
Non-Interactive Zero-Knowledge
Proofs with Fine-Grained Security

Yuyu Wang1 and Jiaxin pan2

1. University of Electronic Science and Technology of China
2. NTNU - Norwegian University of Science and Technology

Standard cryptography

polynomial-time

Assump/on:
l Basic ones (e.g., one-way func/on)
l More advanced ones (e.g., factoring, discrete logarithm, DDH, LWE)
l Exo/c ones (e.g, generic groups, algebraic groups)

polynomial-/me

AdversaryHonest party

Standard cryptography

polynomial-time

Assump/on:
l Basic ones (e.g., one-way func/on)
l More advanced ones (e.g., factoring, discrete logarithm, DDH, LWE)
l Exo/c ones (e.g, generic groups, algebraic groups)

polynomial-time

Unproven

AdversaryHonest party

Fine-grained cryptography

AdversaryHonest party

An honest party uses less
resources than the
adversary

Fine-grained cryptography

AdversaryHonest party

An honest party uses less
resources than the
adversary

The resources of an
adversary can be a-prior
bounded

Fine-grained cryptography

Adversary

l Based only on mild assump/on

Honest party

An honest party uses less
resources than the
adversary

The resources of an
adversary can be a-prior
bounded

Fine-grained cryptography

Adversary

l Based only on mild assumption

Honest party

An honest party uses less
resources than the
adversary

The resources of an
adversary can be a-prior
bounded.

Exis/ng fine-grained primi/ves:
NIKE [Mer78], OWF [BC20], PKE [DVV16], verifiable

computa/on [CG18], trapdoor one-way func/on
[EWT21], ABE [WPC21]

Fine-grained cryptography

Adversary

l Based only on mild assumption

Honest party

An honest party uses less
resources than the
adversary

The resources of an
adversary can be a-prior
bounded.

Existing fine-grained primitives:

NIZK?

Defini+on of NIZK

Gen

Verify

Sim

bindcrs

Prove
(crs,x,w) π

1/0
crs,x,π

(crs,td,x)
π

x ∈ L iff ∃w s. t. R x, w = 1

λ TGen hidecrs, tdλ

Defini+on of NIZK

Gen

Verify

Sim

bindcrs

Prove
(crs,x,w) π

1/0
crs,x,π

(crs,td,x)
π

x ∈ L iff ∃w s. t. R x, w = 1

λ TGen hidecrs, tdλ

Completeness: honest proofs must pass the verification.

Perfect soundness: when crs is binding, there exists no valid proof for x if x ∉ L.

(Composable) zero knowledge: bindcrs and hidecrs are indistinguishable,
and when crs is hiding, Sim perfectly simultates honest proofs.

Existing Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the full fine-grained setting: the prover needs

more computation resources than NC1

Existing Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the full fine-grained seeng: the prover needs

more computa/on resources than NC1

Secure against adversaries in
NC1 under the assumption:

NC1 ≠⊕ L/poly.

Exis9ng Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the full fine-grained seeng: the prover needs

more computa/on resources than NC1

Secure against adversaries in
NC1 under the assumption:

NC1 ≠⊕ L/poly.

Circuits with
logarithmic
depth

Existing Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the full fine-grained setting: the prover needs

more computation resources than NC1

Secure against adversaries in
NC1 under the assump=on:

NC1 ≠⊕ L/poly.

The class of languages
with polynomial-sized
branching programs.

Exis9ng Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the full fine-grained seeng: the prover needs

more computa/on resources than NC1

Secure against adversaries in
NC1 under the assumption:

NC1 ≠⊕ L/poly.

This assumption is widely
believed to hold.

Existing Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]

• NIZK with inefficient prover [BDK20]

Exis9ng Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]

Exis9ng Fine-Grained Proof Systems

• Hash proof system [EWT19]
v Verifier needs a secret key

• QA-NIZK [WPC21]
v Only supports linear languages
v CRSs are dependent on language parameter

• NIZK with inefficient prover [BDK20]
v Not in the fully fine-grained seeng: the prover needs

more computa/on resources than NC1

Our results

A fully fine-grained NIZK for NC1-circuit satisfiability (SAT)
vthe CRS generator, prover, verifier, simulator run in NC1

vsecure against adversaries in NC1

vassumption: NC1 ≠⊕ L/poly.

Our results

A fully fine-grained NIZK for NC1-circuit satisfiability (SAT)
vthe CRS generator, prover, verifier, simulator run in NC1

vsecure against adversaries in NC1

vassumption: NC1 ≠⊕ L/poly.

All statements verifiable in NC1

Our results

A fully fine-grained NIZK for NC1-circuit sa/sfiability (SAT)
vthe CRS generator, prover, verifier, simulator run in NC1

vsecure against adversaries in NC1

vassump/on: NC1 ≠⊕ L/poly.

