
Multi-Designated Receiver
Signed Public Key Encryption
Ueli Maurer, Christopher Portmann, Guilherme Rito
Eurocrypt 2022



Outline

1. Contributions

2. Public Key Encryption for Broadcast (PKEBC)

3. PKEBC Scheme Construction

4. Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)

5. MDRS-PKE Scheme Construction

Eurocrypt’ 22 1/35



1. Contributions

New types of Public Key Encryption (PKE) schemes:

• Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE);

• Public Key Encryption for Broadcast (PKEBC);

Constructions of both schemes from standard assumptions;

MDRS-PKE scheme yields Multi-Designated Verifier Signature scheme (MDVS) with Privacy of
Identities;

The only prior construction is based on Verifiable Functional Encryption [1].

Eurocrypt’ 22 2/35



1. Contributions

New types of Public Key Encryption (PKE) schemes:

• Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE);

• Public Key Encryption for Broadcast (PKEBC);

Constructions of both schemes from standard assumptions;

MDRS-PKE scheme yields Multi-Designated Verifier Signature scheme (MDVS) with Privacy of
Identities;

The only prior construction is based on Verifiable Functional Encryption [1].

Eurocrypt’ 22 2/35



1. Contributions

New types of Public Key Encryption (PKE) schemes:

• Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE);

• Public Key Encryption for Broadcast (PKEBC);

Constructions of both schemes from standard assumptions;

MDRS-PKE scheme yields Multi-Designated Verifier Signature scheme (MDVS) with Privacy of
Identities;

The only prior construction is based on Verifiable Functional Encryption [1].

Eurocrypt’ 22 2/35



1. Contributions

New types of Public Key Encryption (PKE) schemes:

• Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE);

• Public Key Encryption for Broadcast (PKEBC);

Constructions of both schemes from standard assumptions;

MDRS-PKE scheme yields Multi-Designated Verifier Signature scheme (MDVS) with Privacy of
Identities;

The only prior construction is based on Verifiable Functional Encryption [1].

[1] Damgård et al. (TCC ’20).
Eurocrypt’ 22 2/35



Outline

1. Contributions

2. Public Key Encryption for Broadcast (PKEBC)

3. PKEBC Scheme Construction

4. Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)

5. MDRS-PKE Scheme Construction

Eurocrypt’ 22 3/35



2. PKEBC — Syntax

A

B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) =

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Syntax

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4, rpkB3), m)

D(rskB1, c) = ((rpkB1, rpkB4, rpkB3), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs vector of receivers’ rpk.

Eurocrypt’ 22 4/35



2. PKEBC — Security Notions

Consistency

Robustness

Confidentiality (IND-CCA-2 security)

+ Anonymity (IK-CCA-2 security)

Eurocrypt’ 22 5/35



2. PKEBC — Security Notions

Consistency

Robustness

Confidentiality (IND-CCA-2 security)

+ Anonymity (IK-CCA-2 security)

Eurocrypt’ 22 5/35



2. PKEBC — Consistency

A

A B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Consistency

A

B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Consistency

A B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Consistency

A B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Consistency

A B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Consistency

A B3

B2

B1

B4

B5

c

D(rskB1, c) = ((rpkB1, rpkB3, rpkB5), m)

D(rskB3, c) = ((rpkB1, rpkB3, rpkB5), m)

Eurocrypt’ 22 6/35



2. PKEBC — Robustness

A B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Robustness

B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Robustness

B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Robustness

B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Robustness

B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Robustness

B3

B2

B1

B4

B5

A

c = E((rpkB1, rpkB4), m)

D(rskB1, c) = ((rpkB1, rpkB4), m)

D(rskB3, c) = ⊥

Eurocrypt’ 22 7/35



2. PKEBC — Confidentiality (IND-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4), m)

m = ?

Eurocrypt’ 22 8/35



2. PKEBC — Confidentiality (IND-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4), m)

m = ?

Eurocrypt’ 22 8/35



2. PKEBC — Confidentiality (IND-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4), m)

m = ?

