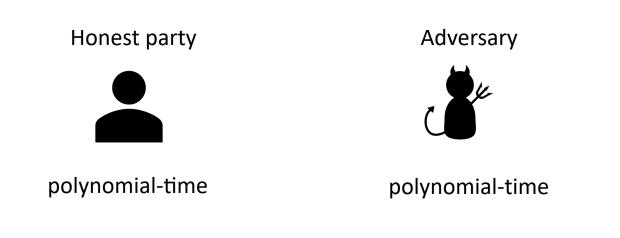
Non-Interactive Zero-Knowledge Proofs with Fine-Grained Security

Yuyu Wang¹ and Jiaxin pan²

- 1. University of Electronic Science and Technology of China
- 2. NTNU Norwegian University of Science and Technology

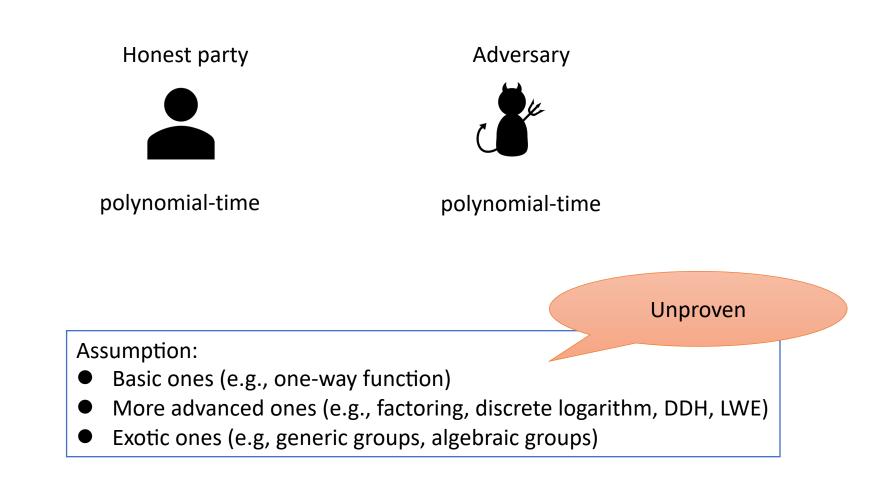
Standard cryptography



Assumption:

- Basic ones (e.g., one-way function)
- More advanced ones (e.g., factoring, discrete logarithm, DDH, LWE)
- Exotic ones (e.g, generic groups, algebraic groups)

Standard cryptography



Honest party

An honest party uses less resources than the adversary Adversary

Honest party

An honest party uses less resources than the adversary Adversary

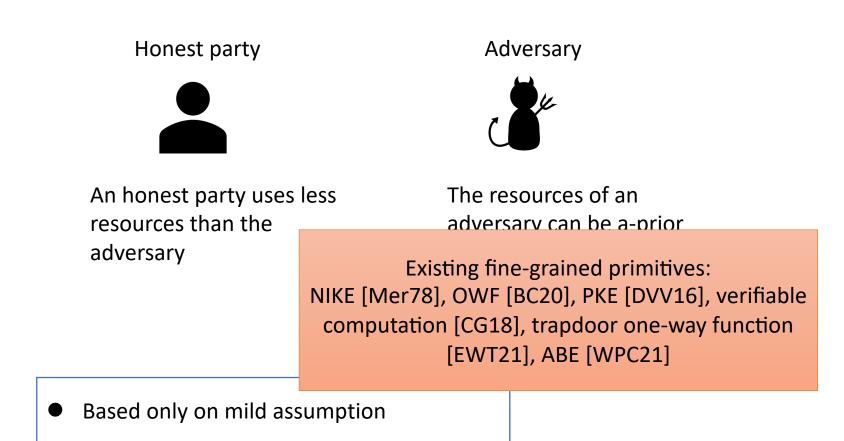
The resources of an adversary can be a-prior bounded

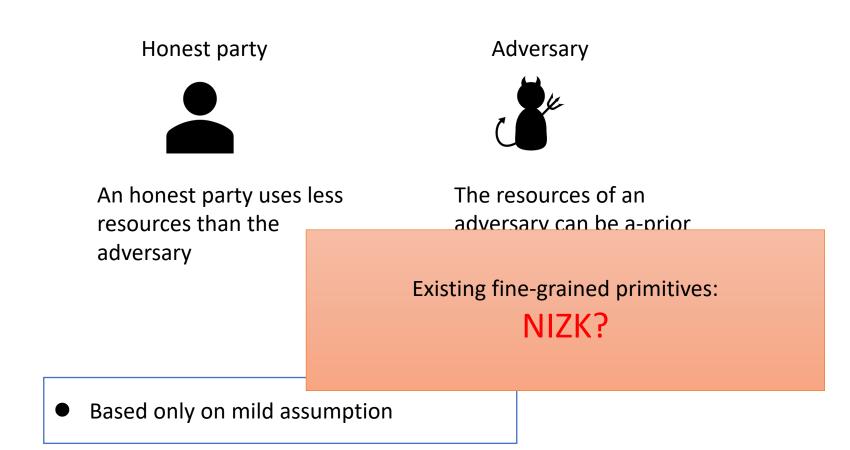
Honest party

An honest party uses less resources than the adversary Adversary

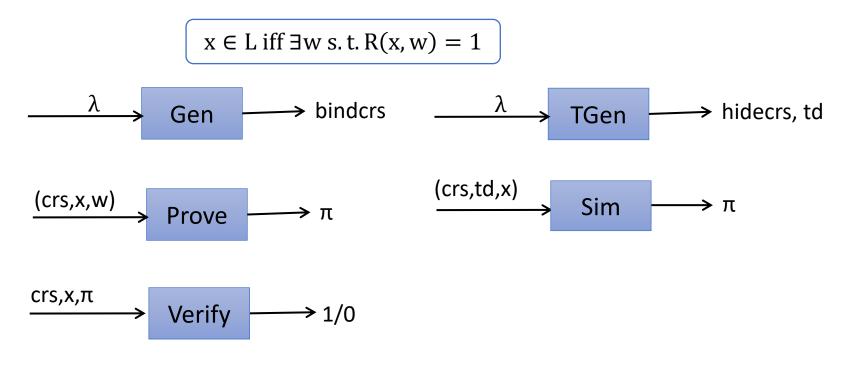
The resources of an adversary can be a-prior bounded

Based only on mild assumption

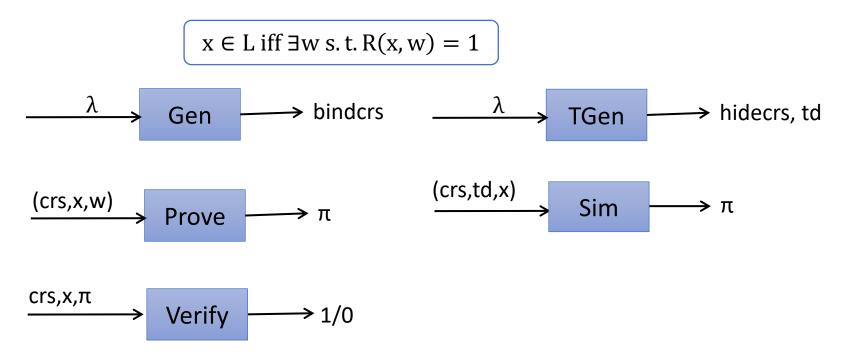




Definition of NIZK



Definition of NIZK



Completeness: honest proofs must pass the verification.

