Non-Interactive Zero-Knowledge
Proofs with Fine-Grained Security

Yuyu Wang! and Jiaxin pan?

1. University of Electronic Science and Technology of China
2. NTNU - Norwegian University of Science and Technology



Standard cryptography

Honest party Adversary
polynomial-time polynomial-time
Assumption:

® Basic ones (e.g., one-way function)

® More advanced ones (e.g., factoring, discrete logarithm, DDH, LWE)
® Exotic ones (e.g, generic groups, algebraic groups)




Standard cryptography

Honest party Adversary
polynomial-time polynomial-time
Unproven
Assumption:

® Basic ones (e.g., one-way function)

® More advanced ones (e.g., factoring, discrete logarithm, DDH, LWE)
® Exotic ones (e.g, generic groups, algebraic groups)




Fine-grained cryptography

Honest party Adversary

An honest party uses less

resources than the
adversary




Fine-grained cryptography

Honest party

An honest party uses less
resources than the
adversary

Adversary

&

The resources of an
adversary can be a-prior
bounded



Fine-grained cryptography

Honest party

An honest party uses less
resources than the
adversary

Adversary

&

The resources of an
adversary can be a-prior
bounded

® Based only on mild assumption




Fine-grained cryptography

Honest party Adversary
An honest party uses less The resources of an
resources than the adversarv can be a-orior
adversary

Existing fine-grained primitives:
NIKE [Mer78], OWF [BC20], PKE [DVV16], verifiable
computation [CG18], trapdoor one-way function
[EWT21], ABE [WPC21]

® Based only on mild assumption




Fine-grained cryptography

Honest party Adversary
An honest party uses less The resources of an
resources than the adversarv can be a-orior
adversary

Existing fine-grained primitives:

NIZK?

® Based only on mild assumption




Definition of NIZK

[ x € LiffJws.t. R(x,w) =1 ]

bindcrs

-———> hidecrs, td

Crs,X,mt




Definition of NIZK

[ x € Liffdws.t. R(x,w) =1 ]

——> hidecrs, td

A 4 Gen ——> bindcrs A TGen
(crs,td,x) .
(Crsxw) | oove - Sim
Crs,X,Tt .
> Verify —> 1/0

Completeness: honest proofs must pass the verification.

Perfect soundness: when crs is binding, there exists no valid proof for x if x & L.

(Composable) zero knowledge: bindcrs and hidecrs are indistinguishable,
and when crs is hiding, Sim perfectly simultates honest proofs.



Existing Fine-Grained Proof Systems

Hash proof system [EWT19]

QA-NIZK [WPC21]

NIZK with inefficient prover [BDK20]




Existing Fine-Grained Proof Systems

* Hash proof system [EWT19]

* QA-NIZK [WPC21]

* NIZK with inefficient prover [} Secure against adversaries in
NC! under the assumption:
NC! =@ L/poly.



Existing Fine-Grained Proof Systems

Circuits with
* Hash proof system [EWT19] logarithmic

depth

* QA-NIZK [WPC21]

* NIZK with inefficient prover [} against adversaries in
NC! under the assumption:
NC! =@ L/poly.




Existing Fine-Grained Proof Systems

e Hash proof system [EWT19]

* QA-NIZK [WPC21]

* NIZK with inefficient prover [J Secure against adversaries in
NC' under the assumption:
NC! =@ L/poly.

The class of languages
with polynomial-sized
branching programs.



Existing Fine-Grained Proof Systems

* Hash proof system [EWT19]

e QA-NIZK [WPC21]

* NIZK with inefficient prover [} Secure against adversaries in
NC! under the assumption:
NC! =@ L/poly.

This assumption is widely
believed to hold.



