Public Randomness Extraction with Ephemeral Roles and Worst-Case Corruptions

Jesper Buus Nielsen
Aarhus

João Ribeiro
CMU

Maciej Obremski
CQT & NUS
Cryptography needs randomness!

How do we generate it?
Cryptography needs randomness!

How do we generate it?
Cryptography needs randomness!

How do we generate it?

\[b \leftarrow \{0,1\} \]
Cryptography needs randomness!

How do we generate it?

Randomness generator

$b \leftarrow \{0,1\}$
Cryptography needs randomness!

How do we generate it?

Randomness generator

\[b \leftarrow \{0,1\} \]
Cryptography needs randomness!

How do we generate it?

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!
Cryptography needs randomness!

How do we generate it?

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!
Cryptography needs randomness!

How do we generate it?

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!
Ground set of N parties

n ephemeral roles, $n \ll N$

R_1 R_2 R_3 ...
Ground set of N parties

n ephemeral roles, $n \ll N$

role selection mechanism

$R_1 \quad R_2 \quad R_3 \quad \ldots$
Ground set of N parties

n ephemeral roles, $n \ll N$

Role selection mechanism

Broadcast
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry1, Shai Halevi1, Hugo Krawczyk1, Bernardo Magri2, Jesper Buus Nielsen*2, Tal Rabin1, and Sophia Yakoubov13

n ephemeral roles, $n \ll N$

broadcast

n parties

X_1

R_2

R_3

\ldots

role selection mechanism

n ephemeral roles, $n \ll N$
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen⁺², Tal Rabin¹, and Sophia Yakoubov³

n ephemeral roles, $n \ll N$

$M_{1 \rightarrow 2}$

$M_{1 \rightarrow 3}$

role selection mechanism

Ground set of N parties

R_2

R_3

X_1
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry\(^1\), Shai Halevi\(^1\), Hugo Krawczyk\(^1\), Bernardo Magri\(^2\), Jesper Buus Nielsen\(^*2\), Tal Rabin\(^1\), and Sophia Yakoubov\(^i3\)

n ephemeral roles, $n \ll N$

Ground set of N parties

\(M_{1\rightarrow 3}\)

\(M_{1\rightarrow 2}\)

\(M_{2\rightarrow 3}\)

\(X_1\)

\(X_2\)

\(R_2\)

\(R_3\)

role selection mechanism
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry1, Shai Halevi1, Hugo Krawczyk1, Bernardo Magri2, Jesper Buus Nielsen*1,2, Tal Rabin1, and Sophia Yakoubov1,3

n ephemeral roles, $n \ll N$

Role selection mechanism

Ground set of N parties

$X_1 \xrightarrow{M_{1 \rightarrow 2}} X_2 \xrightarrow{M_{2 \rightarrow 3}} R_3$
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen*², Tal Rabin¹, and Sophia Yakoubov³

n ephemeral roles, $n \ll N$

Role selection mechanism

Ground set of N parties
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry1, Shai Halevi1, Hugo Krawczyk1, Bernardo Magri2, Jesper Buus Nielsen*2, Tal Rabin1, and Sophia Yakoubov13

\[X_2 \xrightarrow{M_2 \rightarrow 3} X_3 \]
\[X_1 \xrightarrow{M_1 \rightarrow 2} X_2 \]
\[X_1 \xrightarrow{M_1 \rightarrow 3} X_3 \]

\(n \) ephemeral roles, \(n \ll N \)

role selection mechanism

Ground set of \(N \) parties

\(R_3 \)
YOSO: You Only Speak Once

Secure MPC with Stateless Ephemeral Roles

Craig Gentry\(^1\), Shai Halevi\(^1\), Hugo Krawczyk\(^1\), Bernardo Magri\(^2\), Jesper Buus Nielsen\(^*2\),
Tal Rabin\(^1\), and Sophia Yakoubov\(^{i3}\)

Graphical Representation

- **Ground set of \(N \) parties**
- **Role selection mechanism**
- **\(M_{1 \rightarrow 3} \)**
- **\(M_{1 \rightarrow 2} \)**
- **\(M_{2 \rightarrow 3} \)**

Textual Description

\(n \) ephemeral roles, \(n \ll N \)

\(X_1 \)

\(X_2 \)

