SNARKs in Relativized Worlds

Thank you for many of the slides!

Megan Chen

Joint work with Alessandro Chiesa, Nicholas Spooner Eurocrypt 2022 (ePrint: 2022/383)

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given F, z_0, z_t

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given F, z_0, z_t , check that $\exists z_1, ..., z_{t-1}, w_0, ..., w_{t-1} : \forall i \in [t], F(z_i, w_i) = z_{i+1}$

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given
$$F, z_0, z_t$$
, check that $\exists z_1, ..., z_{t-1}, w_0, ..., w_{t-1} : \forall i \in [t], F(z_i, w_i) = z_{i+1}$

Option 1: Monolithic proof

$$F^t(z_0; w_0, \dots, w_{t-1}) = z_t$$
 $P \rightarrow \pi$

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given
$$F, z_0, z_t$$
, check that $\exists z_1, ..., z_{t-1}, w_0, ..., w_{t-1} : \forall i \in [t], F(z_i, w_i) = z_{i+1}$

Option 1: Monolithic proof

$$F^t(z_0; w_0, \dots, w_{t-1}) = z_t$$
 $\longrightarrow P$

Issues:

- (Typically) requires prover memory $\Omega(t)$
- Proving t+1 steps requires recomputing entire proof

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given
$$F, z_0, z_t$$
, check that $\exists z_1, ..., z_{t-1}, w_0, ..., w_{t-1} : \forall i \in [t], F(z_i, w_i) = z_{i+1}$

Option 1: Monolithic proof

$$F^{t}(z_{0}; w_{0}, \dots, w_{t-1}) = z_{t} \longrightarrow P \longrightarrow \pi$$

Issues:

- (Typically) requires prover memory $\Omega(t)$
- Proving t+1 steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Valiant08]

$$z_0 \xrightarrow{w_0 \searrow} \underbrace{z_1}_{z_1} \xrightarrow{w_1 \searrow} \underbrace{z_2}_{z_2} \xrightarrow{w_2 \searrow} \underbrace{p_F}_{r_1} \cdots \underbrace{z_{t-1}}_{t-1} \xrightarrow{p_F} \underbrace{z_t}_{t-1} \underbrace{p_F}_{r_t} \xrightarrow{\pi_t}$$

Goal: Prove correctness of a *t*-step non-deterministic computation:

Given
$$F, z_0, z_t$$
, check that $\exists z_1, ..., z_{t-1}, w_0, ..., w_{t-1} : \forall i \in [t], F(z_i, w_i) = z_{i+1}$

Option 1: Monolithic proof

$$F^{t}(z_{0}; w_{0}, \dots, w_{t-1}) = z_{t} \longrightarrow P \longrightarrow \pi$$

Issues:

- (Typically) requires prover memory $\Omega(t)$
- Proving t+1 steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [Valiant08]

$$z_0 \xrightarrow{w_0 \neg \downarrow} z_1 \xrightarrow{w_1 \neg \downarrow} z_2 \xrightarrow{w_2 \neg \downarrow} z_2 \xrightarrow{w_{t-1} \rightarrow} z_t \xrightarrow{\pi_t} \mathcal{P}_F \xrightarrow{\pi_t} \mathcal{P}_F \xrightarrow{\pi_t} \mathcal{P}_F \xrightarrow{\pi_t} \mathcal{P}_F$$

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

Applications include:

- "Succinct" blockchains
- SNARKs with low space complexity
- Verifiable delay functions
- Byzantine agreement
- ZK cluster computing
- Verifiable image editing
- Enforcing language semantics across trust boundaries

 π_1

tation:

$$[t], F(z_i, w_i) = z_{i+1}$$

heeded to compute F

it08]

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

How to instantiate IVC?

The IVC Prover...

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all i, $\exists w_i$ s.t.

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all i, $\exists w_i$ s.t.

• $F(z_i, w_i) = z_{i+1}$ and

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all i, $\exists w_i$ s.t.