Eurocrypt’ 22 8/35



2. PKEBC — Anonymity (IK-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4), m)

Are the (two) receivers of c (B1, B4)?

c = E((rpkB2, rpkB4), m)

Are the (two) receivers of c (B2, B4)?

c = E((rpkB2, rpkB3), m)

Are the (two) receivers of c (B2, B3)?

c = E((rpkB3, rpkB4), m)

Are the (two) receivers of c (B3, B4)?

Eurocrypt’ 22 9/35



2. PKEBC — Anonymity (IK-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB1, rpkB4), m)

Are the (two) receivers of c (B1, B4)?

c = E((rpkB2, rpkB4), m)

Are the (two) receivers of c (B2, B4)?

c = E((rpkB2, rpkB3), m)

Are the (two) receivers of c (B2, B3)?

c = E((rpkB3, rpkB4), m)

Are the (two) receivers of c (B3, B4)?

Eurocrypt’ 22 9/35



2. PKEBC — Anonymity (IK-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB2, rpkB4), m)

Are the (two) receivers of c (B2, B4)?

c = E((rpkB2, rpkB3), m)

Are the (two) receivers of c (B2, B3)?

c = E((rpkB3, rpkB4), m)

Are the (two) receivers of c (B3, B4)?

Eurocrypt’ 22 9/35



2. PKEBC — Anonymity (IK-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB2, rpkB3), m)

Are the (two) receivers of c (B2, B3)?

c = E((rpkB3, rpkB4), m)

Are the (two) receivers of c (B3, B4)?

Eurocrypt’ 22 9/35



2. PKEBC — Anonymity (IK-CCA-2 Security)

A B3

B2

B1

B4

B5

c = E((rpkB3, rpkB4), m)

Are the (two) receivers of c (B3, B4)?

Eurocrypt’ 22 9/35



Outline

1. Contributions

2. Public Key Encryption for Broadcast (PKEBC)

3. PKEBC Scheme Construction

4. Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)

5. MDRS-PKE Scheme Construction

Eurocrypt’ 22 10/35



3. PKEBC Scheme Construction Roadmap

Recall Naor-Yung’s IND-CCA-1 PKE scheme construction [2];

Generalization to (non IK-CCA-2 secure) PKEBC scheme;

Making the PKEBC scheme IK-CCA-2 secure.

[2] Naor and Yung (STOC ’90).
Eurocrypt’ 22 11/35



3. Naor-Yung’s PKE Scheme

Building blocks:
• (IND-CPA secure) PKE scheme CPA = (Gen, Enc, Dec);
• NIZK = (GenCRS, Prv, Vfy);

Construction of IND-CCA-1 secure PKE scheme Π = (Gen, Enc, Dec):
Π.Gen:(

(pk0, sk0), (pk1, sk1)
)
← (CPA.Gen, CPA.Gen);

crs← NIZK.GenCRS;
Output

(
pk := (crs, pk0, pk1), sk := (sk0, pk)

)
.

Eurocrypt’ 22 12/35



3. Naor-Yung’s PKE Scheme

Building blocks:
• (IND-CPA secure) PKE scheme CPA = (Gen, Enc, Dec);
• NIZK = (GenCRS, Prv, Vfy);

Construction of IND-CCA-1 secure PKE scheme Π = (Gen, Enc, Dec):
Π.Gen:(

(pk0, sk0), (pk1, sk1)
)
← (CPA.Gen, CPA.Gen);

crs← NIZK.GenCRS;
Output

(
pk := (crs, pk0, pk1), sk := (sk0, pk)

)
.

Eurocrypt’ 22 12/35



3. Naor-Yung’s PKE Scheme

Π.Enc(pk := (crs, pk0, pk1), m):
(c0, c1)← (CPA.Encpk0 (m), CPA.Encpk1 (m));
p← NIZK.Prv(crs,

stmt := “There is a message m such that c0 and c1 are encryptions of m under pk0
and pk1, resp.”,

w := (m, Encryption Randomness));
Output (p, c0, c1).