\(X_3 \)

\(n \) ephemeral roles, \(n \ll N \)
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry1, Shai Halevi1, Hugo Krawczyk1, Bernardo Magri2, Jesper Buus Nielsen2,
Tal Rabin1, and Sophia Yakoubov1

n ephemeral roles, $n \ll N$
YOSO: You Only Speak Once
Secure MPC with Stateless Ephemeral Roles

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen*², Tal Rabin¹, and Sophia Yakoubov³

\[
\begin{align*}
 t & = \left(\frac{1}{2} - \delta \right) N \\
 \text{role selection mechanism assumed uniformly random} \\
 \implies \text{MPC with } t = (1/2 - \delta)N \text{ corruptions!}
\end{align*}
\]

\(\begin{align*}
 n & \text{ ephemeral roles, } \\
 n & \ll N
\end{align*} \)

\(\begin{align*}
 X_1 & \xrightarrow{M_{1 \rightarrow 3}} \\
 X_2 & \xrightarrow{M_{1 \rightarrow 2}} \\
 X_3 & \xrightarrow{M_{2 \rightarrow 3}}
\end{align*} \)

Abstracted away

Ground set of \(N \) parties
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

$R_1 \quad R_2 \quad R_3 \quad R_4$
YOSO public randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

\[R_1 \quad \text{😈} \quad R_3 \quad \text{😈} \]
YOSO public randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by static chosen corruptions

private messages

R_1 → R_3 → broadcast

X_1
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**
YOSO public randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by static chosen corruptions
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**
YOSO **public** randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

\[B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif} \]
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

\[
B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif}
\]

only public values
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

\[
\begin{align*}
B &= \text{Ext}(X_1, X_2, X_3, X_4) \\
&\approx \text{Unif}
\end{align*}
\]

only public values
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

Why study worst-case corruptions?
- Role selection mechanism may be biased!

\[B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif} \]

only public values
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

Why study worst-case corruptions?
- Role selection mechanism may be biased!
- Go beyond round-based MPC techniques

\[
B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif}
\]

only public values
YOSO public randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

Why study worst-case corruptions?
- Role selection mechanism may be biased!
- Go beyond round-based MPC techniques
- Clean model

\[B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif} \]

only public values
YOSO *public* randomness extraction with worst-case corruptions

Replace i.i.d. random corruptions by **static chosen corruptions**

Why study worst-case corruptions?
- Role selection mechanism may be biased!
- Go beyond round-based MPC techniques
- Clean model
- Relationship to other randomness extraction settings

\[
B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif}
\]

only public values
How are “messages to the future” implemented?

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.
How are “messages to the future” implemented?

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.
How are “messages to the future” implemented?

In this talk: Adversary learns incoming messages to corrupted role only when role is executed

[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]
How are “messages to the future” implemented?

In this talk: Adversary learns incoming messages to corrupted role only when role is executed
[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen ’21]
Our central question

What is the maximum corruption rate that allows for low-bias randomness extraction?
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$$P_1^{(1)} \ldots P_n^{(1)} \quad P_1^{(2)} \ldots P_n^{(2)} \quad \ldots \quad P_1^{(r)} \ldots P_n^{(r)}$$
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

\[
\begin{array}{cccc}
P^{(1)}_1 & \ldots & P^{(1)}_n \\
\ldots & \ldots & \ldots & \ldots \\
\text{emulate round 1} & \ldots & \ldots & \ldots \\
\end{array}
\]
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$p^{(j)}_i$ sends secret state to $p^{(j+1)}_i$

$P^{(1)}_1 \ldots P^{(1)}_n \quad P^{(2)}_1 \ldots P^{(2)}_n \quad \ldots \quad P^{(r)}_1 \ldots P^{(r)}_n$

emulate round 1
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$$P_i^{(j)} \text{ sends secret state to } P_i^{(j+1)}$$

<table>
<thead>
<tr>
<th>$P_1^{(1)}$</th>
<th>$P_2^{(1)}$</th>
<th>...</th>
<th>$P_n^{(1)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>emulate round 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P_1^{(2)}$</th>
<th>$P_2^{(2)}$</th>
<th>...</th>
<th>$P_n^{(2)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>emulate round 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$P_1^{(r)}$</th>
<th>$P_2^{(r)}$</th>
<th>...</th>
<th>$P_n^{(r)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>emulate round r</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$$P_1^{(1)} \cdots P_n^{(1)} \quad P_1^{(2)} \cdots P_n^{(2)} \quad \cdots \quad P_1^{(r)} \cdots P_n^{(r)}$$