Perfect soundness: when crs is binding, there exists no valid proof for x if $x \notin L$.

(Composable) zero knowledge: bindcrs and hidecrs are indistinguishable, and when crs is hiding, Sim perfectly simultates honest proofs.

- Hash proof system [EWT19]
- QA-NIZK [WPC21]

• NIZK with inefficient prover [BDK20]

- Hash proof system [EWT19]
- QA-NIZK [WPC21]

NIZK with inefficient prover [/

Secure against adversaries in NC^1 under the assumption: $NC^1 \neq \bigoplus L/poly.$

- Hash proof system [EWT19]
- QA-NIZK [WPC21]

NIZK with inefficient prover [/

Secure against adversaries in NC¹ under the assumption: NC¹ $\neq \bigoplus$ L/poly.

Circuits with logarithmic depth

- Hash proof system [EWT19]
- QA-NIZK [WPC21]

NIZK with inefficient prover [/

Secure against adversaries in NC^1 under the assumption: $NC^1 \neq \bigoplus L/poly.$

The class of languages with polynomial-sized branching programs.

- Hash proof system [EWT19]
- QA-NIZK [WPC21]

NIZK with inefficient prover [/

This assumption is widely believed to hold.

Secure against adversaries in NC^1 under the assumption: $NC^1 \neq \bigoplus L/poly.$

- Hash proof system [EWT19]
 Verifier needs a secret key
- QA-NIZK [WPC21]

• NIZK with inefficient prover [BDK20]

- Hash proof system [EWT19]
 Verifier needs a secret key
- QA-NIZK [WPC21]
 - Only supports linear languages
 - CRSs are dependent on language parameter
- NIZK with inefficient prover [BDK20]

- Hash proof system [EWT19]
 Verifier needs a secret key
- QA-NIZK [WPC21]
 - Only supports linear languages
 - CRSs are dependent on language parameter
- NIZK with inefficient prover [BDK20]
 - Not in the fully fine-grained setting: the prover needs more computation resources than NC¹

Our results

A fully fine-grained NIZK for NC¹-circuit satisfiability (SAT)
◆the CRS generator, prover, verifier, simulator run in NC¹
◆secure against adversaries in NC¹
◆assumption: NC¹ ≠⊕ L/poly.

Our results

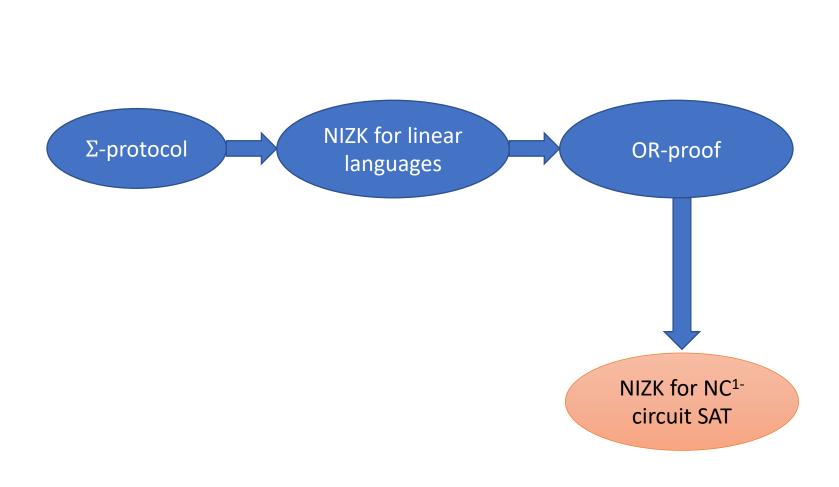
A fully fine-grained NIZK for NC¹-circuit satisfiability (SAT) the CRS generator, prover, verifier, simulator run in NC¹ secure against advervies in NC¹ assumption: NC¹ /poly.

All statements verifiable in NC1

Our results

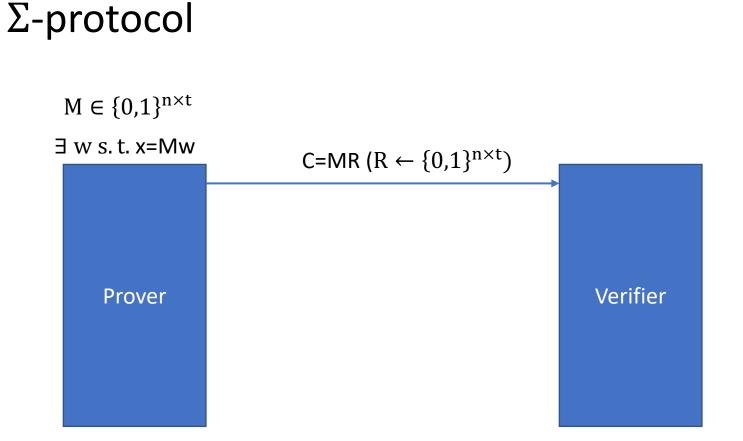
A fully fine-grained NIZK for NC¹-circuit satisfiability (SAT)
◆the CRS generator, prover, verifier, simulator run in NC¹
◆secure against advers in NC¹
◆assumption: NC¹ ≠ ()ly.

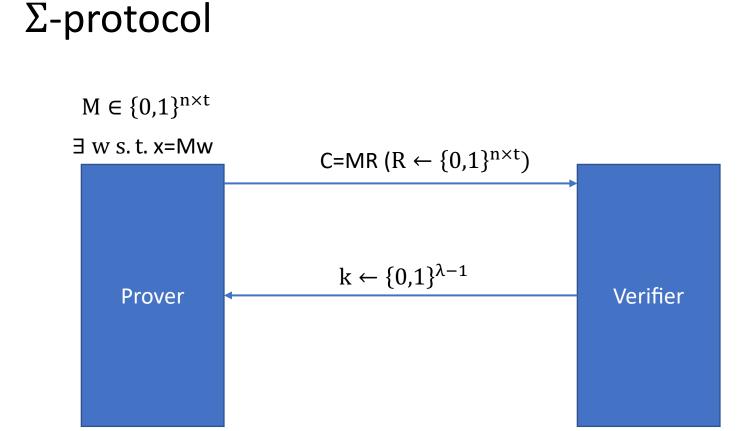
A statement circuit cannot go beyond NC¹. Otherwise, even the honest prover in NC¹ cannot decide with the witness whether the statement is true or not.

