Round-Optimal and Communication-Efficient Multiparty Computation

Michele Ciampi, Rafail Ostrovsky, Hendrik Waldner, Vassilis Zikas
Multiparty Computation (MPC)
Multiparty Computation (MPC)
Multiparty Computation (MPC)

\[f(x_1, x_2) \]

\[f(x_1, x_2) \]
Multiparty Computation (MPC)

\[f(x_1, x_2) \]
Multiparty Computation (MPC)

1. Number of Messages
Multiparty Computation (MPC)

1. Number of Messages
2. Size of Messages
Multiparty Computation (MPC)

Four rounds are necessary [GMPP16] and sufficient [CCG+19,BGJ+18, HHPV18]

1. Number of Messages
2. Size of Messages
Multiparty Computation (MPC)

Four rounds are necessary \[\text{[GMPP16]}\] and sufficient \[\text{[CCG+19, BGJ+18, HHPV18]}\]

1. Number of Messages ✓
2. Size of Messages
Multiparty Computation (MPC)

Four rounds are necessary [GMPP16] and sufficient [CCG+19, BGJ+18, HHPV18]

1. Number of Messages ✓
2. Size of Messages ←
Prior Work
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[BL18] [GS18]</td>
<td>OT</td>
<td></td>
<td>/</td>
</tr>
</tbody>
</table>
Prior Work

<table>
<thead>
<tr>
<th>Round-Optimal Protocols</th>
<th>Semi-Honest</th>
<th>Malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BL18] [GS18]</td>
<td>OT</td>
<td>/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work</th>
<th>Assumptions</th>
<th>Comm. Compl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[BL18]</td>
<td>OT</td>
<td>/</td>
</tr>
<tr>
<td>[GS18]</td>
<td>[BGJ+18]</td>
<td>DDH/Q-N Res.</td>
</tr>
</tbody>
</table>

Note: / denotes information not available or not applicable.
Prior Work

<table>
<thead>
<tr>
<th>Round-Optimal Protocols</th>
<th>Semi-Honest</th>
<th>Malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>Assumptions</td>
<td>Comm. Compl.</td>
</tr>
<tr>
<td>[GS18]</td>
<td></td>
<td>[CCG+20] OT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior Work

<table>
<thead>
<tr>
<th>Semi-Honest</th>
<th>Malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>Work</td>
</tr>
<tr>
<td>[BL18]</td>
<td>[BGJ+18]</td>
</tr>
<tr>
<td>[GS18]</td>
<td>DDH/Q-N Res.</td>
</tr>
<tr>
<td>Assumptions</td>
<td>Assumptions</td>
</tr>
<tr>
<td>OT</td>
<td>[CCG+20]</td>
</tr>
<tr>
<td>depth((f))</td>
<td>OT</td>
</tr>
<tr>
<td>Comm. Compl.</td>
<td>Comm. Compl.</td>
</tr>
<tr>
<td>(||)</td>
<td>(||)</td>
</tr>
</tbody>
</table>

Round-Optimal Protocols

With Improved Comm. Compl.
Prior Work

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[GS18]</td>
<td></td>
<td></td>
<td>[CCG+20]</td>
<td>OT</td>
<td></td>
</tr>
<tr>
<td>With Improved Comm. Compl.</td>
<td>LWE</td>
<td>depth(f)</td>
<td>[ABJ+19]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[QWW18]</td>
<td></td>
<td></td>
<td>[CCG+20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[AJJM20]</td>
<td>R-LWE, DSPR & OT</td>
<td>L_{in} & L_{out}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior Work

<table>
<thead>
<tr>
<th>Round-Optimal Protocols</th>
<th>Semi-Honest</th>
<th>Malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GS18]</td>
<td>OT</td>
<td>[CCG+20]</td>
</tr>
<tr>
<td>With Improved Comm. Compl.</td>
<td>LWE, depth(ψ)</td>
<td>This Work</td>
</tr>
<tr>
<td>[ABJ+19]</td>
<td>LWE</td>
<td></td>
</tr>
<tr>
<td>[QWW18]</td>
<td>LWE</td>
<td></td>
</tr>
<tr>
<td>[AJJM20]</td>
<td>R-LWE, DSPR & OT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L_{in} & L_{out}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semi-Honest</td>
<td>Malicious</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Work</td>
<td>Work</td>
</tr>
<tr>
<td>With Improved Comm. Compl.</td>
<td>[ABJ+19] [QWW18] LWE depth(f)</td>
<td>[AJJM20] R-LWE, DSPR & OT L_{in}, L_{out}</td>
</tr>
<tr>
<td></td>
<td>This Work</td>
<td>LWE depth(f)</td>
</tr>
</tbody>
</table>
Prior Work

