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Fine-grained cryptography

Adversary

l Based only on mild assumption

Honest party

An honest party uses less 
resources than the 
adversary

The resources of an 
adversary can be a-prior 
bounded.

Existing fine-grained primitives:

NIZK?
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Gen

Verify

Sim

bindcrs

Prove
(crs,x,w) π

1/0
crs,x,π

(crs,td,x)
π

x ∈ L iff ∃w s. t. R x, w = 1

λ TGen hidecrs, tdλ

Completeness: honest proofs must pass the verification.

Perfect soundness: when crs is binding, there exists no valid proof for x if x ∉ L.

(Composable) zero knowledge: bindcrs and hidecrs are indistinguishable, 
and when crs is hiding, Sim perfectly simultates honest proofs.
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more computation resources than NC1
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Our results

A fully fine-grained NIZK for NC1-circuit sa/sfiability (SAT)
vthe CRS generator, prover, verifier, simulator run in NC1

vsecure against adversaries in NC1

vassump/on: NC1 ≠⊕ L/poly. 

A statement circuit cannot go beyond 
NC1. Otherwise, even the honest prover 
in NC1 cannot decide with the witness 
whether the statement is true or not.
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Σ-protocol

Prover Verifier

C=MR (R ← 0,1 "×$)

k ← 0,1 %×$

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

resp=(R||w)A

Completeness ✔

Special soundness ✔

Special honest-verifier zero-knowledge ✔

∃ w s. t. x=Mw

M ∈ 0,1 "×$
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NIZK for linear languages

Indistinguishable against NC1 
adversaries if NC1 ≠⊕ L/poly [DVV16]

ZeroSamp

OneSamp

(M0,s)

M1

λ

λ

≈

λ×λ matrix (Rank λ-1), s is in the kernel of M0

λ×λ matrix (Rank λ)
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Prover Verifier

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

S ← LSamp′

k ← 0,1 %×$

D=(R||w)A Distribu/on of AT

becomes 
ZeroSamp

C=MR (R ← 0,1 "×$)∃ w s. t. x=Mw

M ∈ 0,1 "×$
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NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

hideCRS

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$

The proof consists 
only of the first 
and third round 

messages

td is k



A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Now the Σ-protocol becomes a NIZK



A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

Completeness of NIZK ← Completeness of Σ-protocol
Zero-knowledge of NIZK ← SHVZK of Σ-protocol

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$



A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

∃ w s. t. x=Mw

π =(C, D)

Verify if (C||x)A=MD

M ∈ 0,1 "×$

Soundness of NIZK ← when switching the distribution 
of AT to OneSamp, the kernel of A becomes empty and 
no invalid x can pass the verification.
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OR-proof
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A=(S||t)⊤

NIZK for OR-languages

Prover Verifier

xj=Mjw for some j ∈ {0,1}

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)The prover splits the CRS of the NIZK for linear 
languages A into a binding CRS Aj and a hiding CRS A1-j

with a trapdoor k’



A=(S||t)⊤

NIZK for OR-languages

Prover Verifier

xj=Mjw for some j ∈ {0,1}

π+ = Prove(A+, x+, w)

Verify if π) and π'are valid 

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)

Prove and Sim are the prover and simulator of our NIZK for linear languages

Then it generates proofs for xj and x1-j with w and k’ 
respec/vely by making use of the prover and simulator 
of our NIZK for linear languages.



A=(S||t)⊤

NIZK for OR-languages

Prover Verifier
π+ = Prove(A+, x+, w)

Verify if π) and π'are valid 

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)

Prove and Sim are the prover and simulator of our NIZK for linear languages

Soundness: when A( ← OneSamp λ ,
either A) or A' must be binding

Zero-knowledge: when A(, s ← ZeroSamp λ ,
both are hiding

xj=Mjw for some j ∈ {0,1}
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wout=1

The prover first 
extends the witness 
to contain bits of all 

wires

Prover:
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NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)

Prover:

DVV encryp/on has two proper/es:
1. Addi/ve homomorphism
2. cti ∈ Span A iff wi=0

ctout=e
(a fixed ciphertext for 1)



NIZK for NC1 circuits

cti ctj

ctk

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

The prover proves that the input/output ciphertexts satisfies a relation 
supported by our OR-proof.

NAND gate

Prover:



NIZK for NC1 circuits

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

Soundness:

1 + w, +w- = 0
And

1 + w+ = 0

1 + w- = 0
And
w+ = 0

or

If the ciphertexts satisfy 
the relation, 

the corresponding 
plaintexts must be a valid 
input/output tuple of the 

NAND gate



NIZK for NC1 circuits

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

Soundness:

1 + w, +w- = 0
And

1 + w+ = 0

1 + w- = 0
And
w+ = 0

or Then soundness: we can 
extract a valid witness 
from a valid proof by 

decryp/ng the ciphertexts.



NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

ctout=e

Zero-knowledge:
1. Ciphertexts become random matrices (when switching the distribu/on 

of A to OneSamp)
2. OR-proofs reveals no useful informa/on due to its ZK

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)
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Proof size grows 
with the circuit size



Σ-protocol NIZK for linear 
languages OR-proof

NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE 
for AC./) 2

circuits



Σ-protocol NIZK for linear 
languages OR-proof

NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE 
for AC./) 2

circuits

The class of all polynomials 
with constant degree
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NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE 
for AC./) 2

circuits

Main challenge: multiplicative homomorphism
Core of the construction: a tricky way to extend 
the ciphertext of DVV PKE from vector to matrix
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Σ-protocol NIZK for linear 
languages OR-proof

NIZK for NC1-
circuit SAT

NIZK for AC!"# [2] circuits with short proofs

Fine-grained FHE 
for AC./) 2

circuits

Class of statement circuits is 
more restricted but the proof 
size is independent with the 
circuit size

NIZK for AC./) [2]
statement circuits
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Extensions
v Conversion to non-interac/ve zaps (NIWI in the plain model)

Proof: our NIZKs have 
verifiable correlated 

key generation
Non-interactive zaps

GOS conversion 
technique [GOS12]

v Conversion to NIZKs in the URS model 

Running NIZK 
with the random
CRS in parallelProof: a random matrix 

(with some par/cular form) 
is a binding/hiding CRS with 

half-half probabil/y

NIZK in the URS model

ZK: ZK of NIZK in the CRS model
Sta/s/cal soundness: for mul/ple 
random strings, at least one should 
be binding with overwhelming 
probability.



Conclusion

Proof systems secure against NC1 adversaries under NC1 ≠⊕L/poly

1. NIZK for NC1-circuit SAT

2. NIZK for AC./) [2] circuits with short proofs
• Fully homomorphic encryption for AC./) [2]

3. Non-interactive zaps

4. NIZKs in the URS model