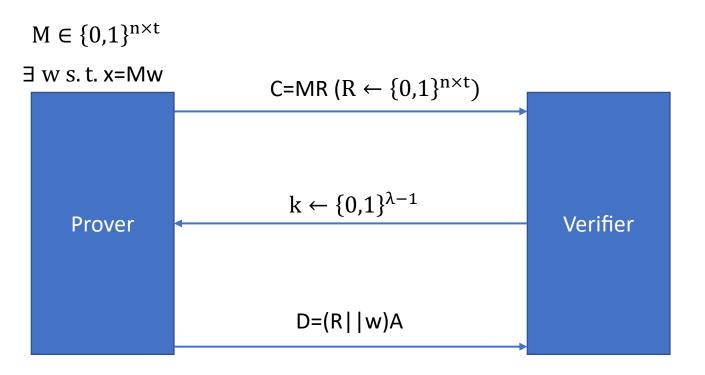


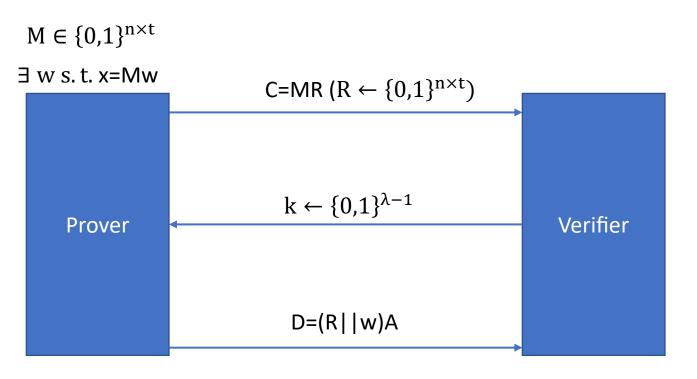
Fine-Grained NIZK

Fine-Grained NIZK

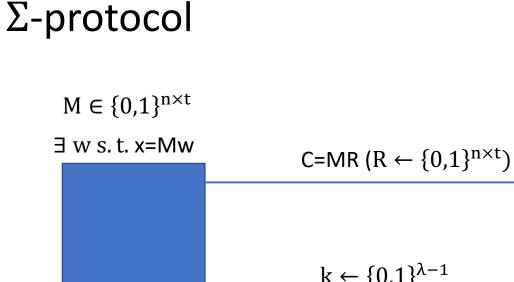


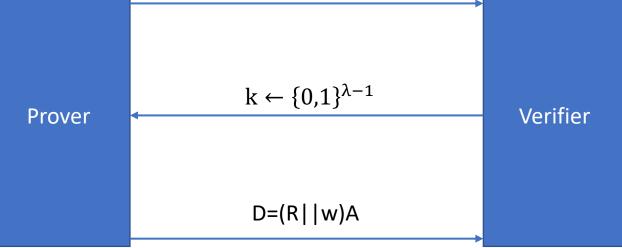




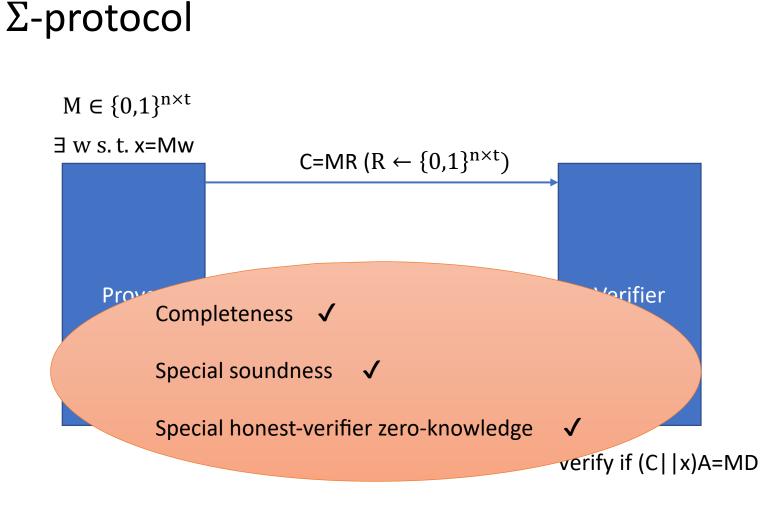


 $A=(S||Sk)^{\top}$



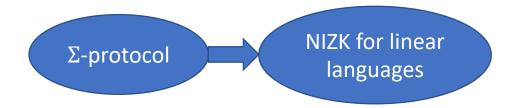


 $S = (0||I)^{\top}$, $A=(S||Sk)^{\top}$

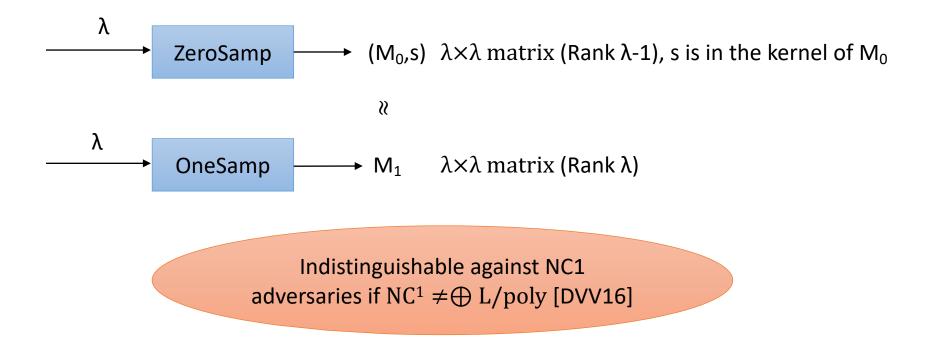


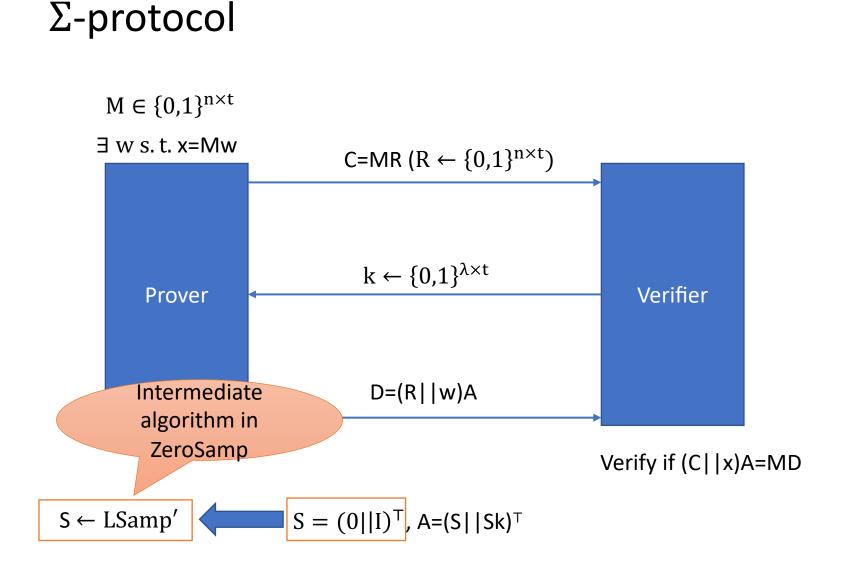
 $S = (0||I)^{\top}$, $A=(S||Sk)^{\top}$

