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Our setting: “streaming” verification of f-step NP computations

( tation:

Applications include: (2], F(z;, w)) = 7.4
+ SNARKSs with low space complexity

' 7-[
| -+ Verifiable delay functions

( * Byzantine agreement needed to compute £
( * ZK cluster computing

» Verifiable image editing
+ Enforcing language semantics across trust boundaries

RGE= =Ny e

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

|« “Succinct” blockchains

( 1t08]




Defining incrementally verifiable computation (IVC)



Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)

How to instantiate IVC?
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Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all 7, dw; s.t.
° F( Zia Wi) — Zi+1 and
e« SNARK V(z;, 7; ) = 1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] 7
1+ 1

i1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Benefits:
e Transparent/ universal setup
e Efficiency improvements




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Z.
Benefits: i+1

e Transparent/ universal setup
e Efficiency improvements
Issues:

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

it




Prior works: IVC instantiations from SNARKs

Approach 1: CRS + knowledge (extraction)
assumptions IVC. :PF

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM Wi — :
[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] : :

. < —> $itl
Benefits: : :
e Transparent / universal setup :
» Efficiency improvements 7 : : it
Issues: : E

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

e [ChiesaOS20; ...] Heuristically instantiate p



|Issues with heuristic RO instantiation

Theoretical:




|Issues with heuristic RO instantiation

Theoretical:
 Requires non-blackbox use of oracle; this
breaks the RO abstraction.




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].

Practical:




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHO4].
Practical: $itl
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware
token.

it




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.
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|GoldwasserK03; CanettiGHO4].

Practical: $it+1
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware T4

token.
e |nefficient: SNARKs about SHA2, BLAKE
are expensive!
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Research question

Is there an oracle model O such that

1. there are SNARKSs in the O model: and

2. the SNARK can prove statements A .

about O7? [ SNARK. ;@

Impossible when O is the random oracle!
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Is p simulatable (can do lazily sampling)
and programmable?

\_ /
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Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.

e |f yes, use determined y. Succinct constraint
detection algorithm exists for

e If no, sample y « [-.

low-degree polynomials
[Ben-SassonCFGRS17]




How to (heuristically) instantiate the LDRO?



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

2. Obfuscate (or embed in hardware token)
P(x;,...,x,) = 2 FCa') - xtex,

aeld]™

where F is the structured PRF by [BenabbasGennaroVahlis11].



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

2. Obfuscate (or embed in hardware token)
P(x;,...,x,) = 2 FCa') - xeex,

aeld]™

where F is the structured PRF by [BenabbasGennaroVahlis11].

3. Future work: arithmetize an existing “strong” hash function?
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Step 1: Recall [KalaiRaz08]’s interactive query reduction protocol

Step 2: Make [KalaiRaz08] SNARK-friendly
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Idea: Verifier has help from a prover
o [KalaiRaz08] gives an IP for this task

 Only requires 1 query to p
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|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F nmd

Goal: Check ﬁ(xl.) = y; Vi € [n] with 1 verifier query ° Soundness: | [F]

» Communication: O(nmd)

by,....b, €F —
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8

p(g(p))

A——
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deg(f) = nmd | »(gP) =/
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Review

We created a scheme that checks LDROM queries efficiently and non-interactively.

Soundness for NI query reduction?

* Bad t: A
ac Cven Adversary outputs f £ p o g

s.t. /= p(Hash(f,g))and f( /) = (p=8)(p).

* Proof: uses a new LDROM forking lemma
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