<table>
<thead>
<tr>
<th></th>
<th>Semi-Honest</th>
<th>Malicious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-Optimal Protocols</td>
<td>[BL18] [GS18]</td>
<td>OT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Improved Comm. Compl.</td>
<td>[ABJ+19] [QWW18]</td>
<td>LWE</td>
</tr>
<tr>
<td></td>
<td>[AJJM20]</td>
<td>R-LWE, DSPR & OT</td>
</tr>
</tbody>
</table>
Prior Work

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-Honest</td>
<td></td>
<td></td>
<td>Malicious</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[GS18]</td>
<td></td>
<td></td>
<td>[CCG+20]</td>
<td>OT</td>
<td></td>
</tr>
<tr>
<td>With Improved Comm. Compl.</td>
<td>[ABJ+19]</td>
<td>LWE</td>
<td>This Work</td>
<td>LWE</td>
<td></td>
</tr>
<tr>
<td>[QWW18]</td>
<td>depth(f)</td>
<td></td>
<td></td>
<td>depth(f)</td>
<td></td>
</tr>
<tr>
<td>[AJJM20]</td>
<td>R-LWE, DSPR & OT</td>
<td>$L_{in} & L_{out}$</td>
<td></td>
<td>R-LWE, DSPR & OT</td>
<td>$L_{in} & L_{out}$</td>
</tr>
</tbody>
</table>

⇒ Start from the work of Ananth et al. and Functional Encryption Combiners
Functional Encryption [BSW11]
Functional Encryption [BSW11]
Functional Encryption [BSW11]

\[\text{Setup} \leftarrow \text{Keygen}(\mathcal{K}, f) \]
Functional Encryption [BSW11]

\[
\text{Keygen}(\text{Setup}, f) \quad \leftarrow \quad x \leftarrow \text{Enc}(\text{Keygen}, x)
\]
Functional Encryption [BSW11]

\[
\text{Setup} \leftarrow \text{Setup} \\
\text{Keygen} \leftarrow \text{Keygen} (\text{Setup}, f) \\
x \leftarrow \text{Enc} (\text{Setup}, x)
\]
Functional Encryption [BSW11]

\[f(x) = \text{Dec}(Key_f, Enc(x)) \]
(Decomposable) Functional Encryption Combiner [ABJ+19]

\[\begin{align*}
 &\text{Setup} \\
 &\text{Keygen}(1, f) \\
 &\text{Setup} \\
 &\text{Keygen}(2, f) \\
\end{align*} \]
(Decomposable) Functional Encryption Combiner [ABJ+19]
(Decomposable) Functional Encryption Combiner [ABJ+19]

\[f(x_1, x_2) = \text{Dec}(\text{Comb}(\text{Keygen}(k_1, f), k_2), \text{Enc}(\text{Keygen}(k_1, f), (x_1, x_2)))) \]
(Decomposable) Functional Encryption Combiner [ABJ+19]

Succinctness: $|\alpha_{f,i}| \leq \text{depth}(f)$
Protocol of Ananth et al. [ABJ+19]

\[f_1 \leftarrow \text{Setup} \]

\[f_{i,1} \leftarrow \text{Keygen}(f_{1,i}, f) \]

\[f_2 \leftarrow \text{Setup} \]

\[f_{i,2} \leftarrow \text{Keygen}(f_{2,i}, f) \]
Protocol of Ananth et al. [ABJ+19]
Protocol of Ananth et al. [ABJ+19]

\[f,1 \leftarrow \text{Keygen}(\sigma_{1}, f) \]

