SNARKS in Relativized Worlds

Thank you for many
of the slides!
Megan Chen

Joint work with Alessandro Chiesa, Nicholas Spooner
Eurocrypt 2022 (ePrint: 2022/383)



https://eprint.iacr.org/2022/383.pdf

Our setting: “streaming” verification of f-step NP computations



Our setting: “streaming” verification of f-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F, 2y, Z,,



Our setting: “streaming” verification of 7-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F,zy,7, checkthat dz;,...,2_, Wy, ..., W,_1 - Vi € [t], F(g, w;) = 2,




Our setting: “streaming” verification of f-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F, 7,7, checkthat dz;,...,2,_;, Wy, ... W,_1 - Vi € [t], F(z, w;) = 2,

Option 1: Monolithic proof

[ Ft(zy; Wy, o, We_1) = Z, ]—'n—ﬂ




Our setting: “streaming” verification of f-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F, 7,7, checkthat dz;,...,2,_;, Wy, ... W,_1 - Vi € [t], F(z, w;) = 2,

I *

Option 1: Monolithic proof

[ Ft(zy; wg, oo Wi_q) = 2,

Issues:
e (Typically) requires prover memory £2(7)
e Proving f + 1 steps requires recomputing entire proof



Our setting: “streaming” verification of f-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F, 7,7, checkthat dz;,...,2,_;, Wy, ... W,_1 - Vi € [t], F(z, w;) = 2,

-

Option 1: Monolithic proof

[ Ft(zy; Wy, ) We_q) = 2,

Issues:
e (Typically) requires prover memory £2(7)
e Proving f + 1 steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [vaiiantos]

w w w Wy _
Z 0 Z1 . Z2 RS Zeq Zt
’ :PF :PF:PF R L | :PF Tt




Our setting: “streaming” verification of 7-step NP computations

Goal: Prove correctness of a 7-step non-deterministic computation:
Given F, 7,7, checkthat dz;,...,2,_;, Wy, ... W,_1 - Vi € [t], F(z, w;) = 2,

Option 1: Monolithic proof

[ Ft(zy; wy, .. Wi_q) = 2, ]—.ﬂ—n

e (Typically) requires prover memory £2(7)

Issues:

e Proving f + 1 steps requires recomputing entire proof

Option 2: Incrementally verifiable computation (IVC) [vaiiantos]

w w w Wg_
Z : 2! i e Ze—y | Zt
NP [T P [T (P | T} [

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG




Our setting: “streaming” verification of f-step NP computations

( tation:

Applications include: (2], F(z;, w)) = 7.4
+ SNARKSs with low space complexity

' 7-[
| -+ Verifiable delay functions

( * Byzantine agreement needed to compute £
( * ZK cluster computing

» Verifiable image editing
+ Enforcing language semantics across trust boundaries

RGE= =Ny e

Proof-carrying data (PCD) [CT10, BCCT13]: generalizes path graph to DAG

|« “Succinct” blockchains

( 1t08]




Defining incrementally verifiable computation (IVC)



Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)




Defining incrementally verifiable computation (IVC)

How to instantiate IVC?




SNARK = Succinct
Non-interactive

IVC from SNARK ARgument o

Knowledge

The IVC Prover...



SNARK = Succinct
Non-interactive

IVC from SNARK ARgument o

Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R: SNARK.P

R



SNARK = Succinct
Non-interactive

IVC from SNARK ARgument o

Knowledge

The IVC Prover...
Runs a SNARK P, proving the computation R: SNARK.P

- Wi —i—> R
For all 7, dw; s.t. '



IVC from SNARK

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all 7, dw; s.t.

o« F(z;,w;) =z, and

SNARK = Succinct
Non-interactive
ARgument of
Knowledge

|




SNARK = Succinct
Non-interactive

IVC from SNARK ARgument o

Knowledge

The IVC Prover...

Runs a SNARK P, proving the computation R:

For all 7, dw; s.t.
° F( Zia Wi) — Zi+1 and
e« SNARK V(z;, 7; ) = 1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM

[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] 7
1+ 1

i1




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Benefits:
e Transparent/ universal setup
e Efficiency improvements




Prior works: IVC instantiations from SNARKSs
Approach 1: CRS + knowledge (extraction)

assumptions

Approach 2: SNARKs in ROM

Z.
Benefits: i+1

e Transparent/ universal setup
e Efficiency improvements
Issues:

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

it




Prior works: IVC instantiations from SNARKs

Approach 1: CRS + knowledge (extraction)
assumptions IVC. :PF

[Groth10; GennaroGPR13; BitanskyCIOP13; Ben-SassonCTV14;
BitanskyCCGLRT14; Groth16; GrothKMMM18]