Existing Fine-Grained Proof Systems

Hash proof system [EWT19]
+» Verifier needs a secret key

QA-NIZK [WPC21]

NIZK with inefficient prover [BDK20]




Existing Fine-Grained Proof Systems

Hash proof system [EWT19]
+» Verifier needs a secret key

QA-NIZK [WPC21]
** Only supports linear languages

** CRSs are dependent on language parameter

NIZK with inefficient prover [BDK20]




Existing Fine-Grained Proof Systems

* Hash proof system [EWT19]
+* Verifier needs a secret key

*  QA-NIZK [WPC21]
s Only supports linear languages

** CRSs are dependent on language parameter

* NIZK with inefficient prover [BDK20]
** Not in the fully fine-grained setting: the prover needs
more computation resources than NC?




Our results

A fully fine-grained NIZK for NC!-circuit satisfiability (SAT)
**the CRS generator, prover, verifier, simulator run in NC!
s*secure against adversaries in NC!
ssassumption: NC! =& L/poly.




Our results

A fully fine-grained NIZK for NC!-circuit satisfiability (SAT)
s*the CRS generator, prr rer, verifier, simulator run in NC!
s*secure against adve’ fiesin NC!
ssassumption: NC! ,/poly.

All statements verifiable in NC1



Our results

A fully fine-grained NIZK for NC!-circuit satisfiability (SAT)
**the CRS generator, proy v, verifier, simulator run in NC!
**secure against advers in NC?

“sassumption: NC! #/ ly.

A statement circuit cannot go beyond
NC!. Otherwise, even the honest prover
in NC! cannot decide with the witness
whether the statement is true or not.



Fine-Grained NIZK

NIZK for linear
languages

X-protocol




Fine-Grained NIZK

X-protocol



2.-protocol

M € {0,1}*t

d ws. t. x=Mw C=MR (R < {0,1}7%%)

Prover Verifier




2.-protocol

M € {0,1}*t

d ws. t. x=Mw C=MR (R < {0,1}7%%)

k « {0,131
Prover ) Verifier




2.-protocol

M € {0,1}*t

d ws. t. x=Mw C=MR (R < {0,1}7%%)

k « {0,131
Prover ) Verifier

D=(R| |w)A

Verify if (C| | x)A=MD



2.-protocol

M € {0,1}*t

d ws. t. x=Mw C=MR (R < {0,1}7%%)

k « {0,131

Verifier

A

Prover

D=(R| |w)A

Verify if (C| | x)A=MD

A=(S||Sk)T



2.-protocol

M € {0,1}*t

dws.t. x=Mw C=MR (R < {0,1}™)

k « {0,1}*"

Verifier

A

Prover

D=(R| |w)A

Verify if (C| | x)A=MD

S=(0[IDT, A=(S|Sk)T



2.-protocol

M € {0,1}*t

J w s. t. x=Mw

C=MR (R « {0,1}"%)

Completeness v
Special soundness Vv

Special honest-verifier zero-knowledge Vv
verify if (C| |x)A=MD

S=(0[IDT, A=(S|Sk)T



NIZK for linear languages

NIZK for linear
languages

X-protocol




NIZK for linear languages

v

ZeroSamp — (My,s) AXA matrix (Rank A-1), s is in the kernel of M,

Q

v

OneSamp —— M;  AXA matrix (Rank A)

Indistinguishable against NC1
adversaries if NC! =@ L/poly [DVV16]



2.-protocol

M € {0,1}*t

J w s. t. x=Mw

C=MR (R « {0,1}"%)

Verifier

) k « {0,132
Intermediate D=(R| |w)A
algorithm in
ZeroSam
S« LSamp’ | 4SSN S = (0[|D)7, A=(S| |Sk)T

Verify if (C| | x)A=MD



2.-protocol

M € {0,1}*¢

3 ws.t. x=Mw C=MR (R < {0,1}™¥)

k < {0,132

<

A

Prover

D=(R][w)A Distribution of AT

becomes
ZeroSamp

S« LSamp’ < S = (0[|D)7, A=(S||Sk)T




NIZK for linear Ianguag

M € {0,1}*t

A=(S||SK)T (S « LSamp’)

Prover

Verifier

Verify if (C| | x)A=MD



NIZK for linear Ianguag

M € (0,1} A=(S11SK)" (S = LSamp)
Fws. t. x=Mw

m =(C, D)