- $P_i^{(j)}$ sends secret state to $P_i^{(j+1)}$

Tolerated corruption rate decreased from δ to δ/r
A naive approach to YOSO protocols

Starting point: Round-based n-party r-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

\[
P_i^{(j)} \text{ sends secret state to } P_i^{(j+1)}
\]

\[
P_1^{(1)} \cdots P_n^{(1)} \quad P_1^{(2)} \cdots P_n^{(2)} \quad \cdots \quad P_1^{(r)} \cdots P_n^{(r)}
\]

emulate round 1 \quad emulate round 2 \quad \cdots \quad emulate round r

Tolerated corruption rate decreased from δ to δ/r

3 rounds, $\delta \approx 1/3$ corruption rate \implies YOSO protocol secure against $\approx 1/9$ corruption rate
Our results

Feasibility

Impossibility
Our results

Feasibility

Zero-error randomness extraction against t corruptions with $n = 5t$ roles

(or $n = 6t + 1$ roles against stronger adversary)

Impossibility
Our results

Feasibility

Zero-error randomness extraction against t corruptions with $n = 5t$ roles
(or $n = 6t + 1$ roles against stronger adversary)

Impossibility

Randomness extraction with bias < 0.01 against t corruptions requires $n \geq 4t + 1$ roles
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.
Protocol

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”

$R_1 \quad R_2 \quad \ldots \quad R_{3t+1} \quad R'_1 \quad R'_2 \quad \ldots \quad R'_{2t+1}$

samplers \quad publishers
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”

\[
R_1 \quad R_2 \quad \ldots \quad R_{3t+1} \quad R'_1 \quad R'_2 \quad \ldots \quad R'_{2t+1}
\]

samplers \hspace{2cm} publishers

High-level idea:
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”

\[
R_1 \quad R_2 \quad \ldots \quad R_{3t+1} \quad R'_1 \quad R'_2 \quad \ldots \quad R'_{2t+1}
\]

samplers \quad publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”

\[R_1 \quad R_2 \quad \ldots \quad R_{3t+1} \quad R'_1 \quad R'_2 \quad \ldots \quad R'_{2t+1} \]

samplers publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;
2. Publishers broadcast whatever they receive;
There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with $n = 5t + 2$ roles.

YOSOfied version of Maurer’s “Secure MPC made simple”

$$R_1 \quad R_2 \quad \ldots \quad R_{3t+1} \quad R'_1 \quad R'_2 \quad \ldots \quad R'_{2t+1}$$

samplers publishers

High-level idea:
1. Several subsets of samplers commit to values and send them to publishers;
2. Publishers broadcast whatever they receive;
3. Extract random bit by taking majorities and XOR.
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

\[R_{i_1} \quad R_{i_2} \quad \ldots \quad R_{i_j} \quad \ldots \quad R_{i_{2t+1}} \quad R'_{i_1} \quad \ldots \quad R'_{i_{2t+1}} \]

samplers

publishers
$S = \{ i_1 < i_2 < \cdots < i_{2t+1} \} \subseteq [3t+1]$
Protocol

\[S = \{ i_1 < i_2 < \cdots < i_{2t+1} \} \subseteq [3t + 1] \]

Diagram:

- \(R_{i_1} \)
- \(R_{i_2} \)
- \(\ldots \)
- \(R_{i_j} \)
- \(\ldots \)
- \(R_{i_{2t+1}} \)

Samples \(x_1 \) from \(\{0,1\} \)

Publishers:

- \(R'_1 \)
- \(\ldots \)
- \(R'_{2t+1} \)
Protocol

\[S = \{ i_1 < i_2 < \cdots < i_{2t+1} \} \subseteq [3t + 1] \]
$S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1]$

Protocol

If not all equal, broadcast (Complain, S), procedure aborts

$x_1 \leftarrow \{0,1\}$

$R_{i_1} \rightarrow R_{i_2} \rightarrow \cdots \rightarrow R_{i_j} \rightarrow \cdots \rightarrow R_{i_{2t+1}}$

$x_1 \rightarrow R_{i_1} \rightarrow \cdots \rightarrow R_{i_{2t+1}}$

samplers

$S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1]$
Protocol

\[S = \{ i_1 < i_2 < \cdots < i_{2t+1} \} \subseteq [3t + 1] \]

- \(x_1 \leftarrow \{0, 1\} \)
- \(x_1 \rightarrow 2 \)
- \(x_1 \rightarrow 2 \rightarrow j \)
- \(\vdots \)
- \(x_j \rightarrow 1 \rightarrow j \)

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts.