- $F(z_i, w_i) = z_{i+1}$ and
- SNARK $V(z_i, \pi_i) = 1$

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyClOP13; Ben-SassonCTV14; BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyClOP13; Ben-SassonCTV14; BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyClOP13; Ben-SassonCTV14; BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

- Transparent / universal setup
- Efficiency improvements

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyClOP13; Ben-SassonCTV14; BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

- Transparent / universal setup
- Efficiency improvements

Issues:

 SNARK verifier makes oracle queries, but SNARK is for non-oracle computations.

Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyClOP13; Ben-SassonCTV14; BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; ChiesaOS20; ChiesaHMMVW20]

Benefits:

- Transparent / universal setup
- Efficiency improvements

Issues:

- SNARK verifier makes oracle queries, but SNARK is for non-oracle computations.
- [ChiesaOS20; ...] Heuristically instantiate ρ

Theoretical:

Theoretical:

 Requires non-blackbox use of oracle; this breaks the RO abstraction.

Theoretical:

- Requires non-blackbox use of oracle; this breaks the RO abstraction.
- Security flaws may be in the heuristic step [GoldwasserK03; CanettiGH04].

Theoretical:

- Requires non-blackbox use of oracle; this breaks the RO abstraction.
- Security flaws may be in the heuristic step [GoldwasserK03; CanettiGH04].

Practical:

Theoretical:

- Requires non-blackbox use of oracle; this breaks the RO abstraction.
- Security flaws may be in the heuristic step [GoldwasserK03; CanettiGH04].

Practical:

• No flexibility: Oracle must be instantiated as a circuit: can't use MPC, hardware token.

Theoretical:

- Requires non-blackbox use of oracle; this breaks the RO abstraction.
- Security flaws may be in the heuristic step [GoldwasserK03; CanettiGH04].

Practical:

- No flexibility: Oracle must be instantiated as a circuit: can't use MPC, hardware token.
- Inefficient: SNARKs about SHA2, BLAKE are expensive!

Research question

Is there an oracle model O such that

- 1. there are SNARKs in the O model; and
- 2. the SNARK can prove statements about *O*?

Research question

Is there an oracle model O such that

- 1. there are SNARKs in the O model; and
- 2. the SNARK can prove statements about *O*?

Having O means we can build IVC.

Research question

Is there an oracle model O such that

- 1. there are SNARKs in the O model; and
- 2. the SNARK can prove statements about *O*?

Impossible when O is the random oracle!

Our results

Define: low-degree random oracle (LDRO)

Our results

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

SNARK in LDROM for LDROM computations

Our results

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

Correctness of NP computation

Succinct verification of M's $\hat{\rho}$ queries

SNARK in LDROM for LDROM computations

Our results

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

Correctness of NP computation

Succinct verification of M's $\hat{\rho}$ queries

SNARK in LDROM for LDROM computations

SNARK in LDROM for non-oracle computations

Our results

Define: low-degree random oracle (LDRO)

Succinct Correctness of Correctness of verification of NP^p computation NP computation M's $\hat{\rho}$ queries **SNARK** in **SNARK** in NI query **LDROM** for LDROM for reduction for **LDROM** non-oracle LDROM queries computations computations Uses ideas from [KalaiRaz08].

Our results

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

Correctness of NP computation

Succinct verification of M's $\hat{\rho}$ queries

SNARK in LDROM for LDROM computations

SNARK in LDROM for non-oracle computations

NI query reduction for LDROM queries

Uses ideas from [KalaiRaz08].