Π.Dec(sk := (sk0, pk), c := (p, c0, c1)):
Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
m← CPA.Decsk0 (c0);
Output m otherwise.

Simulation Sound NIZK⇒ PKE scheme is IND-CCA-2 secure [3].

Eurocrypt’ 22 13/35



3. Naor-Yung’s PKE Scheme

Π.Enc(pk := (crs, pk0, pk1), m):
(c0, c1)← (CPA.Encpk0 (m), CPA.Encpk1 (m));
p← NIZK.Prv(crs,

stmt := “There is a message m such that c0 and c1 are encryptions of m under pk0
and pk1, resp.”,

w := (m, Encryption Randomness));
Output (p, c0, c1).

Π.Dec(sk := (sk0, pk), c := (p, c0, c1)):
Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
m← CPA.Decsk0 (c0);
Output m otherwise.

Simulation Sound NIZK⇒ PKE scheme is IND-CCA-2 secure [3].

Eurocrypt’ 22 13/35



3. Naor-Yung’s PKE Scheme

Π.Enc(pk := (crs, pk0, pk1), m):
(c0, c1)← (CPA.Encpk0 (m), CPA.Encpk1 (m));
p← NIZK.Prv(crs,

stmt := “There is a message m such that c0 and c1 are encryptions of m under pk0
and pk1, resp.”,

w := (m, Encryption Randomness));
Output (p, c0, c1).

Π.Dec(sk := (sk0, pk), c := (p, c0, c1)):
Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
m← CPA.Decsk0 (c0);
Output m otherwise.

Simulation Sound NIZK⇒ PKE scheme is IND-CCA-2 secure [3].

[3]: Sahai, FOCS ’99
Eurocrypt’ 22 13/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

Π.Setup:
crs← NIZK.GenCRS;
Output crs;

Π.Gen:(
(pk0, sk0), (pk1, sk1)

)
← (CPA.Gen, CPA.Gen);

crs← NIZK.GenCRS;
Output

(
rpk := (pk0, pk1), rsk := (sk0, rpk)

)
.

Eurocrypt’ 22 14/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

Π.Setup:
crs← NIZK.GenCRS;
Output crs;

Π.Gen:(
(pk0, sk0), (pk1, sk1)

)
← (CPA.Gen, CPA.Gen);

crs← NIZK.GenCRS;
Output

(
rpk := (pk0, pk1), rsk := (sk0, rpk)

)
.

Eurocrypt’ 22 14/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

Π.Enc(pp := crs, v⃗ :=
(
rpk1 := (pk1,0, pk1,1), . . . , rpk|v⃗| := (pk|v⃗|,0, pk|v⃗|,1)

)
, m):

(cj,0, cj,1)← (CPA.Encpkj,0 (m), CPA.Encpkj,1 (m)) , for each j ∈ {1, . . . , |v⃗|}
p← NIZK.Prv(crs,

stmt := “There is a message m such that for all j ∈ {1, . . . , |v⃗|}, and all b ∈ {0, 1},
cj,b is an encryption of m under vj,b.”,

w := (m, Encryption Randomness));
Output (p, c⃗ :=

(
(c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)

)
, v⃗).

Π.Dec(pp := crs, rsk := (sk0, rpk), c := (p, c⃗ :=
(
(c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)

)
, v⃗)):

Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
Let i ∈ {1, . . . , |v⃗|} be (the least number) such that vi = rpk;
Output ⊥ if there is no such i;
m← CPA.Decsk0 (ci,0);
Output (v⃗, m) otherwise.

Eurocrypt’ 22 15/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

Π.Enc(pp := crs, v⃗ :=
(
rpk1 := (pk1,0, pk1,1), . . . , rpk|v⃗| := (pk|v⃗|,0, pk|v⃗|,1)

)
, m):

(cj,0, cj,1)← (CPA.Encpkj,0 (m), CPA.Encpkj,1 (m)) , for each j ∈ {1, . . . , |v⃗|}
p← NIZK.Prv(crs,

stmt := “There is a message m such that for all j ∈ {1, . . . , |v⃗|}, and all b ∈ {0, 1},
cj,b is an encryption of m under vj,b.”,

w := (m, Encryption Randomness));
Output (p, c⃗ :=

(
(c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)

)
, v⃗).