\[f,2 \leftarrow \text{Keygen}(\sigma_{2}, f) \]
Protocol of Ananth et al. [ABJ+19]

\[f, 1 \leftarrow \text{Setup} \]
\[f, 1 \leftarrow \text{Keygen}(1, f) \]
\[f, 2 \leftarrow \text{Keygen}(2, f) \]

\[(x_1, x_2) = \text{Enc}(1, (x_1, x_2), (\bullet, \bullet)) \]
Protocol of Ananth et al. [ABJ+19]

\[f(x_1, x_2) = \text{Dec}(\text{f}, (x_1, x_2))\]

\[f(x_1, x_2) = \text{Enc}(\text{f}, (x_1, x_2), ((x_1, x_2), (x_1, x_2)))\]
Protocol of Ananth et al. [ABJ+19]

\[f(x_1, x_2) = \text{Dec}(f_j, (x_1, x_2)) \]

⇒ Replace semi-honest protocol with maliciously secure protocol
First Approach

\begin{align*}
\text{Setup} &\quad \rightarrow \quad \text{Setup} \\
\text{Keygen}(\text{Setup}, f) &\quad \rightarrow \quad \text{Keygen}(\text{Setup}, f) \\
\text{Dec}(f(x_1, x_2)) &\quad = \quad \text{Enc}(\text{Setup}, (x_1, x_2), (\text{Setup}, f)) \\
\end{align*}
First Approach

1. \(f_{i,i} \) can be generated maliciously
First Approach

1. $f_{i,i}$ can be generated maliciously
2. (π, η) used for encryption can be “bad”
First Approach

1. \(f_i \) can be generated maliciously
2. \((\bullet, \circ)\) used for encryption can be “bad”
3. \(i \) can be generated arbitrarily
First Approach

1. \(f_{i,j} \) can be generated maliciously
First Approach

$$f(x_1, x_2) = \text{Dec}(f, (x_1, x_2))$$

1. f_i can be generated maliciously
 → Privacy with Knowledge of Outputs
First Approach

1. f_i can be generated maliciously
 → Privacy with Knowledge of Outputs
 → Can be lifted using [IKP10, PC12]
First Approach

1. $f_{i,j}$ can be generated maliciously ✓
2. (\vdash, \bowtie) used for encryption can be “bad”
3. i can be generated arbitrarily
First Approach

2. \((\text{key}, \text{value})\) used for encryption can be “bad”
First Approach

1. $f_{1,1} \leftarrow \text{Setup}$
2. $f_{1,1} \leftarrow \text{Keygen}(1, f)$
3. $f_{1,2} \leftarrow \text{Setup}$
4. $f_{1,2} \leftarrow \text{Keygen}(2, f)$

$f(x_1, x_2) = \text{Dec}(f, (x_1, x_2)) = \text{Enc}(1, (x_1, x_2), (\text{key}, \text{key}))$

2. (key, key) used for encryption can be “bad”
 → Use XOR instead of concatenation
First Approach

1. Setup

2. Keygen(f_1, x_1) → f_1

3. f_1, x_1 → Keygen(f_2, x_2)

$f(x_1, x_2) = \text{Dec}(f, (x_1, x_2))$

$= \text{Enc}(\text{Setup}, (x_1, x_2), (\text{\textcolor{red}{\textbf{\textbullet}} \textcolor{red}{\textbf{\textbullet}})))$

2. $(\textcolor{red}{\textbf{\textbullet}}, \textcolor{red}{\textbf{\textbullet}})$ used for encryption can be “bad”
 → Use XOR instead of concatenation
First Approach

1. f_{ij} can be generated maliciously ✓
2. $(\mathcal{O}, \mathcal{O})$ used for encryption can be “bad” ✓
3. i can be generated arbitrarily

$$f(x_1, x_2) = \text{Dec}(f_{ij}, (x_1, x_2))$$

$$f(x_1, x_2) = \text{Dec}(f_{ij}, (x_1, x_2))$$
First Approach

1. $f, 1 \leftarrow \text{Setup}$
2. $f, 1 \leftarrow \text{Keygen}(\underline{1}, f)$
3. $f(x_1, x_2) = \text{Dec}(\underline{f}, (x_1, x_2))$