A statement circuit cannot go beyond
NC1. Otherwise, even the honest prover
in NC1 cannot decide with the witness
whether the statement is true or not.

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-

circuit SAT

Fine-Grained NIZK

Σ-protocol

Fine-Grained NIZK

Σ-protocol

Prover Verifier

C=MR (R ← 0,1 "×$)∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier
k ← 0,1 %&'

C=MR (R ← 0,1 "×$)∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier
k ← 0,1 %&'

Verify if (C||x)A=MD

C=MR (R ← 0,1 "×$)

D=(R||w)A

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier
k ← 0,1 %&'

A=(S||Sk)⊤

Verify if (C||x)A=MD

C=MR (R ← 0,1 "×$)

D=(R||w)A

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier
k ← 0,1 %&'

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

C=MR (R ← 0,1 "×$)

D=(R||w)A

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier

C=MR (R ← 0,1 "×$)

k ← 0,1 %×$

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

resp=(R||w)A

Completeness ✔

Special soundness ✔

Special honest-verifier zero-knowledge ✔

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol NIZK for linear
languages

NIZK for linear languages

NIZK for linear languages

Indistinguishable against NC1
adversaries if NC1 ≠⊕ L/poly [DVV16]

ZeroSamp

OneSamp

(M0,s)

M1

λ

λ

≈

λ×λ matrix (Rank λ-1), s is in the kernel of M0

λ×λ matrix (Rank λ)

Σ-protocol

Prover Verifier

C=MR (R ← 0,1 "×$)

k ← 0,1 %×$

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

D=(R||w)A

S ← LSamp′

Intermediate
algorithm in
ZeroSamp

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Σ-protocol

Prover Verifier

S = (0| I (, A=(S||Sk)⊤

Verify if (C||x)A=MD

S ← LSamp′

k ← 0,1 %×$

D=(R||w)A Distribu/on of AT

becomes
ZeroSamp

C=MR (R ← 0,1 "×$)∃ w s. t. x=Mw

M ∈ 0,1 "×$

A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

hideCRS
∃ w s. t. x=Mw

M ∈ 0,1 "×$

td is k

A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

hideCRS

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$

The proof consists
only of the first
and third round

messages

td is k

A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$

Now the Σ-protocol becomes a NIZK

A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

Verify if (C||x)A=MD

Completeness of NIZK ← Completeness of Σ-protocol
Zero-knowledge of NIZK ← SHVZK of Σ-protocol

π =(C, D)

∃ w s. t. x=Mw

M ∈ 0,1 "×$

A=(S||Sk)⊤ (S ← LSamp′)

NIZK for linear languages

Prover Verifier

∃ w s. t. x=Mw

π =(C, D)

Verify if (C||x)A=MD

M ∈ 0,1 "×$

Soundness of NIZK ← when switching the distribution
of AT to OneSamp, the kernel of A becomes empty and
no invalid x can pass the verification.

Σ-protocol NIZK for linear
languages OR-proof

OR-proof

A=(S||t)⊤

NIZK for OR-languages

Prover Verifier

xj=Mjw for some j ∈ {0,1}

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

A=(S||t)⊤

NIZK for OR-languages

Prover Verifier

xj=Mjw for some j ∈ {0,1}

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)The prover splits the CRS of the NIZK for linear
languages A into a binding CRS Aj and a hiding CRS A1-j

with a trapdoor k’

A=(S||t)⊤

NIZK for OR-languages

Prover Verifier

xj=Mjw for some j ∈ {0,1}

π+ = Prove(A+, x+, w)

Verify if π) and π'are valid

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)

Prove and Sim are the prover and simulator of our NIZK for linear languages

Then it generates proofs for xj and x1-j with w and k’
respec/vely by making use of the prover and simulator
of our NIZK for linear languages.

A=(S||t)⊤

NIZK for OR-languages

Prover Verifier
π+ = Prove(A+, x+, w)

Verify if π) and π'are valid

A1-j=(S||Sk’)⊤ (k’ ← 0,1 *&')

Aj=(S||t-Sk’)⊤

M) ∈ 0,1 "×$

M' ∈ 0,1 "×$

π'&+ = Sim(A'&+, k′, x'&+)

Prove and Sim are the prover and simulator of our NIZK for linear languages

Soundness: when A(← OneSamp λ ,
either A) or A' must be binding

Zero-knowledge: when A(, s ← ZeroSamp λ ,
both are hiding

xj=Mjw for some j ∈ {0,1}

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

NIZK for NC1 circuits

NIZK for NC1 circuits

…

… …

w1 w2 wi wi+1

w.l.o.g., we consider
statement circuits
consis/ng of only

NAND gates

Prover:

NIZK for NC1 circuits

…

… …

w1 w2 wi wi+1

wi+2

wout=1

The prover first
extends the witness
to contain bits of all

wires

Prover:

NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

DVV NC1-fine-
grained PKE

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)

Prover:

ctout

NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

DVV NC1-fine-
grained PKE

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)

Prover:

ctout=e
(a fixed ciphertext for 1)

NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)

Prover:

DVV encryp/on has two proper/es:
1. Addi/ve homomorphism
2. cti ∈ Span A iff wi=0

ctout=e
(a fixed ciphertext for 1)

NIZK for NC1 circuits

cti ctj

ctk

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

The prover proves that the input/output ciphertexts satisfies a relation
supported by our OR-proof.

NAND gate

Prover:

NIZK for NC1 circuits

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

Soundness:

1 + w, +w- = 0
And

1 + w+ = 0

1 + w- = 0
And
w+ = 0

or

If the ciphertexts satisfy
the relation,

the corresponding
plaintexts must be a valid
input/output tuple of the

NAND gate

NIZK for NC1 circuits

e + ct, + ct- ∈ Span A
And

e + ct+ ∈ Span(A)

e + ct- ∈ Span A
And

ct+ ∈ Span(A)
or

Soundness:

1 + w, +w- = 0
And

1 + w+ = 0

1 + w- = 0
And
w+ = 0

or Then soundness: we can
extract a valid witness
from a valid proof by

decryp/ng the ciphertexts.

NIZK for NC1 circuits

…

… …

ct1 ct2 cti cti+1

cti+2

ctout=e

Zero-knowledge:
1. Ciphertexts become random matrices (when switching the distribu/on

of A to OneSamp)
2. OR-proofs reveals no useful informa/on due to its ZK

(A(, s) ← ZeroSamp(λ)
cti=Enc(A,wi)
wi=Dec(s,cti)

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

NIZK for NC1 circuits

Proof size grows
with the circuit size

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE
for AC./) 2

circuits

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE
for AC./) 2

circuits

The class of all polynomials
with constant degree

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

Fine-grained FHE

Fine-grained FHE
for AC./) 2

circuits

Main challenge: multiplicative homomorphism
Core of the construction: a tricky way to extend
the ciphertext of DVV PKE from vector to matrix

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SATNIZK for AC./) [2]

statement circuits

NIZK for AC!"# [2] circuits with short proofs

Fine-grained FHE
for AC./) 2

circuits

Σ-protocol NIZK for linear
languages OR-proof

NIZK for NC1-
circuit SAT

NIZK for AC!"# [2] circuits with short proofs

Fine-grained FHE
for AC./) 2

circuits

Class of statement circuits is
more restricted but the proof
size is independent with the
circuit size

NIZK for AC./) [2]
statement circuits

Extensions
v Conversion to non-interactive zaps (NIWI in the plain model)

Extensions
v Conversion to non-interactive zaps (NIWI in the plain model)

Proof: our NIZKs have
verifiable correlated

key genera/on
Non-interac/ve zaps

GOS conversion
technique [GOS12]

Extensions
v Conversion to non-interactive zaps (NIWI in the plain model)

Proof: our NIZKs have
verifiable correlated

key generation
Non-interac/ve zaps

GOS conversion
technique [GOS12]

v Conversion to NIZKs in the URS model

Extensions
v Conversion to non-interactive zaps (NIWI in the plain model)

Proof: our NIZKs have
verifiable correlated

key genera/on
Non-interactive zaps

GOS conversion
technique [GOS12]

v Conversion to NIZKs in the URS model

NIZK in the URS model

Running NIZK
with the random
CRS in parallelProof: a random matrix

(with some par/cular form)
is a binding/hiding CRS with

half-half probabil/y

Extensions
v Conversion to non-interac/ve zaps (NIWI in the plain model)

Proof: our NIZKs have
verifiable correlated

key generation
Non-interactive zaps

GOS conversion
technique [GOS12]

v Conversion to NIZKs in the URS model

Running NIZK
with the random
CRS in parallelProof: a random matrix

(with some par/cular form)
is a binding/hiding CRS with

half-half probabil/y

NIZK in the URS model

ZK: ZK of NIZK in the CRS model
Sta/s/cal soundness: for mul/ple
random strings, at least one should
be binding with overwhelming
probability.

Conclusion

Proof systems secure against NC1 adversaries under NC1 ≠⊕L/poly

1. NIZK for NC1-circuit SAT

2. NIZK for AC./) [2] circuits with short proofs
• Fully homomorphic encryption for AC./) [2]

3. Non-interactive zaps

4. NIZKs in the URS model