Π.Dec(pp := crs, rsk := (sk0, rpk), c := (p, c⃗ :=
(
(c1,0, c1,1), . . . , (c|v⃗|,0, c|v⃗|,1)

)
, v⃗)):

Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
Let i ∈ {1, . . . , |v⃗|} be (the least number) such that vi = rpk;
Output ⊥ if there is no such i;
m← CPA.Decsk0 (ci,0);
Output (v⃗, m) otherwise.

Eurocrypt’ 22 15/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

NIZK

Simulation Sound
PKE (IND-CPA)

PKEBC

From [2]

Exists from Standard Assumptions

Does not exist from Standard Assumptions

Eurocrypt’ 22 16/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Exists from Standard Assumptions

Does not exist from Standard Assumptions

Eurocrypt’ 22 16/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Exists from Standard Assumptions

Does not exist from Standard Assumptions

Eurocrypt’ 22 16/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Exists from Standard Assumptions

Does not exist from Standard Assumptions

Eurocrypt’ 22 16/35



3. Naor-Yung Scheme’s Trivial Generalization (Non IK-CCA-2 Secure)

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Exists from Standard Assumptions

Does not exist from Standard Assumptions

Eurocrypt’ 22 16/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Main idea:

Add a (Binding) Commitment to v⃗ (vector of receivers’ public keys) and m;

Encrypt v⃗, m and commitment’s randomness to each receiver;

Eurocrypt’ 22 17/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Main idea:

Add a (Binding) Commitment to v⃗ (vector of receivers’ public keys) and m;

Encrypt v⃗, m and commitment’s randomness to each receiver;

Eurocrypt’ 22 17/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Main idea:

Add a (Binding) Commitment to v⃗ (vector of receivers’ public keys) and m;

Encrypt v⃗, m and commitment’s randomness to each receiver;

Eurocrypt’ 22 17/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Building Blocks:
• (Statistically Binding) Commitment scheme CS = (GenCRS, Commit, Verify);
• (IND-CPA and IK-CPA secure) PKE scheme CPA = (Gen, Enc, Dec);
• (Simulation Sound) NIZK = (GenCRS, Prv, Vfy).

Eurocrypt’ 22 18/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Π.Setup:
crsNIZK ← NIZK.GenCRS;
crsCS ← CS.GenCRS;
Output (crsNIZK, crsCS);

Π.Gen:(
(pk0, sk0), (pk1, sk1)

)
← (CPA.Gen, CPA.Gen);

Output
(

rpk := (pk0, pk1), rsk := (sk0, rpk)
)

.

Eurocrypt’ 22 19/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Π.Enc(pp := (crsNIZK, crsCS), v⃗ :=
(
rpk0 := (pk1,0, pk1,1), . . . , rpk|v⃗| := (pk|v⃗|,0, pk|v⃗|,1)

)
, m):

comm← CS.Commit(crsCS, (v⃗, m); ρ);
(cj,0, cj,1)← (CPA.Encpkj,0 (ρ, v⃗, m), CPA.Encpkj,1 (ρ, v⃗, m)), for each i ∈ {1, . . . , |v⃗|};
p← NIZK.Prv(crsNIZK,

stmt := “There is a message m, a vector v⃗ and a sequence ρ such that:
for all i ∈ {1, . . . , |v⃗|}, b ∈ {0, 1}, ci,b is an encryption of (ρ, v⃗, m) under vi,b,
and comm = CS.Commit(crsCS, (v⃗, m); ρ).”,

w := (m, v⃗, ρ, Encryption Randomness));
Output (comm, p, c⃗).