Approach 2: SNARKs in ROM Wi — :
[Micali00; Ben-SassonCS16; Chiesa0S20; ChiesaHMMVW20] : :

. < —> $itl
Benefits: : :
e Transparent / universal setup :
» Efficiency improvements 7 : : it
Issues: : E

e SNARK verifier makes oracle queries, but
SNARK is for non-oracle computations.

e [ChiesaOS20; ...] Heuristically instantiate p



|Issues with heuristic RO instantiation

Theoretical:




|Issues with heuristic RO instantiation

Theoretical:
 Requires non-blackbox use of oracle; this
breaks the RO abstraction.




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHOA4].

Practical:




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHO4].
Practical: $itl
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware
token.

it




|Issues with heuristic RO instantiation

Theoretical.

 Requires non-blackbox use of oracle; this
breaks the RO abstraction.

o Security flaws may be in the heuristic step

|GoldwasserK03; CanettiGHO4].

Practical: $it+1
* No flexibility: Oracle must be instantiated
as a circuit: can’t use MPC, hardware T4

token.
e |nefficient: SNARKs about SHA2, BLAKE
are expensive!




Research question

Is there an oracle model O such that

1. there are SNARKSs in the O model: and

2. the SNARK can prove statements A .
about 07

$ixl

it



Research question

Is there an oracle model O such that

1. there are SNARKSs in the O model: and

it

2. the SNARK can prove statements Il\-/(-:'-g-bf ---------- :
about O? :
Having O means we can build IVC. Z; . . Zir1



Research question

Is there an oracle model O such that

1. there are SNARKSs in the O model: and

2. the SNARK can prove statements A .

about O7? [ SNARK. ;@

Impossible when O is the random oracle!



Our results Define: low-degree random oracle (LDRO)



Our results

Correctness of
NP” computation

SNARK in
LDROM for

LDROM
computations

Define: low-degree random oracle (LDRO)



Our results Define: low-degree random oracle (LDRO)

Succinct
Correctness of __ Correctness of + verification of
NP” computation Bl NP computation M’s p queries

SNARK in
LDROM for

LDROM
computations




Our results Define: low-degree random oracle (LDRO)

Succinct
Correctness of __ Correctness of + verification of
NP” computation Bl NP computation M’s p queries

SNARK In SNARK In
LDROM for LDROM for
LDROM non-oracle +

computations computations




Our results Define: low-degree random oracle (LDRO)

Succinct
Correctness of __ Correctness of + verification of
NP” computation Bl NP computation M’s p queries

SNARK in SNARK in
LDROM for LDROM for I

NI query
reduction for

LDROM non-oracle LDROM queries

computations computations

Uses ideas from
[KalaiRaz08].



Our results Define: low-degree random oracle (LDRO)

Succinct
qurectness of __ Correctness of + verification of
NP” computation Bl NP computation M’s p queries

SNARK in SNARK in
LDROM for LDROM for I

NI query
reduction for

LDROM i
non-oracle LDROM queries

computations computations

Uses ideas from
[KalaiRaz08].



Random oracle

{0,1}°

RO : {0,1)" = F



Random oracle

RO(0,0,1)=y€F

(0,1}’

RO : {0,1)" = F



Low-degree random oracle ( p )

RO(0,0,1)=yeF

A

(0,1}’

RO : {0,1)" = F



Low-degree random oracle ( p )

RO(0,0,1)=y€eF

/

/ [

{0,1}°

RO : {0,1)" = F

m-variate polynomials over [,
individual degree < d,
evaluated over [

Random p € |

:Sd[Xl, coes Xm] S.t.:



Low-degree random oracle ( p )

RO(0,0,1)=vy€EF

/

/ [

{0,1}°

RO : {0,1)" = F

m-variate polynomials over [,
individual degree < d,
evaluated over [

Random p € [:Sd[Xl, X | st

 Points in Boolean hypercube agrees
with random oracle



Low-degree random oracle ( p )

RO(0,0,1)=vy€EF

/

/ [

{0,1}°

RO : {0,1)" = F

m-variate polynomials over [,
individual degree < d,
evaluated over [

Random p € [:Sd[Xl, X | st

 Points in Boolean hypercube agrees
with random oracle

e Islowdegree (e.g.d = O(1)).



m-variate polynomials over [,
individual degree < d,
evaluated over [

Low-degree random oracle ( p )

RO(0,0,1)=yeF
F
/ / Random p € [:Sd[Xl, X | st

 Points in Boolean hypercube agrees
with random oracle

(0,1} e Islowdegree (e.g.d = O(1)).
e Can query ANY point in "

RO : {0,1)" = F



m-variate polynomials over [,
individual degree < d,
evaluated over [

Low-degree random oracle ( p )

RO(0,0,1)=yeF
F
/ / Random p € [:Sd[Xl, X | st

 Points in Boolean hypercube agrees
with random oracle

(0,1} e Islowdegree (e.g.d = O(1)).
e Can query ANY point in "

RO : {0,1)" = F

4 A

Is p simulatable (can do lazily sampling)
and programmable?