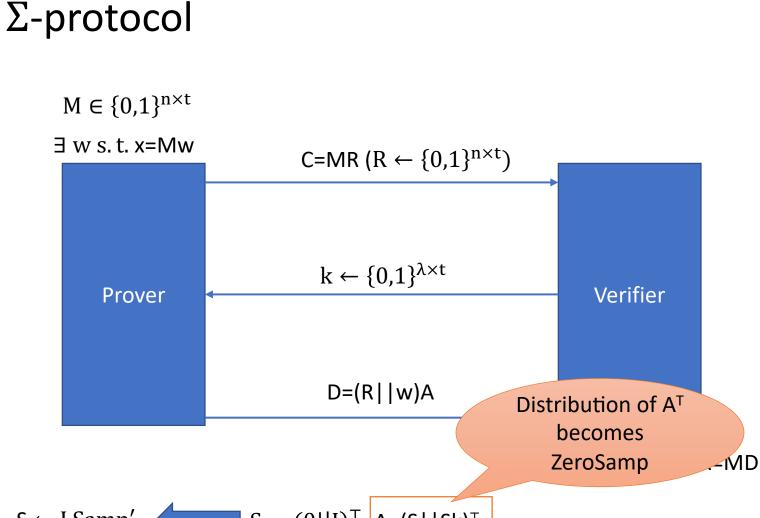
NIZK for linear languages



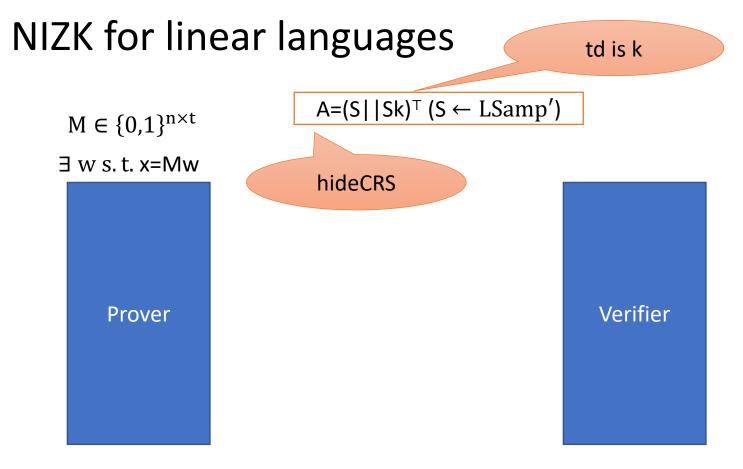
NIZK for linear languages

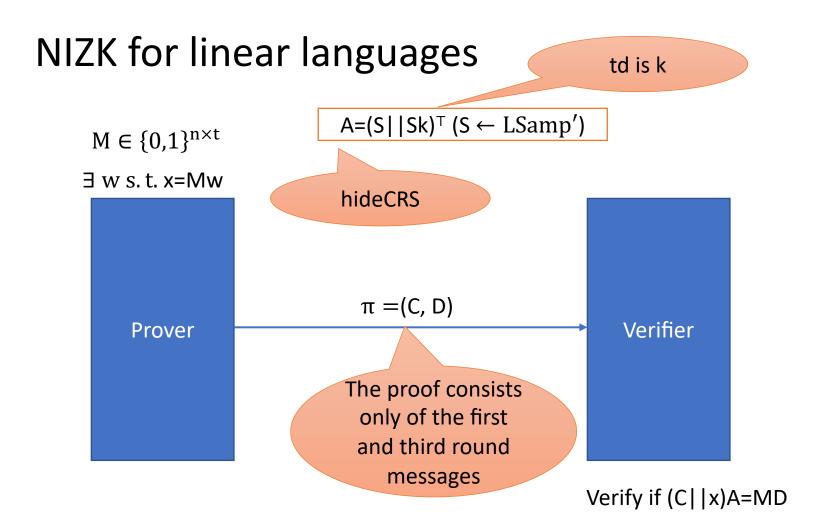




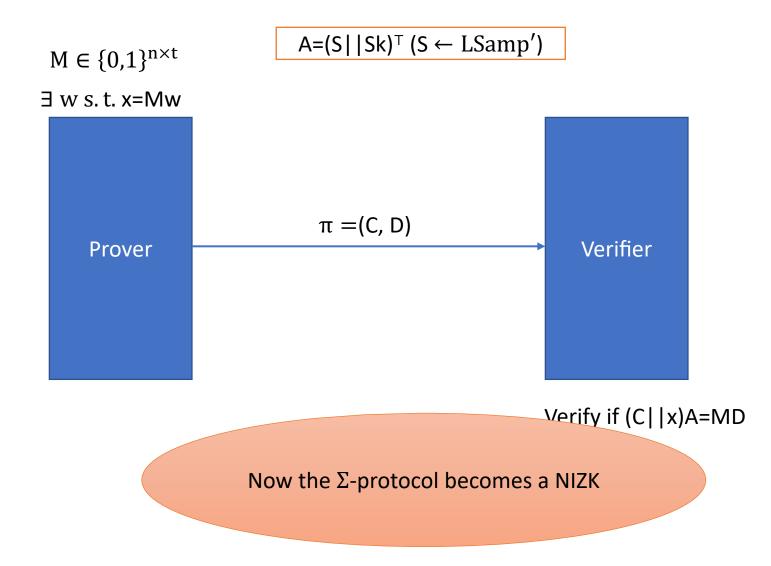


 $\mathbf{S} = (\mathbf{0} || \mathbf{I})^{\mathsf{T}}, \mathbf{A} = (\mathbf{S} || \mathbf{S} \mathbf{k})^{\mathsf{T}}$ $S \leftarrow LSamp'$

