Public Randomness Extraction with Ephemeral Roles and Worst-Case Corruptions

João Ribeiro CMU

Jesper Buus Nielsen Aarhus

Maciej Obremski CQT & NUS

How do we generate it?

How do we generate it?

How do we generate it?

7

J

How do we generate it?

How do we generate it?

Randomness generator

 $b \leftarrow \{0,1\}$

How do we generate it?

Randomness generator

 $b \leftarrow \{0,1\}$

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!

How do we generate it?

Randomness generator

 $b \leftarrow \{0,1\}$

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!

 $b \leftarrow \{0,1\}$

How do we generate it?

but maintaining stateful environments is hard, especially under targeted denial-of-service attacks!

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3}

 $n ext{ ephemeral roles}, \quad R_1$ $n \ll N$ Ground set of *N* parties

• • •

YOSO: YOU ONLY SPEAK ONCE Secure MPC with Stateless Ephemeral Roles Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3} role selection Ground set ...mechanism of N parties R_{z} • • •

 R_1

$$n \ll N$$

YOSO: YOU ONLY SPEAK ONCE SECURE MPC WITH STATELESS EPHEMERAL ROLES Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3} role selection Ground set mechanism of N parties $M_{1\rightarrow 3}$ $M_{1 \rightarrow 2}$ • • •

YOSO: YOU ONLY SPEAK ONCE Secure MPC with Stateless Ephemeral Roles Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3} role selection Ground set mechanism of N parties $M_{1\rightarrow 3}$ $M_{1 \rightarrow 2}$ • • •

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3}

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3}

Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3}

YOSO: YOU ONLY SPEAK ONCE SECURE MPC WITH STATELESS EPHEMERAL ROLES Craig Gentry¹, Shai Halevi¹, Hugo Krawczyk¹, Bernardo Magri², Jesper Buus Nielsen^{*2}, Tal Rabin¹, and Sophia Yakoubov^{†3} role selection Ground set mechanism of N parties $M_{1\rightarrow 3}$ abstracted $M_{1 \rightarrow 2}$ away $M_{2\rightarrow 3}$ • • • X_3

Replace i.i.d. random corruptions by static chosen corruptions

 R_{3}

 R_1

 R_{γ}

 R_{A}

Replace i.i.d. random corruptions by static chosen corruptions

 R_3

Replace i.i.d. random corruptions by static chosen corruptions

$B = \operatorname{Ext}(X_1, X_2, X_3, X_4) \approx \operatorname{Unif}$

Replace i.i.d. random corruptions by static chosen corruptions

only public values

 $B = \text{Ext}(X_1, X_2, X_3, X_4) \approx \text{Unif}$

Replace i.i.d. random corruptions by static chosen corruptions

only public values

Replace i.i.d. random corruptions by static chosen corruptions

only public values

Why study worst-case corruptions?

Role selection mechanism may be lacksquarebiased!

only public values

Replace i.i.d. random corruptions by static chosen corruptions

Why study worst-case corruptions?

- Role selection mechanism may be lacksquarebiased!
- Go beyond round-based MPC lacksquaretechniques

only public values

Replace i.i.d. random corruptions by static chosen corruptions

Why study worst-case corruptions?

- Role selection mechanism may be lacksquarebiased!
- Go beyond round-based MPC lacksquaretechniques
- Clean model ullet

only public values

Replace i.i.d. random corruptions by static chosen corruptions

Why study worst-case corruptions?

- Role selection mechanism may be lacksquarebiased!
- Go beyond round-based MPC lacksquaretechniques
- Clean model lacksquare
- Relationship to other randomness extraction settings

How are "messages to the future" implemented?

[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.

In this talk: Adversary learns incoming messages to corrupted role only when role is executed

How are "messages to the future" implemented?

[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.

In this talk: Adversary learns incoming messages to corrupted role only when role is executed

How are "messages to the future" implemented?

[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.

In this talk: Adversary learns incoming messages to corrupted role only when role is executed

How are "messages to the future" implemented?

[Campanelli-David-Khoshakhlagh-Kristensen-Nielsen '21]

Simple models inspired by concrete implementations of such a mechanism.