Random oracle

 $\mathsf{RO}: \{0,1\}^m \to \mathbb{F}$

Random oracle

m-variate polynomials over \mathbb{F} , individual degree $\leq d$, evaluated over \mathbb{F}^m

Random $\hat{\rho} \in \mathbb{F}^{\leq d}[X_1, \dots, X_m]$ s.t.:

m-variate polynomials over \mathbb{F} , individual degree $\leq d$, evaluated over \mathbb{F}^m

 $\mathsf{RO}: \{0,1\}^m \to \mathbb{F}$

Random
$$\hat{\rho} \in \mathbb{F}^{\leq d}[X_1, \dots, X_m]$$
 s.t.:

Points in Boolean hypercube agrees with random oracle

m-variate polynomials over \mathbb{F} , individual degree $\leq d$, evaluated over \mathbb{F}^m

 $\mathsf{RO}: \{0,1\}^m \to \mathbb{F}$

Random $\hat{\rho} \in \mathbb{F}^{\leq d}[X_1, \dots, X_m]$ s.t.:

- Points in Boolean hypercube agrees with random oracle
- Is low degree (e.g. d = O(1)).

m-variate polynomials over \mathbb{F} , individual degree $\leq d$, evaluated over \mathbb{F}^m

Random
$$\hat{\rho} \in \mathbb{F}^{\leq d}[X_1, \dots, X_m]$$
 s.t.:

- Points in Boolean hypercube agrees with random oracle
- Is low degree (e.g. d = O(1)).
- Can query ANY point in \mathbb{F}^m

F³

m-variate polynomials over \mathbb{F} , individual degree $\leq d$, evaluated over \mathbb{F}^m

RO(0,0,1) =
$$y \in \mathbb{F}$$
 $\{0,1\}^3$

$$RO: \{0,1\}^m \rightarrow \mathbb{F}$$

Random $\hat{\rho} \in \mathbb{F}^{\leq d}[X_1, \dots, X_m]$ s.t.:

- Points in Boolean hypercube agrees with random oracle
- Is low degree (e.g. d = O(1)).
- Can query ANY point in \mathbb{F}^m

Is $\hat{\rho}$ simulatable (can do lazily sampling) and programmable?

Lemma: There is perfect, stateful simulation of LDROs.

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query x, check if $y = \hat{\rho}(x)$ is already determined.

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query x, check if $y = \hat{\rho}(x)$ is already determined.

Succinct constraint
detection algorithm exists for
low-degree polynomials
[Ben-SassonCFGRS17]

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query x, check if $y = \hat{\rho}(x)$ is already determined.

• If yes, use determined y.

Succinct constraint
detection algorithm exists for
low-degree polynomials
[Ben-SassonCFGRS17]

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query x, check if $y = \hat{\rho}(x)$ is already determined.

- If yes, use determined y.
- If no, sample $y \leftarrow_R \mathbb{F}$.

Succinct constraint
detection algorithm exists for
low-degree polynomials
[Ben-SassonCFGRS17]

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

- 1. Since LDRO has stateful simulation, use trusted party or MPC protocol.
- 2. Obfuscate (or embed in hardware token)

$$P(x_1, ..., x_m) = \sum_{\overrightarrow{a} \in [d]^m} F(\overrightarrow{a}) \cdot x_1^{a_1} \cdots x_m^{a_m}$$

where F is the structured PRF by [BenabbasGennaroVahlis11].

- 1. Since LDRO has stateful simulation, use trusted party or MPC protocol.
- 2. Obfuscate (or embed in hardware token)

$$P(x_1, ..., x_m) = \sum_{\overrightarrow{a} \in [d]^m} F(\overrightarrow{a}) \cdot x_1^{a_1} \cdots x_m^{a_m}$$

where F is the structured PRF by [BenabbasGennaroVahlis11].

3. Future work: arithmetize an existing "strong" hash function?

How do we efficiently verify LDRO queries?

How do we efficiently verify LDRO queries?

Step 1: Recall [KalaiRaz08]'s interactive query reduction protocol

How do we efficiently verify LDRO queries?

Step 1: Recall [KalaiRaz08]'s interactive query reduction protocol

Step 2: Make [KalaiRaz08] SNARK-friendly

What is query reduction?

Goal: verify polynomial queries

$$\{(x_1, y_1), \dots, (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$$

What is query reduction?