If all equal some \(z\), send \(z\) to all publishers.

\(R_i \) publishers

\(R'_i \)

consistency check

samplers
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

If all equal some \(z \), send \(z \) to all publishers.

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts.

\[x_1 \leftarrow \{0, 1\} \]

\[x_1 \rightarrow (0, 1) \]

\[x_2 \rightarrow (0, 1) \]

\[\vdots \]

\[x_{j-1} \rightarrow (0, 1) \]

\[x_{j} \rightarrow (0, 1) \]

\[\vdots \]

\[z_{2t+1} \rightarrow (0, 1) \]

Samplers consistency check

Publishers
$S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1]$

Protocol

If all equal some z, send z to all publishers

If not all equal, broadcast $(\text{Complain}, S)$, procedure aborts

$w_1 = \text{maj}\{z_{j\rightarrow 1}\}$
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

If all equal some \(z \), send \(z \) to all publishers

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts

\[w_1 = \text{maj}\{z_{j-1}\} \]

\[w_{2t+1} = \text{maj}\{z_{j \rightarrow 2t+1}\} \]

\[R_i \]

\[R_i \rightarrow \]

\[x_1 \leftarrow \{0, 1\} \]

\[x_1 \rightarrow 2 \]

\[x_j \rightarrow j \]

\[x_{j-1} \rightarrow j \]

publishers

\[R' \]

\[R' \rightarrow \]

\[R'_{i \rightarrow 2t+1} \]

\[\{s_i \mid i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

\[w_1 = \text{maj}\{z_{j \rightarrow 1}\} \]

\[w_{2t+1} = \text{maj}\{z_{j \rightarrow 2t+1}\} \]

\[w_S = \begin{cases}
0, & \text{if } S \text{ received a complaint,} \\
\text{maj}(w_j), & \text{else.}
\end{cases} \]
Protocol

\[S = \{ i_1 < i_2 < \cdots < i_{2t+1} \} \subseteq [3t+1] \]

If all equal some \(z \), send \(z \) to all publishers

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts

\[w_1 = \text{maj}\{z_{j \rightarrow 1}\} \]

\[w_{2t+1} = \text{maj}\{z_{j \rightarrow 2t+1}\} \]

\[w_S = \begin{cases}
0, & \text{if } S \text{ received a complaint,} \\
\text{maj}(w_j), & \text{else.}
\end{cases} \]

\[b = \bigoplus_S w_S \]
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t+1] \]

\[x_1 \leftarrow \{0,1\} \]

\[x_1 \rightarrow 1 \]

\[x_1 \rightarrow 2 \]

\[x_j \rightarrow j \]

\[z \]

If all equal some \(z \), send \(z \) to all publishers

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts

Key properties:

\[w_1 = \text{maj}\{z_{j\rightarrow 1}\} \]

\[w_{2t+1} = \text{maj}\{z_{j\rightarrow 2t+1}\} \]

\[w_S = \begin{cases} 0, & \text{if } S \text{ received a complaint,} \\ \text{maj}(w_j), & \text{else.} \end{cases} \]

\[b = \bigoplus_{S} w_S \]
Protocol

$S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1]$

Key properties:
- Every set S has a strict honest majority;

If all equal some z, send z to all publishers
If not all equal, broadcast (Complain, S), procedure aborts

$w_S = \begin{cases} 0, & \text{if } S \text{ received a complaint,} \\ \text{maj}(w_j), & \text{else.} \end{cases}$

$b = \bigoplus_{S} w_S$
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

Key properties:

- Every set \(S \) has a strict honest majority;
- If \(S \) did not receive a complaint, then all honest roles in \(S \) agree on the same value;
Protocol

\[S = \{ i_1 < i_2 < \cdots < i_{2r+1} \} \subseteq [3t + 1] \]