In this talk: Adversary learns incoming messages to corrupted role only when role is executed

Our central question

What is the maximum corruption rate that allows for *low-bias randomness extraction?*

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$$P_1^{(1)} \dots P_n^{(1)} \qquad P_1^{(2)} \dots$$

 $\dots P_n^{(2)} \qquad \dots \qquad P_1^{(r)} \ \dots \ P_n^{(r)}$

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

$$P_1^{(1)} \dots P_n^{(1)}$$

emulate round 1

 $P_1^{(2)} \dots P_n^{(2)} \dots P_n^{(r)} \dots P_n^{(r)}$

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

emulate round 1

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

• • •

 $P_1^{(r)} \dots P_n^{(r)}$

emulate round r

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

Tolerated corruption rate decreased from δ to δ/r

Starting point: Round-based *n*-party *r*-round protocol secure against $t = \delta n$ corruptions.

Emulate rounds in YOSO:

Tolerated corruption rate decreased from δ to δ/r

3 rounds, $\delta \approx 1/3$ corruption rate \implies YOSO protocol secure against $\approx 1/9$ corruption rate

Feasibility

Impossibility

Our results

Feasibility

Impossibility

Our results

Zero-error randomness extraction against *t* corruptions with n = 5t roles (or n = 6t + 1 roles against stronger adversary)

Feasibility

Impossibility

Our results

Zero-error randomness extraction against t corruptions with n = 5t roles (or n = 6t + 1 roles against stronger adversary)

Randomness extraction with bias < 0.01against t corruptions requires $n \ge 4t + 1$ roles

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with n = 5t + 2 roles.

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

High-level idea:

There is a zero-error randomness extraction protocol secure against t chosen

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

High-level idea:

1. Several subsets of samplers commit to values and send them to publishers;

There is a zero-error randomness extraction protocol secure against *t* chosen corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

High-level idea:

- 1. Several subsets of samplers commit to values and send them to publishers;
- 2. Publishers broadcast whatever they receive;

There is a zero-error randomness extraction protocol secure against t chosen corruptions in the with n = 5t + 2 roles.

YOSOfied version of Maurer's "Secure MPC made simple"

High-level idea:

- 1. Several subsets of samplers commit to values and send them to publishers;
- 2. Publishers broadcast whatever they receive;
- 3. Extract random bit by taking majorities and XOR.

samplers

Protocol

publishers R'_{2t+1}

 R'_1 ...

samplers

Protocol

publishers R'_{2t+1}

 R'_1 ...

samplers

Protocol

publishers R'_{2t+1}

 R'_1

• • •

samplers

Protocol

publishers R'_{2t+1}

 R'_1

• • •

Protocol

publishers

 R'_{2t+1} • • •

 R'_1

samplers

publishers

R'_1 R'_2 R'_3

samplers

publishers

R'_1 R'_2 R'_3

A simple improved protocol for one corruption $x_1 \qquad x_2$

 $b = y_1 \oplus y_2$

 $b = y_1 \oplus y_2$

Can be generalized using n = 5t roles.

Impossibility result

Every randomness extraction protocol with bias < 0.01 against *t* corruptions requires $n \ge 4t + 1$ roles.

Impossibility result

Every randomness extraction protocol with bias < 0.01 against t corruptions requires $n \ge 4t + 1$ roles.

 $n^{\star} = n^{\star}(t) = \text{Smallest number of roles for which we can handle t corruptions}$

Stronger adversary: $4t + 1 \le n^* \le 6t + 1$

Weaker adversary (this talk): $4t + 1 \le n^* \le 5t$

*R*₁

 R_2

 R_2

 R_{3}

 R_{γ}

 X_2

 $B = Ext(X_1, X_2, X_3)$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_{γ}

 X_2

 $B = Ext(X_1, X_2, X_3)$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

Bias!

 R_{2}

 X_2

 $B = \text{Ext}(X_1, X_2, X_3)$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

Bias!

 R_2

 $B = \text{Ext}(X_1, X_2, X_3)$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

and both are constant

 $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

and both are constant

 $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

$$(, \cdot) \not\equiv \mathsf{Ext}(X_1, X_2^{(1)}, \cdot)$$

Bias!

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

 $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

$$(, \cdot) \not\equiv \mathsf{Ext}(X_1, X_2^{(1)}, \cdot)$$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

W/ high prob over sampling

must have

 $Ext(X_1, X_2^{(0)},$

$$\cdot$$
) \equiv Ext($X_1, X_2^{(1)}, \cdot$)

 R_{γ}

Sample $X_{\gamma}^{(0)}, X$

If $Ext(X_1, X_2^{(0)})$

 $\mathsf{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \mathsf{Ext}(X_1, X_2^{(1)}, \cdot)$

Bias!