3. $f(x_1, x_2)$ can be generated arbitrarily
First Approach

1. $f_{i,1} \leftarrow \text{Setup}$
2. $f_{i,1} \leftarrow \text{Keygen}(a_{1}, f)$
3. $f(x_1, x_2) = \text{Dec}(f_{i,2}, (x_1, x_2))$

3. $f_{i,1}$ can be generated arbitrarily
 \rightarrow Solve as 2.
3. i can be generated arbitrarily
 \rightarrow Solve as 2.
First Approach

3. i can be generated arbitrarily
 → Solve as 2.
First Approach

3. x_i can be generated arbitrarily
 \[\rightarrow \text{Solve as 2.} \]
First Approach

3. \(\mathcal{E}_i \) can be generated arbitrarily

\[\rightarrow \text{Solve as 2.} \]
First Approach

3. i can be generated arbitrarily
 \rightarrow Solve as 2.
First Approach

3. i_i can be generated arbitrarily
 \rightarrow Solve as 2.
First Approach

3. \mathcal{K}_i can be generated arbitrarily
 \rightarrow Solve as 2.
First Approach

\[f(x_1, x_2) = \text{Dec} \left(f_{i}, (x_i, x_2) \right) \]

3. \(f_i \) can be generated arbitrarily
 \(\rightarrow \) Solve as 2. \(\times \) \(\rightarrow \) Adds an additional round
First Approach

3. i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol
3. \(r_i \) can be generated arbitrarily
 \[\rightarrow \text{Solve as 2.} \quad \times \rightarrow \text{Adds an additional round} \]
 \[\rightarrow \text{Do Coin Flipping outside of protocol} \]
3. i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol
3. i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

3. i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

3. can be generated arbitrarily
 → Solve as 2. → Adds an additional round
 → Do Coin Flipping outside of protocol
3. i can be generated arbitrarily
 → Solve as 2. x → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

3. i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

3. A key k_i can be generated arbitrarily
 → Solve as 2. $×$ → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

1. $\leftarrow \text{Setup}(\mathcal{I})$
2. $f_{i,1} \leftarrow \text{Keygen}(\mathcal{I}_{1, f})$
3. $x_{1, i} \leftarrow (\mathcal{I}_{1, f}, \mathcal{I}_{2, f})$
4. $x_{1, i} = (\mathcal{I}_{2, f}, \mathcal{I}_{1, f})$
5. $\leftarrow \text{Setup}(\mathcal{I})$
6. $f_{i,2} \leftarrow \text{Keygen}(\mathcal{I}_{2, f})$
7. $, \mathcal{I}_{1, f} = (\mathcal{I}_{1, f}, \mathcal{I}_{2, f})$

3. i can be generated arbitrarily
 → Solve as 2. x → Adds an additional round
 → Do Coin Flipping outside of protocol
Final Approach

3. i can be generated arbitrarily
 → Solve as 2. x → Adds an additional round
 → Do Coin Flipping outside of protocol
3. c_i can be generated arbitrarily
 → Solve as 2. x → Adds an additional round
 → Do Coin Flipping outside of protocol
3. ι_i can be generated arbitrarily
 \rightarrow Solve as 2. \times \rightarrow Adds an additional round
 \rightarrow Do Coin Flipping outside of protocol
3. k_{i} can be generated arbitrarily
 → Solve as 2. x → Adds an additional round
 → Do Coin Flipping outside of protocol → How to allow for honest behavior check?
3. σ_i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol → How to allow for honest behavior check?
 ⇒ k-Delayed-Input Function MPC
k-Delayed-Input vs. k-Delayed-Input Function MPC
k-Delayed-Input vs. k-Delayed-Input Function MPC

k-Delayed-Input MPC:

1. The input is needed in round k
k-Delayed-Input vs. k-Delayed-Input Function MPC

k-Delayed-Input MPC:

1. The input is needed in round k

2. but needs to be fixed before the protocol execution
k-Delayed-Input vs. k-Delayed-Input Function MPC

k-Delayed-Input MPC:

1. The input is needed in round k
2. but needs to be fixed before the protocol execution

k-Delayed-Input Function MPC:

1. The input is needed in round k
k-Delayed-Input vs. k-Delayed-Input Function MPC

k-Delayed-Input MPC:

1. The input is needed in round k

2. but needs to be fixed before the protocol execution

k-Delayed-Input Function MPC:

1. The input is needed in round k

2. and is partially decided during the protocol execution
k-Delayed-Input vs. k-Delayed-Input Function MPC

k-Delayed-Input MPC:

1. The input is needed in round k
2. but needs to be fixed before the protocol execution

k-Delayed-Input Function MPC:

1. The input is needed in round k
2. and is partially decided during the protocol execution

⇒ 2n-Party k-delayed-input MPC protocol + information-theoretic MAC
3. \hat{r}_i can be generated arbitrarily
 → Solve as 2. \times → Adds an additional round
 → Do Coin Flipping outside of protocol → How to allow for honest behavior check?
3. \bullet_i can be generated arbitrarily

→ Solve as 2. \times → Adds an additional round
→ Do Coin Flipping outside of protocol → How to allow for honest behavior check? $✓$
1. f_i can be generated maliciously ✓
2. $(\mathcal{K}, \mathcal{K})$ used for encryption can be “bad” ✓
3. i can be generated arbitrarily ✓
1. $f_{i,j}$ can be generated maliciously ✓
2. $(\mathcal{K},\mathcal{K})$ used for encryption can be “bad” ✓
3. \mathcal{K}_i can be generated arbitrarily ✓

\Rightarrow Communication Complexity: $\text{depth}(f)$
Final Approach

1. f_{i_1} can be generated maliciously
2. (x_1, x_2) used for encryption can be “bad”
3. i can be generated arbitrarily

⇒ Communication Complexity: $\text{depth}(f)$ Can we do better?
Final Approach

1. \[f_i \] can be generated maliciously ✓
2. \((\cdot, \cdot)\) used for encryption can be “bad” ✓
3. \[i \] can be generated arbitrarily ✓

⇒ Communication Complexity: \(\text{depth}(f)\) Can we do better? Yes!
Multi-Key Fully Homomorphic Encryption [LTV12]
Multi-Key Fully Homomorphic Encryption [LTV12]

\[(\mathcal{K}_1, \mathcal{K}_1) \leftarrow \text{Setup}\]

\[(\mathcal{K}_2, \mathcal{K}_2) \leftarrow \text{Setup}\]
Multi-Key Fully Homomorphic Encryption [LTV12]

\[(k_1, c_1) \leftarrow \text{Setup} \]
\[x_1 \leftarrow \text{Enc}(k_1, x_1) \]

\[(k_2, c_2) \leftarrow \text{Setup} \]
\[x_2 \leftarrow \text{Enc}(k_2, x_2) \]
Multi-Key Fully Homomorphic Encryption [LTV12]

\[(1, 2) = (1, 1) \leftarrow \text{Setup} \]
\[x_1 \leftarrow \text{Enc}(1, x_1)\]
\[(2, 2) \leftarrow \text{Setup} \]
\[x_2 \leftarrow \text{Enc}(2, x_2)\]

\[= (1, 2)\]
Multi-Key Fully Homomorphic Encryption [LTV12]
Multi-Key Fully Homomorphic Encryption [LTV12]

\[f(x_1, x_2) = \text{Eval}(f, x_1, x_2) \]

\[f(x_1, x_2) = \text{Dec}(\text{Eval}(f, x_1, x_2)) \]
Multi-Key Fully Homomorphic Encryption [LTV12]

\[f(x_1, x_2) = \text{Eval}(f, x_1, x_2) \]

Compactness: \(|f(x_1, x_2)|\) independent of \(f\)
Round-Optimal and Communication-Efficient MPC
Round-Optimal and Communication-Efficient MPC

$(σ_1, ρ_1) \leftarrow \text{Setup}$

$(σ_2, ρ_2) \leftarrow \text{Setup}$
Round-Optimal and Communication-Efficient MPC

\[(x_1, x_1) \leftarrow \text{Setup} \]
\[x_1 \leftarrow \text{Enc}(x_1, x_1)\]

\[(x_2, x_2) \leftarrow \text{Setup} \]
\[x_2 \leftarrow \text{Enc}(x_2, x_2)\]
Round-Optimal and Communication-Efficient MPC