Eurocrypt’ 22 20/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

Π.Dec(pp := (crsNIZK, crsCS), rsk := (sk0, rpk), c := (comm, p, c⃗)):

Output ⊥ if NIZK.Vfy(crs, stmt, p) = invalid;
Find the least i ∈ {1, . . . , |v⃗|} with

(ρ, v⃗, m)← CPA.Decsk0 (ci,0) satisfying:
(ρ, v⃗, m) ̸= ⊥;
vi = rpk;
c.comm = CS.Commit(crsCS, (v⃗, m); ρ);

Output ⊥ if there is no such i;
Output (v⃗, m) otherwise.

Eurocrypt’ 22 21/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

Eurocrypt’ 22 22/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically Binding

IK-CPA

Anonymous

Ours

Eurocrypt’ 22 22/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

Eurocrypt’ 22 22/35



3. Our (IK-CCA-2 Secure) PKEBC Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

Eurocrypt’ 22 22/35



Outline

1. Contributions

2. Public Key Encryption for Broadcast (PKEBC)

3. PKEBC Scheme Construction

4. Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)

5. MDRS-PKE Scheme Construction

Eurocrypt’ 22 23/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

(rpkB1, rskB1)

(rpkB2, rskB2)

(rpkB3, rskB3)

(rpkB4, rskB4)

(rpkB5, rskB5)

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Syntax

B3

B2

B1

B4

B5

A2

A1

A3

(spkA1, sskA1)

(spkA2, sskA2)

(spkA3, sskA3)

c = E(sskA1, (rpkB1, rpkB2), m)

D(rskB1, c) = (spkA1, (rpkB1, rpkB2), m)

Syntax of decryption:

• Only rskB1 is needed;

• Outputs sender’s spk and vector of
receivers’ rpk.

Eurocrypt’ 22 24/35



4. MDRS-PKE — Security Notions

Off-The-Record

Unforgeability

Consistency

Confidentiality (IND-CCA-2 security)

+ Anonymity (IK-CCA-2 security)

Eurocrypt’ 22 25/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

D(rskB5, c) = (spkA2, (rpkB4, rpkB5, rpkB2), m)

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

D(rskB5, c) = (spkA2, (rpkB4, rpkB5, rpkB2), m)

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

D(rskB5, c) = (spkA2, (rpkB4, rpkB5, rpkB2), m)

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

D(rskB5, c) = (spkA2, (rpkB4, rpkB5, rpkB2), m)

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = E(sskA2, (rpkB4, rpkB5, rpkB2), m)

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Off-The-Record

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

rskB5, c

Look, A2 sent m to (B4, B5, B3)!
Check it with my secret key: rskB5.

c = Forge(rskB5, spkA2, (rpkB4, rpkB5, rpkB2), m)︸ ︷︷ ︸
sskA2 not needed!

I’m not convinced!

Eurocrypt’ 22 26/35



4. MDRS-PKE — Authenticity (Existential Unforgeability)

B3

B2

B1

B4

B5

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

Eurocrypt’ 22 27/35



4. MDRS-PKE — Authenticity (Existential Unforgeability)

B3

B2

B1

B4

B5

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

Eurocrypt’ 22 27/35



4. MDRS-PKE — Authenticity (Existential Unforgeability)

B3

B2

B1

B4

B5

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

Eurocrypt’ 22 27/35



4. MDRS-PKE — Consistency

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c

D(rskB1, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

D(rskB4, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

Eurocrypt’ 22 28/35



4. MDRS-PKE — Consistency

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c

D(rskB1, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

D(rskB4, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

Eurocrypt’ 22 28/35



4. MDRS-PKE — Consistency

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c

D(rskB1, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

D(rskB4, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

Eurocrypt’ 22 28/35



4. MDRS-PKE — Consistency

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

c

D(rskB1, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

D(rskB4, c) = (spkX, (rpkB1, rpkB4, rpkB5), m)

Eurocrypt’ 22 28/35



4. MDRS-PKE — Confidentiality (IND-CCA-2 Security)

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

c = E(sskA2, (rpkB1, rpkB4), m)

m = ?

m = ?

