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Our setting: “streaming” verification of f-step NP computations

( tation:

Applications include: (2], F(z;, w)) = 7.4
+ SNARKSs with low space complexity

' 7-[
| -+ Verifiable delay functions

( * Byzantine agreement needed to compute £
( * ZK cluster computing

» Verifiable image editing
+ Enforcing language semantics across trust boundaries

RGE= =Ny e

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

|« “Succinct” blockchains

( 1t08]




Defining incrementally verifiable computation (IVC)



Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)

How to instantiate IVC?
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Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all 7, dw; s.t.
° F( Zia Wi) — Zi+1 and
e« SNARK V(z;, 7; ) = 1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] 7
1+ 1

i1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Benefits:
e Transparent/ universal setup
e Efficiency improvements




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Z.
Benefits: i+1

e Transparent/ universal setup
e Efficiency improvements
Issues:

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

it




Prior works: IVC instantiations from SNARKs

Approach 1: CRS + knowledge (extraction)
assumptions IVC. :PF

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM Wi — :
[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] : :

. < —> $itl
Benefits: : :
e Transparent / universal setup :
» Efficiency improvements 7 : : it
Issues: : E

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

e [ChiesaOS20; ...] Heuristically instantiate p



|Issues with heuristic RO instantiation

Theoretical:




|Issues with heuristic RO instantiation

Theoretical:
 Requires non-blackbox use of oracle; this
breaks the RO abstraction.




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].

Practical:




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHO4].
Practical: $itl
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware
token.

it




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.
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|GoldwasserK03; CanettiGHO4].

Practical: $it+1
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware T4

token.
e |nefficient: SNARKs about SHA2, BLAKE
are expensive!
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Research question

Is there an oracle model O such that

1. there are SNARKSs in the O model: and

2. the SNARK can prove statements A .

about O7? [ SNARK. ;@

Impossible when O is the random oracle!
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Is p simulatable (can do lazily sampling)
and programmable?

\_ /
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Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.

e |f yes, use determined y. Succinct constraint
detection algorithm exists for

e If no, sample y « [-.

low-degree polynomials
[Ben-SassonCFGRS17]
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1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

2. Obfuscate (or embed in hardware token)
P(x;,...,x,) = 2 FCa') - xeex,

aeld]™

where F is the structured PRF by [BenabbasGennaroVahlis11].

3. Future work: arithmetize an existing “strong” hash function?
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Step 1: Recall [KalaiRaz08]’s interactive query reduction protocol

Step 2: Make [KalaiRaz08] SNARK-friendly
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Idea: Verifier has help from a prover
o [KalaiRaz08] gives an IP for this task

 Only requires 1 query to p
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|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F nmd

Goal: Check ﬁ(xl.) = y; Vi € [n] with 1 verifier query ° Soundness: | [F]

» Communication: O(nmd)

by,....b, €F —
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8

p(g(p))

A——
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deg(f) = nmd | »(gP) =/
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Review

We created a scheme that checks LDROM queries efficiently and non-interactively.

Soundness for NI query reduction?

* Bad t: A
ac Cven Adversary outputs f £ p o g

s.t. /= p(Hash(f,g))and f( /) = (p=8)(p).

* Proof: uses a new LDROM forking lemma
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