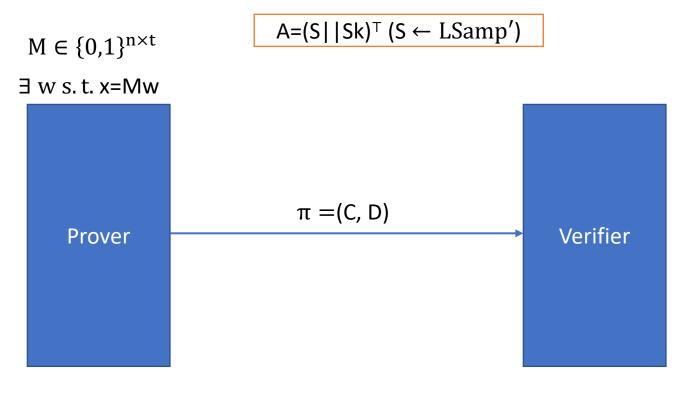




NIZK for linear languages



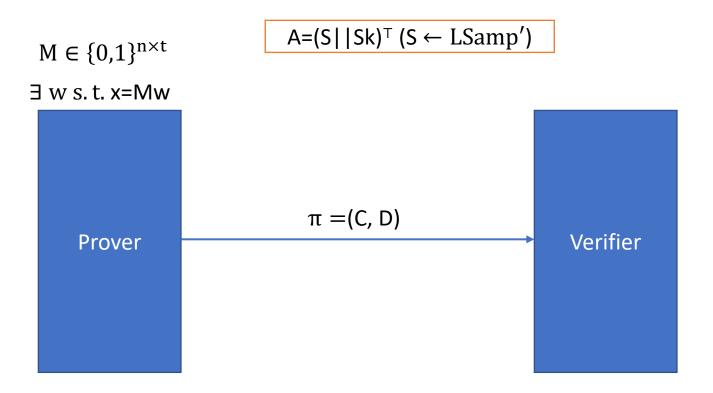
NIZK for linear languages



Verify if (C||x)A=MD

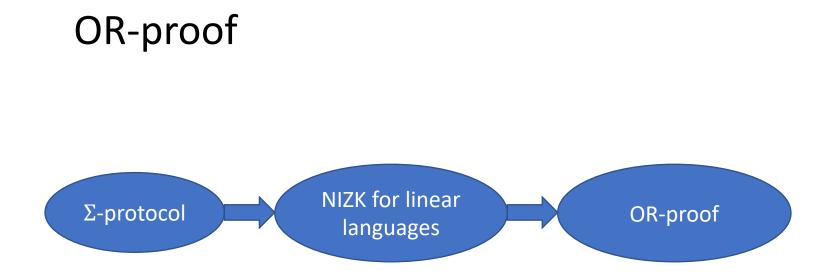
Completeness of NIZK \leftarrow Completeness of Σ -protocol Zero-knowledge of NIZK \leftarrow SHVZK of Σ -protocol

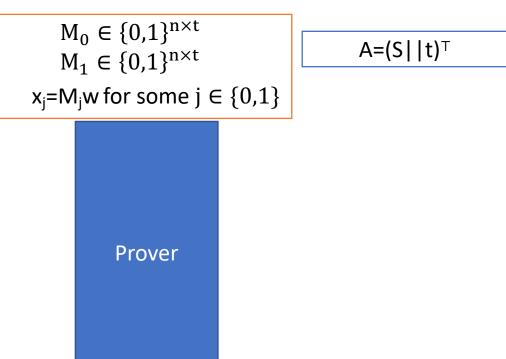
NIZK for linear languages



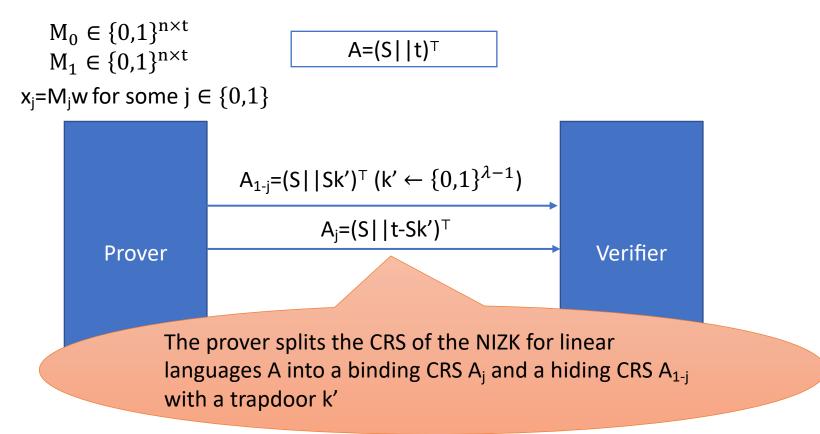
Verify if (C||x)A=MD

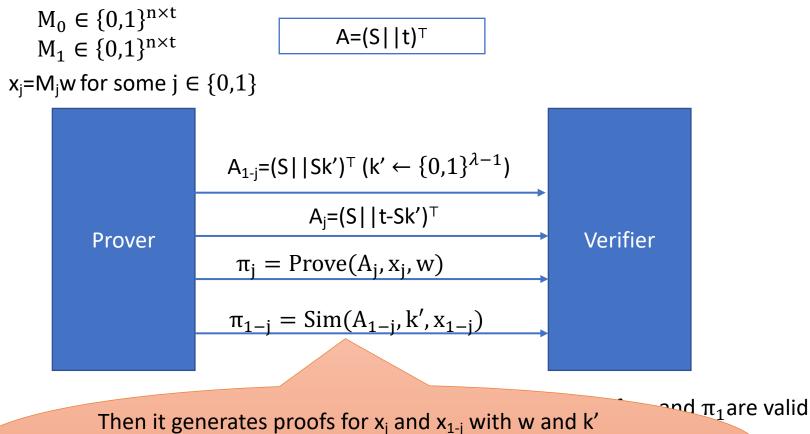
Soundness of NIZK \leftarrow when switching the distribution of A^T to OneSamp, the kernel of A becomes empty and no invalid x can pass the verification.





Verifier





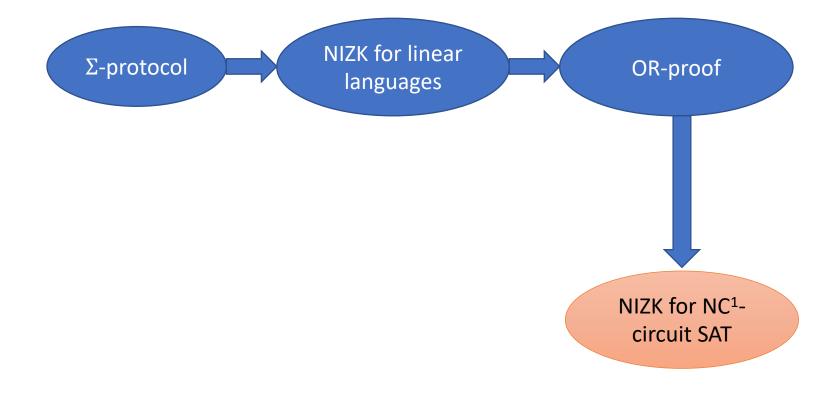
respectively by making use of the prover and simulator of our NIZK for linear languages.

