadcast , 
procedure aborts

(Complain, S)

wS = {
0, if S received a complaint,
𝗆𝖺𝗃(wj), else.

b = ⨁
S

wS

publishers

…Ri1 Ri2 Rij Ri2t+1
… …

Key properties:
• Every set  has a strict honest majority;S
• If  did not receive a complaint, then all honest roles in  agree 

on the same value;
S S

• There is a set  such that all roles  are honest.S⋆ (Pi)i∈S⋆

 is uniform and independent of .⟹ wS⋆ (wS)S≠S⋆

R′ 1 R′ 2t+1…

S = {i1 < i2 < ⋯ < i2t+1} ⊆ [3t + 1]

samplers
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A simple improved protocol for one corruption

b = y1 ⊕ y2


x1→1
x2→1


x1→2
x2→2


x1→3
x2→3

x1 ← {0,1}

x1

x2 ← {0,1}

x2

publishers

y1 = 𝗆𝖺𝗃(x1→1, x1→2, x1→3)

y2 = 𝗆𝖺𝗃(x2→1, x2→2, x2→3)

Can be generalized using  roles.n = 5t

R1 R2 R′ 1 R′ 2 R′ 3

samplers
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Impossibility result

Every randomness extraction protocol with bias  against  corruptions 
requires  roles.

< 0.01 t
n ≥ 4t + 1

Stronger adversary: 4t + 1 ≤ n⋆ ≤ 6t + 1

Weaker adversary (this talk): 4t + 1 ≤ n⋆ ≤ 5t

Smallest number of roles for which we can handle  corruptionsn⋆ = n⋆(t) = t
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X1
•  must be able to influence 

final output;

•  must be able to predict 

which path leads to each value.

R2

R2

 doesn’t know !R2 M1→3

R1 R2 R3 R4
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Thanks!