A\ 4

Prover Verifier

The proof consists
only of the first
and third round
messages

Verify if (C| | x)A=MD



NIZK for linear languages

A=(S||Sk)T (S « LSamp’)

M € {0,1}*t

J w s. t. x=Mw

m =(C, D)

Prover Verifier

arify if (C| |x)A=MD

Now the X-protocol becomes a NIZK



NIZK for linear languages

M € 0,1}t A=(S11SK)" (5 < Lsamp

J w s. t. x=Mw

m =(C, D)
Prover > Verifier

Verify if (C| | x)A=MD

Completeness of NIZK « Completeness of X-protocol
Zero-knowledge of NIZK « SHVZK of Z-protocol




NIZK for linear languages

A=(S||Sk)T (S « LSamp’)

M € {0,1}*t

J w s. t. x=Mw

m =(C, D)

A\ 4

Verifier

Prover

Verify if (C| | x)A=MD

Soundness of NIZK « when switching the distribution
of AT to OneSamp, the kernel of A becomes empty and
no invalid x can pass the verification.




OR-proof

NIZK for linear
languages

X-protocol




NIZK for OR-languages

M, € {0,1}"*t
M, € {0,1}*t
x;=M;w for some j € {0,1}

A=(S[]t)T

Prover

Verifier




NIZK for OR-languages

M, € {0,1}"*t
M, € {0,1}*t
x;=M;w for some j € {0,1}

A=(S[]t)T

AL =(S||SK)T (K « {0,1}*71)

A=(S] [t-SK')T

Prover Verifier

The prover splits the CRS of the NIZK for linear
languages A into a binding CRS A; and a hiding CRS A,
with a trapdoor k’




NIZK for OR-languages

M, € {0,1}"*t
M, € {0,1}*t

A=(S[]t)T

x;=M;w for some j € {0,1}

Prover

AL =(S||SK)T (K « {0,1}*71)

A=(S] [t-SK')T

v

m; = Prove(A;, x;, w)

T = Sim(Al—ir k’r Xl—i)

Then it generates proofs for x; and x,; with w and k’
respectively by making use of the prover and simulator
of our NIZK for linear languages.

Verifier

Tt are valid

ages



NIZK for OR-languages

M, € {0,1}"*t
M, € {0,1}*t
x;=M;w for some j € {0,1}

A=(S[]t)T

AL =(S||SK)T (K « {0,1}*71)

A=(S] [t-SK')T

Prover Verifier

m; = Prove(A;, x;, w)

Soundness: when AT « OneSamp(}),
either A, or A; must be binding

Zero-knowledge: when (AT, s) « ZeroSamp(}),
both are hiding



NIZK for NC! circuits

NIZK for linear
languages

X-protocol




NIZK for NC! circuits

Prover: W, W,

w.l.0.g., we consider
statement circuits

consisting of only
NAND gates




NIZK for NC! circuits

The prover first

_ extends the witness
Wour=1

to contain bits of all
wires




NIZK for NC! circuits

Prover: cty ct, ... ct Clisg
(AT,s) « ZeroSamp(A)
cti=Enc(A,w;)

ct;
i+2 Wi=DeC(S;Cti)

DVV NC;-fine-

grained PKE

Ctout



NIZK for NC? circuits

Prover:

ct,

Cti+2

Clout=
(a fixed ciphertext for 1)

Cti+1

(AT,s) « ZeroSamp(Q)
ct;i=Enc(A,w;)
w;=Dec(s,ct;)

DVV NC;-fine-

grained PKE




NIZK for NC! circuits

Prover: cty ct, ... ct Clisg
(AT,s) « ZeroSamp(A)
cti=Enc(A,w;)

ct;
+2 w;=Dec(s,ct;)

DVV encryption has two properties:

1. Additive homomorphism
2. ct; € Span(A) iff w;=0

Clout=
(a fixed ciphertext for 1)



NIZK for NC! circuits

Cti Ctj
Prover:

cty

NAND gate

The prover proves that the input/output ciphertexts satisfies a relation
supported by our OR-proof.