1. Setup

2. Enc(x_1, x_1)

3. $x_1 \leftarrow$ Enc(x_1, x_1)

4. Setup

5. Enc(x_2, x_2)

6. $x_2 \leftarrow$ Enc(x_2, x_2)
Round-Optimal and Communication-Efficient MPC

\((1, 1) \leftarrow \text{Setup}\)
\(x_1 \leftarrow \text{Enc}(1, x_1)\)
\(f(x_1, x_2) \leftarrow \text{Eval}(f, x_1, x_2)\)
\(\)
Round-Optimal and Communication-Efficient MPC

Setup

Encryption

Evaluation

Setup

Encryption

Evaluation
Round-Optimal and Communication-Efficient MPC

\[\left(x_1, x_1 \right) \leftarrow \text{Setup} \]

\[x_1 \leftarrow \text{Enc}(x_1, x_1) \]

\[f(x_1, x_2) \leftarrow \text{Eval}(f, x_1, x_2) \]

\[\text{Check w.r.t. } f(x_1, x_2) \]

\[\left(x_2, x_2 \right) \leftarrow \text{Setup} \]

\[x_2 \leftarrow \text{Enc}(x_2, x_2) \]

\[f(x_1, x_2) \leftarrow \text{Eval}(f, x_1, x_2) \]

\[\text{Check w.r.t. } f(x_1, x_2) \]
Round-Optimal and Communication-Efficient MPC

(1, 1) ← Setup
x₁ ← Enc(₁, x₁)

(1, x₁) ← Ḷ𝖾𝗍𝗎𝗉 ← Ḷ𝗇𝖼(₁, x₁)

x₁ ← Ḷ𝖾𝗍𝗎𝗉 ← Ḷ𝗇𝖼(₁, x₁)

(2, 2) ← Setup
x₂ ← Enc(₂, x₂)

(2, x₂) ← Ḷ𝖾𝗍𝗎𝗉 ← Ḷ𝗇𝖼(₂, x₂)

x₂ ← Ḷ𝖾𝗍𝗎𝗉 ← Ḷ𝗇𝖼(₂, x₂)

f(x₁, x₂) ← Eval(₁, f, x₁, x₂)

f(x₁, x₂), (,) ← Ḷ𝗉𝖺𝗅(₁, f, x₁, x₂)

f(x₁, x₂), (,) ← Ḷ𝗉𝖺𝗅(₁, f, x₁, x₂)

Check w.r.t. & w.r.t.

f(x₁, x₂) = Dec(₂, f(x₁, x₂))
Round-Optimal and Communication-Efficient MPC

Check w.r.t. $f(x_1, x_2)$ = Dec($f(x_1, x_2)$)

\Rightarrow Communication Complexity: L_{in} & L_{out} independent of f
Conclusion
Conclusion

- Round-Optimal and Communication-Efficient Multiparty Computation
Conclusion

- Round-Optimal and Communication-Efficient Multiparty Computation
 - Protocol with Communication Complexity depth(f)
 based on Functional Encryption Combiners
Conclusion

- Round-Optimal and Communication-Efficient Multiparty Computation
 - Protocol with Communication Complexity depth(f) based on Functional Encryption Combiners
 - Protocol with Communication Complexity L_{in} & L_{out} based on Multi-Key Fully Homomorphic Encryption
Conclusion

- Round-Optimal and Communication-Efficient Multiparty Computation
 - Protocol with Communication Complexity $\text{depth}(f)$ based on Functional Encryption Combiners
 - Protocol with Communication Complexity L_{in} & L_{out} based on Multi-Key Fully Homomorphic Encryption
- k-Delayed-Input Function MPC
Conclusion

● Round-Optimal and Communication-Efficient Multiparty Computation

○ Protocol with Communication Complexity $\text{depth}(f)$ based on Functional Encryption Combiners

○ Protocol with Communication Complexity $L_{\text{in}} \& L_{\text{out}}$ based on Multi-Key Fully Homomorphic Encryption

● k-Delayed-Input Function MPC

Thank You!