Key properties:
- Every set \(S \) has a strict honest majority;
- If \(S \) did not receive a complaint, then all honest roles in \(S \) agree on the same value;
- There is a set \(S^* \) such that all roles \((P_i)_{i \in S^*}\) are honest.
Protocol

\[S = \{i_1 < i_2 < \cdots < i_{2t+1}\} \subseteq [3t + 1] \]

Key properties:
- Every set \(S \) has a strict honest majority;
- If \(S \) did not receive a complaint, then all honest roles in \(S \) agree on the same value;
- There is a set \(S^* \) such that all roles \((P_i)_{i \in S^*} \) are honest.

\[w_{S^*} \text{ is uniform and independent of } (w_S)_{S \neq S^*}. \]

If not all equal, broadcast \((\text{Complain}, S)\), procedure aborts

If all equal some \(z \), send \(z \) to all publishers
A simple improved protocol for one corruption

\[R_1 \quad R_2 \quad R'_1 \quad R'_2 \quad R'_3 \]

samplers

publishers
A simple improved protocol for one corruption

\[x_1 \leftarrow \{0, 1\} \]

\[
\begin{array}{ccc}
R_1 & R_2 & R'_1 & R'_2 & R'_3 \\
\end{array}
\]
A simple improved protocol for one corruption

$R_1 \xleftarrow{} \{0,1\} x_1 \rightarrow R_2 \rightarrow R'_1 \rightarrow R'_2 \rightarrow R'_3$

samplers

R_1, R_2, R'_1, R'_2, R'_3

publishers
A simple improved protocol for one corruption
A simple improved protocol for one corruption

\[x_1 \leftarrow \{0,1\} \]

\[x_2 \leftarrow \{0,1\} \]

samplers

\[R_1 \]

\[R_2 \]

publishers

\[R'_1 \]

\[R'_2 \]

\[R'_3 \]
A simple improved protocol for one corruption

\[x_1 \leftarrow \{0,1\} \]

\[x_2 \leftarrow \{0,1\} \]

\[
\begin{align*}
R_1 & \quad R_2 \\
R'_1 & \quad R'_2 & \quad R'_3
\end{align*}
\]
A simple improved protocol for one corruption

\[x_1 \xleftarrow{} \{0,1\} \]
\[x_2 \xleftarrow{} \{0,1\} \]

Publishers:
- \(R_1 \)
- \(R_2 \)
- \(R_1' \)
- \(R_2' \)
- \(R_3' \)

Samplers:
- \(R_1 \)
- \(R_2 \)
A simple improved protocol for one corruption

$\begin{align*}
R_1 &\xleftarrow{} \{0,1\} \\
R_2 &\xleftarrow{} \{0,1\} \\
R'_1 &\xrightarrow{} 1 \\
R'_2 &\xrightarrow{} 1 \\
R'_3 &\xrightarrow{} 1 \\
x_1 &\xleftarrow{} \{0,1\} \\
x_2 &\xleftarrow{} \{0,1\}
\end{align*}$
A simple improved protocol for one corruption
A simple improved protocol for one corruption
A simple improved protocol for one corruption

$$y_1 = \text{maj}(x_{1\rightarrow 1}, x_{1\rightarrow 2}, x_{1\rightarrow 3})$$
A simple improved protocol for one corruption

$$y_1 = \text{maj}(x_{1\rightarrow 1}, x_{1\rightarrow 2}, x_{1\rightarrow 3})$$

$$y_2 = \text{maj}(x_{2\rightarrow 1}, x_{2\rightarrow 2}, x_{2\rightarrow 3})$$
A simple improved protocol for one corruption

\[y_1 = \text{maj}(x_{1\to1}, x_{1\to2}, x_{1\to3}) \]
\[y_2 = \text{maj}(x_{2\to1}, x_{2\to2}, x_{2\to3}) \]
\[b = y_1 \oplus y_2 \]

\text{samplers}

\[x_1 \leftarrow \{0,1\} \]
\[x_2 \leftarrow \{0,1\} \]

\text{publishers}

\[R_1 \quad R_2 \]
\[R'_1 \quad R'_2 \quad R'_3 \]
A simple improved protocol for one corruption