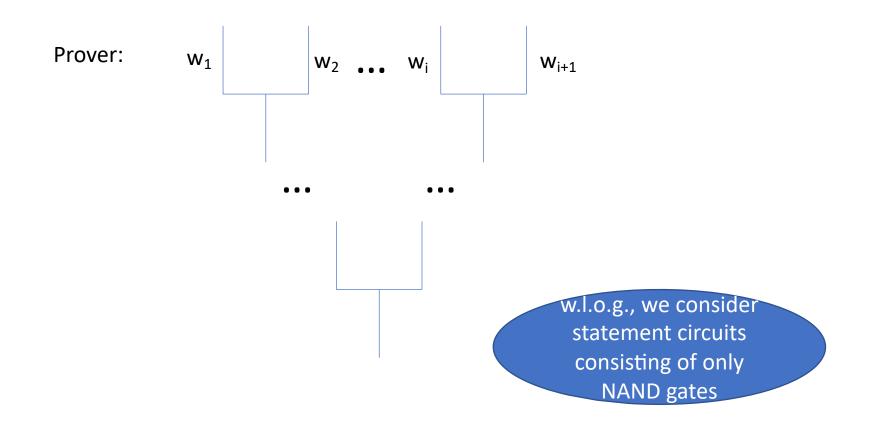
Junguages

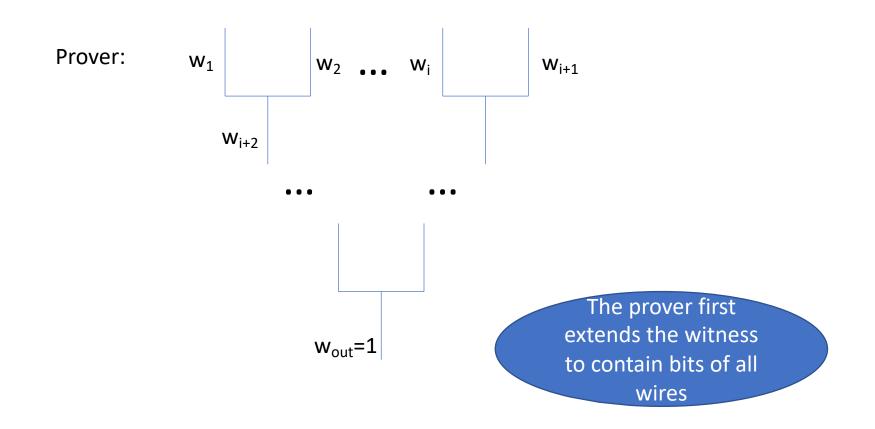
$$\begin{split} & \underset{M_{0} \in \{0,1\}^{n \times t}}{M_{1} \in \{0,1\}^{n \times t}} & A=(S \mid |t)^{\top} \\ & x_{j}=M_{j} w \text{ for some } j \in \{0,1\} \\ & \\ & Prover & A_{1\cdot j}=(S \mid |Sk')^{\top} (k' \leftarrow \{0,1\}^{\lambda-1}) \\ & A_{j}=(S \mid |t-Sk')^{\top} \\ & \pi_{j} = Prove(A_{j}, x_{j}, w) & Verifier \end{split}$$

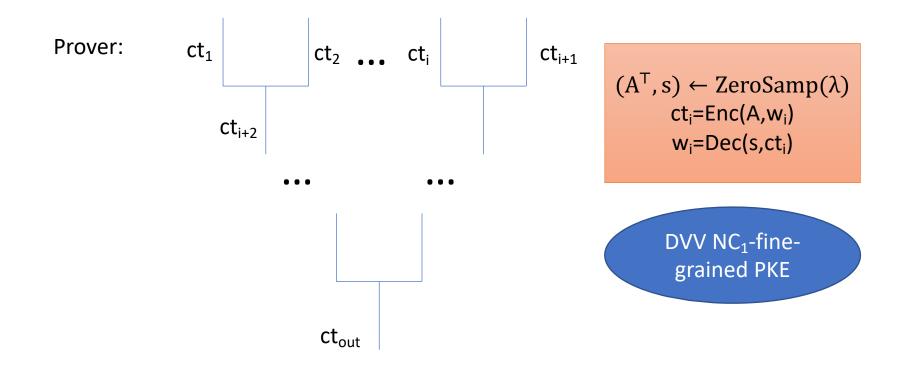
Soundness: when $A^{T} \leftarrow OneSamp(\lambda)$, either A_0 or A_1 must be binding

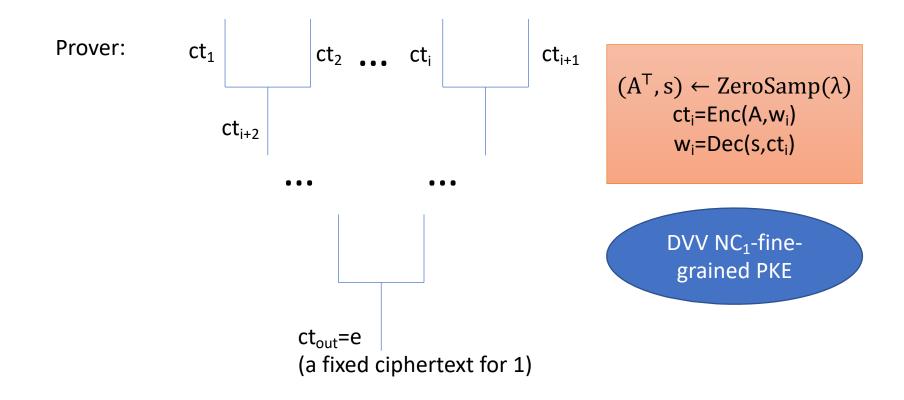
Zero-knowledge: when $(A^T, s) \leftarrow \text{ZeroSamp}(\lambda)$, both are hiding