Goal: verify polynomial queries

$$\{(x_1, y_1), \dots, (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$$

Idea: Verifier has help from a prover

- [KalaiRaz08] gives an IP for this task
- Only requires 1 query to $\hat{
 ho}$

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Prover

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Prover

8

$$b_1, \ldots, b_n \in \mathbb{F}$$

Verifier

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Prover

 $f := \hat{\rho} \circ g$

f

Fact: || deg(f) = nmd||

Verifier

8

V checks n queries without querying $\hat{\rho}$!

$$f(b_i) \stackrel{?}{=} y_i \ \forall i \in [n]$$

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Prover

 $f := \hat{
ho} \circ g$

$b_1, \ldots, b_n \in \mathbb{F}$

f

Fact: || deg(f) = nmd||

Verifier

8

$$f(b_i) \stackrel{?}{=} y_i \ \forall i \in [n]$$

Check f

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Input: $\{(x_1, y_1), ..., (x_n, y_n)\} \in \mathbb{F}^m \times \mathbb{F}$

Goal: Check $\hat{\rho}(x_i) = y_i \ \forall i \in [n]$ with 1 verifier query

Soundness: $\frac{nmd}{|\mathbb{F}|}$

• Communication: O(nmd)

SNARK-friendly [KalaiRaz08]: de-randomize V

Problem: Verifier is randomized (samples β)

Fix: "Fiat-Shamir" transform

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

SNARK-friendly [KalaiRaz08]: de-randomize V

Problem: Verifier is randomized (samples β)

Fix: "Fiat-Shamir" transform

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Problem: |f| linear in the number of queries.

Fix: Use a hash function / compressing commitment

g is specified by x_1, \ldots, x_n

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Prover g $f := \hat{\rho} \circ g$ $\beta = \hat{\rho}(g, f)$

Problem: |f| linear in the number of queries.

Fix: Use a hash function / compressing commitment

g is specified by x_1, \ldots, x_n

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Problem: |f| linear in the number of queries.

Fix: Use a hash function / compressing commitment

g is specified by x_1, \ldots, x_n

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

$b_1, \ldots, b_n \in \mathbb{F}$ $g(\beta)$ Verifier Prover $\hat{\rho}(g(\beta))$ $f := \hat{\rho} \circ g$ f, β h = Hash ((g, f))(g,f) $\beta = \hat{\rho}(h)$ $f(b_i) \stackrel{?}{=} y_i \ \forall i \in [n]$ $\hat{\rho}(g(\beta)) \stackrel{?}{=} f(\beta)$ $\hat{\rho}(g,f) \stackrel{?}{=} \beta$

Problem: |f| linear in the number of queries.

Fix: Use a hash function / compressing commitment

g is specified by x_1, \ldots, x_n

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Problem: |f| linear in the number of queries.

Fix: Use a hash function / compressing commitment

g is specified by x_1, \ldots, x_n

Compute a curve g s.t. $g(b_i) = x_i \ \forall i \in [n]$.

Review

We created a scheme that checks LDROM queries efficiently and non-interactively.

Soundness for NI query reduction?

Bad event:

Adversary outputs $f \not\equiv \hat{\rho} \circ g$

s.t.
$$\beta = \hat{\rho}(\operatorname{Hash}(f, g))$$
 and $f(\beta) = (\hat{\rho} \circ g)(\beta)$.

Proof: uses a new LDROM forking lemma

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

Correctness of NP computation

Succinct verification of M's $\hat{\rho}$ queries

SNARK in LDROM for LDROM computations

SNARK in LDROM for non-oracle computations

NI query reduction for LDROM queries

Uses ideas from [KalaiRaz08].

Define: low-degree random oracle (LDRO)

Correctness of NP^ô computation

Correctness of NP computation

Succinct verification of M's $\hat{\rho}$ queries

SNARK in LDROM for LDROM computations

SNARK in LDROM for non-oracle computations

NI query reduction for LDROM queries

[Micali00] SNARK using LDROM.

Soundness: proved with LDRO forking lemma

Uses ideas from [KalaiRaz08].

Define: low-degree random oracle (LDRO)

Define: low-degree random oracle (LDRO)

Thanks!

https://ia.cr/2022/383