$y_1 = \text{maj}(x_{1\rightarrow1}, x_{1\rightarrow2}, x_{1\rightarrow3})$

$y_2 = \text{maj}(x_{2\rightarrow1}, x_{2\rightarrow2}, x_{2\rightarrow3})$

$b = y_1 \oplus y_2$

Can be generalized using $n = 5t$ roles.
Impossibility result

Every randomness extraction protocol with bias < 0.01 against t corruptions requires $n \geq 4t + 1$ roles.
Every randomness extraction protocol with bias < 0.01 against t corruptions requires $n \geq 4t + 1$ roles.

$$n^* = n^*(t) = \text{Smallest number of roles for which we can handle } t \text{ corruptions}$$

Stronger adversary: $4t + 1 \leq n^* \leq 6t + 1$

Weaker adversary (this talk): $4t + 1 \leq n^* \leq 5t$
Impossibility for 3 roles, 1 corruption

\[R_1 \quad R_2 \quad R_3 \]
Impossibility for 3 roles, 1 corruption

$R_1 \xrightarrow{X_1} R_2 \xrightarrow{} R_3$
Impossibility for 3 roles, 1 corruption
Impossibility for 3 roles, 1 corruption
Impossibility for 3 roles, 1 corruption

\[B = \text{Ext}(X_1, X_2, X_3) \]
Impossibility for 3 roles, 1 corruption

\[B = \text{Ext}(X_1, X_2, X_3) \]
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that
\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]

\[B = \text{Ext}(X_1, X_2, X_3)\]
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that
\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]

Bias!
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that

\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]

Bias!

\(X_1, X_2 \) must fully determine output w/ high prob
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that
\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]

Bias!

\(X_1, X_2 \) must fully determine output w/ high prob
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that
\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]
and both are constant

Bias!

\(X_1, X_2 \) must fully
determine output
w/ high prob
Impossibility for 3 roles, 1 corruption

If there are such that \(x(0) \equiv 3 \), \(x(1) \equiv 3 \),

\[
\mathcal{B} = \text{Ext}(X_1, X_2, x(b)) = b
\]

Bias!

Sample \(X_2^{(0)}, X_2^{(1)} \) \(i.i.d. \) \((X_2 \mid X_1, M_{1\rightarrow 2}) \)

If \(\text{Ext}(X_1, X_2^{(0)}, \cdot) \neq \text{Ext}(X_1, X_2^{(1)}, \cdot) \)
and both are constant

Bias!

\(X_1, X_2 \) must fully determine output w/ high prob
Impossibility for 3 roles, 1 corruption

If there are \(x_3^{(0)}, x_3^{(1)} \) such that
\[\text{Ext}(X_1, X_2, x_3^{(b)}) = b \]

Bias!

Bias!

\(B = \text{Ext}(X_1, X_2, X_3) \)

Sample \(X_2^{(0)}, X_2^{(1)} \) i.i.d. \((X_2 | X_1, M_{1 \rightarrow 2}) \)

If \(\text{Ext}(X_1, X_2^{(0)}, \cdot) \neq \text{Ext}(X_1, X_2^{(1)}, \cdot) \)

and both are constant

\(X_1, X_2 \text{ must fully determine output w/ high prob} \)

W/ high prob over sampling
\(X_2^{(0)}, X_2^{(1)} \) i.i.d. \((X_2 | X_1, M_{1 \rightarrow 2}) \)

must have
\[\text{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \text{Ext}(X_1, X_2^{(1)}, \cdot) \]
Impossibility for 3 roles, 1 corruption

If there are $x_3^{(0)}, x_3^{(1)}$ such that

$$\text{Ext}(X_1, X_2, x_3^{(b)}) = b$$

$B = \text{Ext}(X_1, X_2, X_3)$

Sample $X_2^{(0)}, X_2^{(1)} \overset{i.i.d.}{\sim} (X_2 | X_1, M_{1\rightarrow 2})$

If Ext($X_1, X_2^{(0)}, \cdot$) \neq Ext($X_1, X_2^{(1)}, \cdot$) and both are constant

W/ high prob over sampling

$X_2^{(0)}, X_2^{(1)} \overset{i.i.d.}{\sim} (X_2 | X_1, M_{1\rightarrow 2})$

must have

Ext($X_1, X_2^{(0)}, \cdot$) \equiv Ext($X_1, X_2^{(1)}, \cdot$)