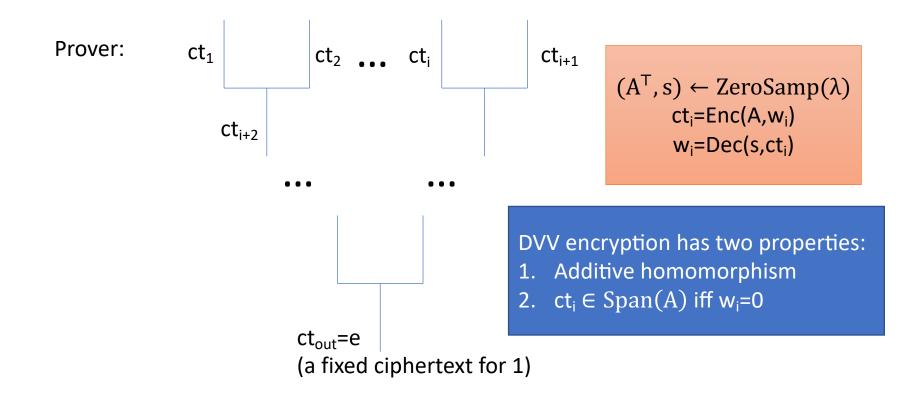


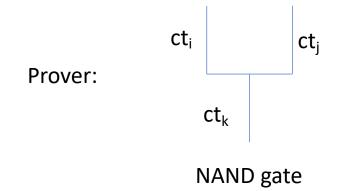




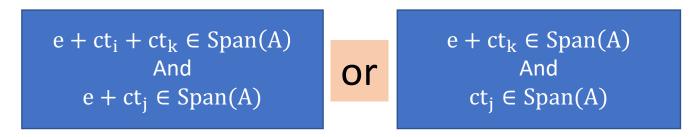


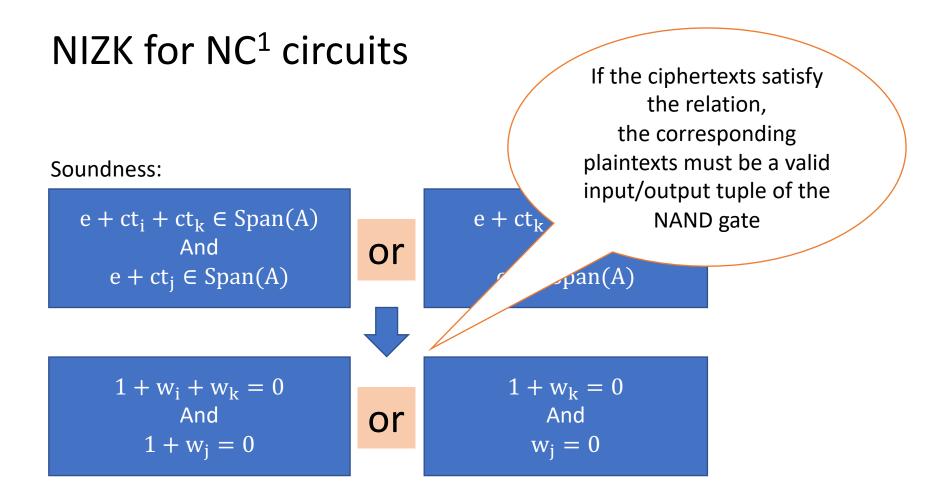




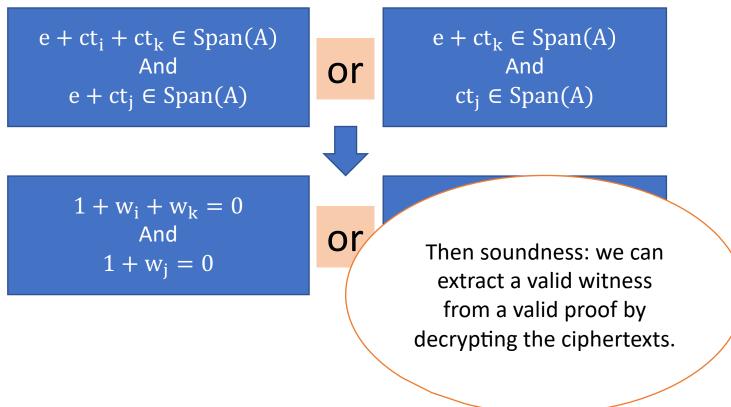


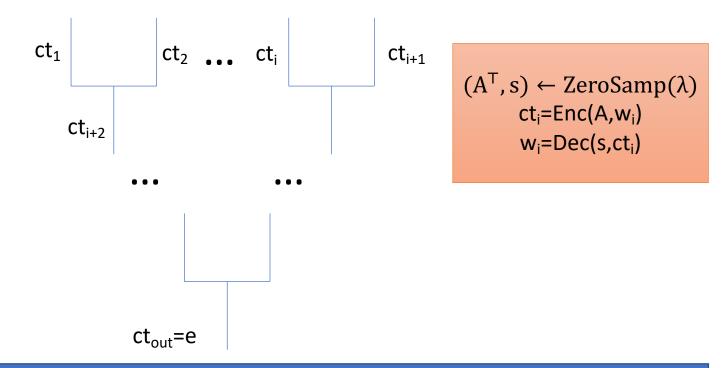
The prover proves that the input/output ciphertexts satisfies a relation supported by our OR-proof.





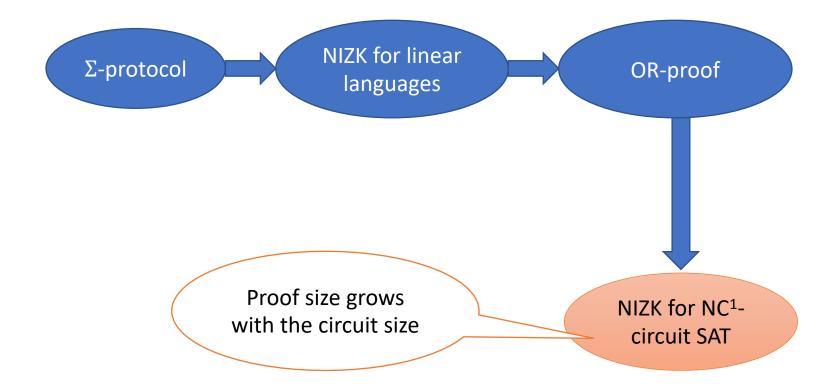
Soundness:

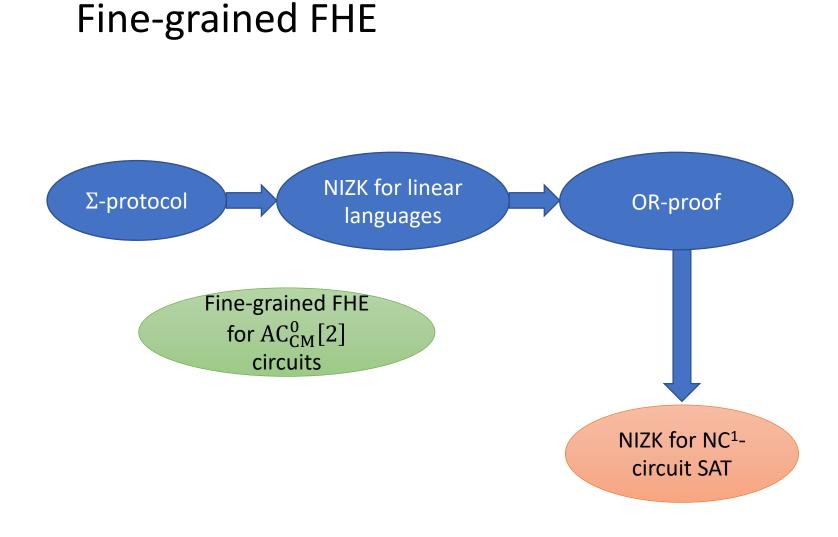


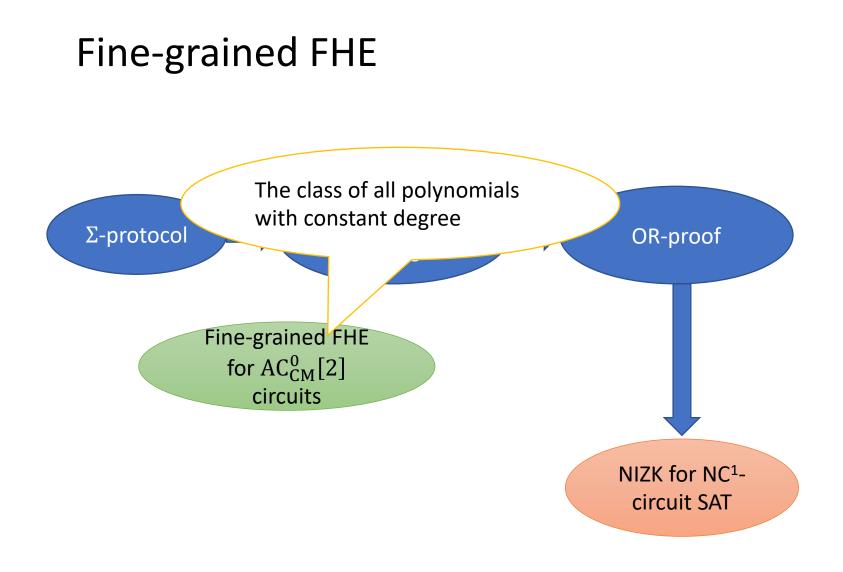


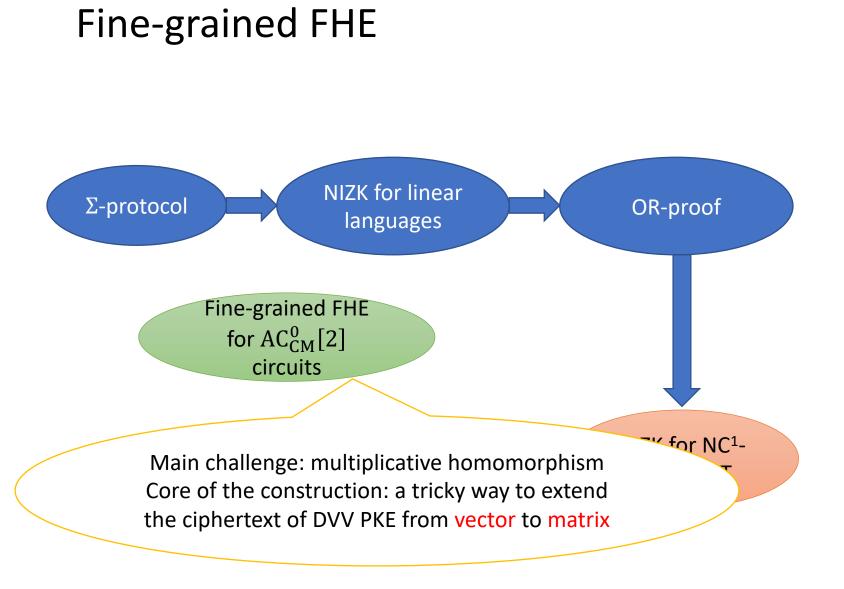
Zero-knowledge:

- 1. Ciphertexts become random matrices (when switching the distribution of A to OneSamp)
- 2. OR-proofs reveals no useful information due to its ZK

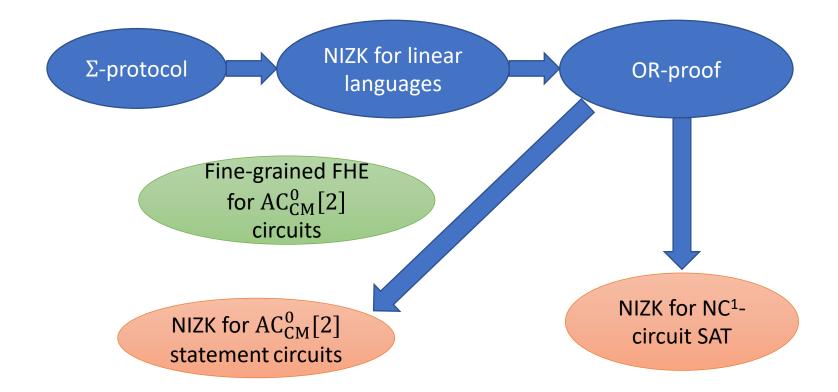




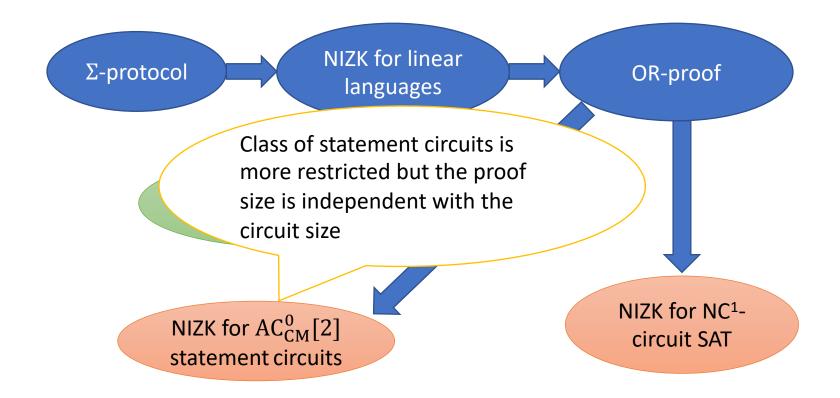




NIZK for $AC_{CM}^{0}[2]$ circuits with short proofs



NIZK for $AC_{CM}^{0}[2]$ circuits with short proofs



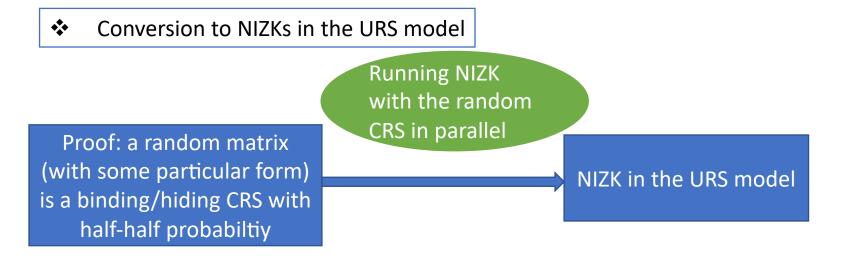
Conversion to non-interactive zaps (NIWI in the plain model)

Conversion to non-interactive zaps (NIWI in the plain model)

Conversion to non-interactive zaps (NIWI in the plain model)

Conversion to NIZKs in the URS model

Conversion to non-interactive zaps (NIWI in the plain model)



Conversion to non-interactive zaps (NIWI in the plain model)

Proof: our NIZKs have verifiable correlated key generation GOS conversion technique [GOS12]

ZK: ZK of NIZK in the CRS model Statistical soundness: for multiple random strings, at least one should be binding with overwhelming probability.

Conversion to NIZKs in the prol

Running NIZK with the random CRS in parallel

Proof: a random matrix (with some particular form) is a binding/hiding CRS with half-half probabiltiy

NIZK in the URS model

tive zaps

Conclusion

Proof systems secure against NC¹ adversaries under NC¹ $\neq \bigoplus$ L/poly

- 1. NIZK for NC₁-circuit SAT
- 2. NIZK for $AC_{CM}^{0}[2]$ circuits with short proofs
 - Fully homomorphic encryption for $AC_{CM}^{0}[2]$
- 3. Non-interactive zaps
- 4. NIZKs in the URS model