\_ /




Lazy sampling of LDRO

Lemma: There is perfect, stateful simulation of LDROs.



Lazy sampling of LDRO

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.



Lazy sampling of LDRO

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.

Succinct constraint
detection algorithm exists for

low-degree polynomials
[Ben-SassonCFGRS17]




Lazy sampling of LDRO

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.

e |f yes, use determined y. Succinct constraint
detection algorithm exists for

low-degree polynomials
[Ben-SassonCFGRS17]




Lazy sampling of LDRO

Lemma: There is perfect, stateful simulation of LDROs.

Lazy sampling strategy:

Given a query X, check if y = p(x) is already determined.

e |f yes, use determined y. Succinct constraint
detection algorithm exists for

e If no, sample y « [-.

low-degree polynomials
[Ben-SassonCFGRS17]




How to (heuristically) instantiate the LDRO?



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

2. Obfuscate (or embed in hardware token)
P(x;,...,x,) = 2 FCa') - xtex,

aeld]™

where F is the structured PRF by [BenabbasGennaroVahlis11].



How to (heuristically) instantiate the LDRO?

1. Since LDRO has stateful simulation, use trusted party or MPC protocol.

2. Obfuscate (or embed in hardware token)
P(x;,...,x,) = 2 FCa') - xeex,

aeld]™

where F is the structured PRF by [BenabbasGennaroVahlis11].

3. Future work: arithmetize an existing “strong” hash function?



How do we efficiently verify LDRO queries”?



How do we efficiently verify LDRO queries”?

Step 1: Recall [KalaiRaz08]’s interactive query reduction protocol



How do we efficiently verify LDRO queries”?

Step 1: Recall [KalaiRaz08]’s interactive query reduction protocol

Step 2: Make [KalaiRaz08] SNARK-friendly



What is query reduction”

Goal: verify polynomial queries

XYy s (6 V) ) €




What is query reduction”

Goal: verify polynomial queries

XYy s (6 V) ) €

Idea: Verifier has help from a prover
o [KalaiRaz08] gives an IP for this task

 Only requires 1 query to p




|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Prover Verifier



|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Compute a curve g s.t. g(b;) = x; Vi € [n].

by,....b, €F —
Prover Verifier



|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Compute a curve g s.t. g(b;) = x; Vi € [n].

by,....b, €F —
Verifier

Fact:

deg(f) = nmd




|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Compute a curve g s.t. g(b;) = x; Vi € [n].

by,....b, €F —
Verifier
g
f V checks n queries
- without querying p !
Fact f(b;) =y, Vi € [n]

deg(f) = nmd




|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Compute a curve g s.t. g(b;) = x; Vi € [n].
b,....,.b, €F

Verifier
f
Fact f(b;) =y; Vi € [n]

deg(f) = nmd|| Checkf




|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F
Goal: Check p(x;) =y, Vi € [n] with 1 verifier query

Compute a curve g s.t. g(b;) = x; Vi € [n].
b,....,.b, €F

Verifier
g
/ p<F g(B)
(s
Fact: J(b;) = y; Vi € |n] }L

deg(f) = nmd|| »(gP) =/




|KalaiRaz08]| Interactive query reduction protocol

Input: {(x,y{),....,(x,y,)} € F"X[F nmd

Goal: Check ﬁ(xl.) = y; Vi € [n] with 1 verifier query ° Soundness: | [F]

» Communication: O(nmd)

by,....b, €F —
Verifier
8

p(g(p))

A——

Cact: f(b;) =y; Vi € [n]
deg(f) = nmd | »(gP) =/




SNARK-friendly [KalaiRaz08]: de-randomize V

Problem: Verifier is randomized (samples /)
Fix: “Fiat-Shamir” transform

Compute a curve g s.t. g(b;) = x; Vi € [n].

by, -
1 Verifier 8(h)

P(&(p))

f(b;) = y; Vi € [n]
p(g(B) =fB)