e + ct; + cty € Span(A)
And

e + cty € Span(A)
And

e + ct; € Span(A) ct; € Span(A)




NIZK for NC! circuits

If the ciphertexts satisfy
the relation,
the corresponding
plaintexts must be a valid
input/output tuple of the
NAND gate

Soundness:

e + ct; + cty € Span(A)
And
e + ct; € Span(A)




NIZK for NC! circuits

Soundness:

e + ct; + cty € Span(A) e + cty € Span(A)
And And
e + ct; € Span(A) ct; € Span(A)

Then soundness: we can
extract a valid witness
from a valid proof by

decrypting the ciphertexts.



NIZK for NC! circuits

Ctl Ctz ces

Cti+2

Cloyt=e

Zero-knowledge:

Cti+1

(AT,s) « ZeroSamp(A)
ct=Enc(A,w;)
w;=Dec(s,ct;)

1. Ciphertexts become random matrices (when switching the distribution

of A to OneSamp)
2. OR-proofs reveals no useful information due to its ZK




NIZK for NC! circuits

NIZK for linear
languages

X-protocol

Proof size grows
with the circuit size

NIZK for NC2-
circuit SAT




Fine-grained FHE

NIZK for linear
languages

X-protocol

ine-grained FH
for AC2y[2]
circuits




Fine-grained FHE

The class of all polynomials
with constant degree

w

ine-grained FH

for AC2y[2]
circuits




Fine-grained FHE

NIZK for linear
languages

X-protocol

ine-grained FH
for AC2y[2]
circuits

: T , T #ar NC!-
Main challenge: multiplicative homomorphism ~

Core of the construction: a tricky way to extend
the ciphertext of DVV PKE from vector to matrix



NIZK for AC2y[2] circuits with short proofs

NIZK for linear
ENEEREN

X-protocol

ine-grained FH
for AC2y[2]
circuits

NIZK for AC2y[2]
statement circuits



NIZK for AC2y[2] circuits with short proofs

NIZK for linear
languages

X-protocol

Class of statement circuits is
more restricted but the proof
size is independent with the

circuit size

NIZK for AC2y[2]
statement circuits



Extensions

/7

%* Conversion to non-interactive zaps (NIWI in the plain model)




Extensions

/7

** Conversion to non-interactive zaps (NIWI in the plain model)

GOS conversion
technique [GOS12]

Proof: our NIZKs have
verifiable correlated Non-interactive zaps
key generation




Extensions

/7

** Conversion to non-interactive zaps (NIWI in the plain model)

GOS conversion
technique [GOS12]

Proof: our NIZKs have
verifiable correlated Non-interactive zaps
key generation

+* Conversion to NIZKs in the URS model




Extensions

/7

** Conversion to non-interactive zaps (NIWI in the plain model)

GOS conversion
technique [GOS12]

Proof: our NIZKs have
verifiable correlated Non-interactive zaps
key generation

+* Conversion to NIZKs in the URS model

Running NIZK
with the random

Proof: a random matrix CRS in parallel

(with some particular form) NIZK in the URS model
is a binding/hiding CRS with
half-half probabiltiy




Extensions

/7

** Conversion to non-interactive zaps (NIWI in the plain model)

GOS conversion

technique [GQO

Proof: our NIZKs have
verifiable correlated ZK: ZK of NIZK in the CRS model

key generation Statistical soundness: for multiple
random strings, at least one should
be binding with overwhelming

& Conversion to NIZKs in the Probability.

Running NIZK
with the random

Proof: a random matrix CRS in parallel

(with some particular form) NIZK in the URS model
is a binding/hiding CRS with
half-half probabiltiy




Conclusion

Proof systems secure against NC! adversaries under NC! =@L/poly
1. NIZK for NC;-circuit SAT

2. NIZK for AC2y[2] circuits with short proofs
*  Fully homomorphic encryption for AC2y[2]

3. Non-interactive zaps

4. NIZKs in the URS model