X_1, X_2 must fully determine output w/ high prob
Impossibility for 3 roles, 1 corruption

If there are \(x_1(0), x_1(1) \) such that
\[
3
x(0) \quad 3
1 \quad 3
x(1) \quad 3
\]

Then

\[
\text{Bias!}
\]

Sample \(X_1^{(0)}, X_1^{(1)} \) i.i.d. \(X_1 \)
With prob \(\approx 1/2 \) lead to different
coin values and \(R_1 \) can predict
values w/ high prob

If \(\text{Ext}(X_1, X_2^{(0)}, \cdot) \neq \text{Ext}(X_1, X_2^{(1)}, \cdot) \)
and both are constant

\[
\text{Bias!}
\]

If there are \(x_3^{(0)}, x_3^{(1)} \)
such that
\[
\text{Ext}(X_1, X_2, x_3^{(b)}) = b
\]

\[
\text{Bias!}
\]

W/ high prob over sampling
\[
X_2^{(0)}, X_2^{(1)} \text{ i.i.d. } (X_2 | X_1, M_{1\rightarrow 2})
\]

Must have
\[
\text{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \text{Ext}(X_1, X_2^{(1)}, \cdot)
\]

\[
X_1, X_2 \text{ must fully determine output w/ high prob}
\]

\[
B = \text{Ext}(X_1, X_2, X_3)
\]
Impossibility for 3 roles, 1 corruption

If there are such that
$x(0) \not\equiv x(1)$,
$\mathcal{D}(X_1, X_2, x(b)) = b$

Bias!
Bias!
Bias!

$B = \operatorname{Ext}(X_1, X_2, X_3)$

Sample $X_1^{(0)}, X_1^{(1)} \sim X_1$
With prob $\approx 1/2$ lead to different coin values and R_1 can predict values w/ high prob

$W/ high prob over sampling$
$X_2^{(0)}, X_2^{(1)} \sim (X_2 | X_1, M_{1\rightarrow 2})$

If there are $x_3^{(0)}, x_3^{(1)}$
such that
$\operatorname{Ext}(X_1, X_2, x_3^{(b)}) = b$

$X_1, X_2 must fully determine output w/ high prob$

$X_1, X_2 must have$
$\operatorname{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \operatorname{Ext}(X_1, X_2^{(1)}, \cdot)$
Impossibility for 4 roles, 1 corruption

- R_2 must be able to *influence* final output;
- R_2 must be able to *predict* which path leads to each value.
Impossibility for 4 roles, 1 corruption

- R_2 must be able to influence final output;
- R_2 must be able to predict which path leads to each value.

R_2 doesn't know $M_{1 \rightarrow 3}$!
Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks
• Public randomness extraction in YOSO with worst-case corruptions:
 • Still secure if role selection mechanism is biased
 • Go beyond round-based MPC techniques
 • Related to prior work on multi-source randomness extraction

Stronger adversary: $4t + 1 \leq n^* \leq 6t + 1$

Weaker adversary: $4t + 1 \leq n^* \leq 5t$
Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks
• Public randomness extraction in YOSO with worst-case corruptions:
 • Still secure if role selection mechanism is biased
 • Go beyond round-based MPC techniques
 • Related to prior work on multi-source randomness extraction

Stronger adversary: $4t + 1 \leq n^* \leq 6t + 1$

Weaker adversary: $4t + 1 \leq n^* \leq 5t$

Open problems:
• Close gap between our upper and lower bounds
• Protocols with communication complexity $\text{poly}(n)$
• More functionalities!
Concluding

• YOSO: Stateless MPC, avoids denial-of-service attacks
• Public randomness extraction in YOSO with worst-case corruptions:
 • Still secure if role selection mechanism is biased
 • Go beyond round-based MPC techniques
 • Related to prior work on multi-source randomness extraction

Stronger adversary: \(4t + 1 \leq n^* \leq 6t + 1\)

Weaker adversary: \(4t + 1 \leq n^* \leq 5t\)

Open problems:
• Close gap between our upper and lower bounds
• Protocols with communication complexity \(\text{poly}(n)\)
• More functionalities!

Thanks!