>



SNARK-friendly [KalaiRaz08]: de-randomize V

Problem: Verifier is randomized (samples /)
Fix: “Fiat-Shamir” transform

Compute a curve g s.t. g(b,) = x; Vi € [n].

by, -
1 Verifier 8(h)

P(&(p))

(e.f) | *

f(b;) = y; Vi € [n]
P gB)) =f(B) p
g f)=p




SNARK-friendly [KalaiRaz08|: succinct oracle queries

Problem: | f| linear in the number of queries.
Fix: Use a hash function / compressing commitment

Compute a curve g s.t. g(b;) = x; Vi € [n].

b, —
1 Verifier 8p)
p(g(B))
(&.f) |7

f(b;) = y; Vi € [n]
P g(B)) =f(B) p
g f)=p




SNARK-friendly [KalaiRaz08|: succinct oracle queries

Problem: | f| linear in the number of queries.
Fix: Use a hash function / compressing commitment

Compute a curve g s.t. g(b;) = x; Vi € [n].

b, —
1 Verifier 8p)
p(g(B))
(&.f) |7

f(b;) = y; Vi € [n]
P g(B)) =f(B) p
g f)=p




SNARK-friendly [KalaiRaz08|: succinct oracle queries

Problem: | f| linear in the number of queries.
Fix: Use a hash function / compressing commitment

Compute a curve g s.t. g(b;) = x; Vi € [n].

by,...b €F —
Prover 1 Verifier 8(h)
g
e Bog "y p(s(P)
h =Hash ((g,f)) - A
(g.f) |7

B=p(h) f(b)) =y, Vi€ [n]
P gB)) =f(B) p

pg.f)=p




SNARK-friendly [KalaiRaz08|: succinct oracle queries

Problem: | f| linear in the number of queries.
Fix: Use a hash function / compressing commitment

Compute a curve g s.t. g(b;) = x; Vi € [n].

by,....b €F —
Prover 1 Verifier 8(h)
g
fm pog Y p(2())
h = Hash (( g.f)) | h=Hash((g.f)) )
| | (e.f) | ”
p=pCh) f(b;) =y Vi€ [n]
p(8(B) = A p) p

pg.f)=p




SNARK-friendly [KalaiRaz08|: succinct oracle queries

Problem: | f| linear in the number of queries.
Fix: Use a hash function / compressing commitment

Compute a curve g s.t. g(b,) = x; Vi € [n].

by,...b €F —
Prover 1 Verifier 8(h)
g
e Bog "y p(s(P)
h = Hash ((g.f)) | h=Hash((gf)) h D

B=p(h) f(b)) =y, Vi€ [n]
P gB)) =f(B) p

pCh Y=p




Review

We created a scheme that checks LDROM queries efficiently and non-interactively.

Soundness for NI query reduction?

* Bad t: A
ac Cven Adversary outputs f £ p o g

s.t. /= p(Hash(f,g))and f( /) = (p=8)(p).

* Proof: uses a new LDROM forking lemma



Other results Define: low-degree random oracle (LDRO)

Succinct
Correctness of _ Correctness of + verification of
NP” computation I NP computation M’s p queries

SNARK in SNARK in
LDROM for LDROM for
LDROM non-oracle
computations computations

NI query
reduction for
LDROM queries

Uses ideas from
[KalaiRaz08].




Other results

Correctness of
NP” computation

SNARK in
LDROM for

LDROM
computations

Define: low-degree random oracle (LDRO)

Succinct
Correctness of + verification of
NP computation M’s p queries

SNARK In NIl que
LDROM for q_ Y

I reduction for
non-oracie LDROM queries

computations

[Micali00] SNARK using LDROM.

Uses ideas from
[KalaiRaz08].

Soundness: proved with LDRO
forking lemma




Other results Define: low-degree random oracle (LDRO)

Succinct
Correctness of _ Correctness of + verification of
NP” computation — NP computation M’s p queries

SNARK in SNARK in
LDROM for LDROM tor reduction for
LDROM non-oracle

LDROM queries

computations

computations

[Micali00] SNARK using LDROM.

Uses ideas from
[KalaiRaz08].

Soundness: proved with LDRO
forking lemma




Other results Define: low-degree random oracle (LDRO)

Succinct
Correctness of _ Correctness of + verification of
— NP computation M’s p queries

pA computation

SNARK in SNARK in
LDROM for LDROM tor reduction for
LDROM non-oracle

LDROM queries

computations computations

[Micali00] SNARK using LDROM.

Uses ideas from
[KalaiRaz08].

Soundness: proved with LDRO
forking lemma




Thanks!

https://ia.cr/2022/383


https://ia.cr/2022/383