 $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

$$(\cdot, \cdot) \not\equiv \operatorname{Ext}(X_1, X_2^{(1)}, \cdot)$$

and both are constant

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

W/ high prob over sampling $X_{2}^{(0)}, X_{2}^{(1)} \stackrel{i.i.d.}{\sim} (X_{2} | X_{1}, M_{1 \to 2})$

must have

 R_{γ}

Sample $X_1^{(0)}, X_1^{(1)} \stackrel{i.i.d.}{\sim} X_1$ With prob $\approx 1/2$ lead to different coin values and R_1 can predict values w/ high prob

Sample $X_2^{(0)}, X$

If $Ext(X_1, X_2^{(0)})$ and both are constant

W/ high prob over sampling $X_{2}^{(0)}, X_{2}^{(1)} \stackrel{i.i.d.}{\sim} (X_{2} | X_{1}, M_{1 \to 2})$ must have

Bias!

 $\mathsf{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \mathsf{Ext}(X_1, X_2^{(1)}, \cdot)$

 $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

$$(\cdot, \cdot) \not\equiv \operatorname{Ext}(X_1, X_2^{(1)}, \cdot)$$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

 R_{γ}

Bias!

Sample $X_1^{(0)}, X_1^{(1)} \stackrel{i.i.d.}{\sim} X_1$ With prob $\approx 1/2$ lead to different coin values and R_1 can predict values w/ high prob

Sample $X_2^{(0)}, X$

If $Ext(X_1, X_2^{(0)})$ and both are constant

must have $\mathsf{Ext}(X_1, X_2^{(0)}, \cdot) \equiv \mathsf{Ext}(X_1, X_2^{(1)}, \cdot)$ $B = Ext(X_1, X_2, X_3)$

$$X_2^{(1)} \stackrel{i.i.d.}{\sim} (X_2 | X_1, M_{1 \to 2})$$

$$(\cdot, \cdot) \not\equiv \operatorname{Ext}(X_1, X_2^{(1)}, \cdot)$$

If there are $x_3^{(0)}, x_3^{(1)}$ such that $Ext(X_1, X_2, x_3^{(b)}) = b$

 R_3

Bias!

W/ high prob over sampling $X_{2}^{(0)}, X_{2}^{(1)} \stackrel{i.i.d.}{\sim} (X_{2} | X_{1}, M_{1 \to 2})$

Impossibility for 4 roles, 1 corruption R_3 R_{2} R X

Impossibility for 4 roles, 1 corruption

• R_2 must be able to *influence* final output;

X

• *R*₂ must be able to *predict* which path leads to each value.

Impossibility for 4 roles, 1 corruption

R

X

• R_2 must be able to *influence* final output;

 R_{2}

• *R*₂ must be able to *predict* which path leads to each value.

Concluding

- YOSO: Stateless MPC, avoids denial-of-service attacks
- Public randomness extraction in YOSO with worst-case corruptions:
 - Still secure if role selection mechanism is biased
 - Go beyond round-based MPC techniques
 - Related to prior work on multi-source randomness extraction

Stronger adversary: $4t + 1 \le n^* \le 6t + 1$

Weaker adversary: $4t + 1 \le n^* \le 5t$

Concluding

- YOSO: Stateless MPC, avoids denial-of-service attacks
- Public randomness extraction in YOSO with worst-case corruptions:
 - Still secure if role selection mechanism is biased
 - Go beyond round-based MPC techniques
 - Related to prior work on multi-source randomness extraction

Stronger adversary: $4t + 1 \le n^* \le 6t + 1$

Weaker adversary: $4t + 1 \le n^* \le 5t$

Open problems:

- Close gap between our upper and lower bounds
- Protocols with communication complexity poly(*n*)
- More functionalities!

Concluding

- YOSO: Stateless MPC, avoids denial-of-service attacks
- Public randomness extraction in YOSO with worst-case corruptions:
 - Still secure if role selection mechanism is biased
 - Go beyond round-based MPC techniques
 - Related to prior work on multi-source randomness extraction

Stronger adversary: $4t + 1 \le n^* \le 6t + 1$

Weaker adversary: $4t + 1 \le n^* \le 5t$

Open problems:

- Close gap between our upper and lower bounds
- Protocols with communication complexity poly(n)
- More functionalities!