Eurocrypt’ 22 29/35



4. MDRS-PKE — Confidentiality (IND-CCA-2 Security)

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB1, rpkB4), m)

m = ?

m = ?

Eurocrypt’ 22 29/35



4. MDRS-PKE — Confidentiality (IND-CCA-2 Security)

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB1, rpkB4), m)

m = ?

m = ?

Eurocrypt’ 22 29/35



4. MDRS-PKE — Confidentiality (IND-CCA-2 Security)

A2

A1

A3

Is the sender A2 and the
two receivers (B1, B4)?

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB1, rpkB4), m)

m = ?

m = ?

Eurocrypt’ 22 29/35



4. MDRS-PKE — Anonymity (IK-CCA-2 Security)

A2

A1

A3

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB1, rpkB4), m)

Is the sender A2 and the
two receivers (B1, B4)?

Is the sender A2 and the
two receivers (B1, B4)?

c = E(sskA1, (rpkB1, rpkB4), m)

Is the sender A1 and the
two receivers (B1, B4)?

Is the sender A1 and the
two receivers (B1, B4)?

c = E(sskA1, (rpkB1, rpkB3), m)

Is the sender A1 and the
two receivers (B1, B3)?

Is the sender A1 and the
two receivers (B1, B3)?

c = E(sskA2, (rpkB2, rpkB4), m)

Is the sender A2 and the
two receivers (B2, B4)?

Is the sender A2 and the
two receivers (B2, B4)?

Eurocrypt’ 22 30/35



4. MDRS-PKE — Anonymity (IK-CCA-2 Security)

A2

A1

A3

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB1, rpkB4), m)

Is the sender A2 and the
two receivers (B1, B4)?

Is the sender A2 and the
two receivers (B1, B4)?

c = E(sskA1, (rpkB1, rpkB4), m)

Is the sender A1 and the
two receivers (B1, B4)?

Is the sender A1 and the
two receivers (B1, B4)?

c = E(sskA1, (rpkB1, rpkB3), m)

Is the sender A1 and the
two receivers (B1, B3)?

Is the sender A1 and the
two receivers (B1, B3)?

c = E(sskA2, (rpkB2, rpkB4), m)

Is the sender A2 and the
two receivers (B2, B4)?

Is the sender A2 and the
two receivers (B2, B4)?

Eurocrypt’ 22 30/35



4. MDRS-PKE — Anonymity (IK-CCA-2 Security)

A2

A1

A3

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

c = E(sskA1, (rpkB1, rpkB4), m)

Is the sender A1 and the
two receivers (B1, B4)?

Is the sender A1 and the
two receivers (B1, B4)?

c = E(sskA1, (rpkB1, rpkB3), m)

Is the sender A1 and the
two receivers (B1, B3)?

Is the sender A1 and the
two receivers (B1, B3)?

c = E(sskA2, (rpkB2, rpkB4), m)

Is the sender A2 and the
two receivers (B2, B4)?

Is the sender A2 and the
two receivers (B2, B4)?

Eurocrypt’ 22 30/35



4. MDRS-PKE — Anonymity (IK-CCA-2 Security)

A2

A1

A3

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.

c = E(sskA1, (rpkB1, rpkB3), m)

Is the sender A1 and the
two receivers (B1, B3)?

Is the sender A1 and the
two receivers (B1, B3)?

c = E(sskA2, (rpkB2, rpkB4), m)

Is the sender A2 and the
two receivers (B2, B4)?

Is the sender A2 and the
two receivers (B2, B4)?

Eurocrypt’ 22 30/35



4. MDRS-PKE — Anonymity (IK-CCA-2 Security)

A2

A1

A3

B3

B2

B1

B4

B5

D(rskB3, c) = ⊥, or D(rskB3, c) = (spk, v⃗, m) and
for every (honest) sender Ai, either spk ̸= spkAi or

Ai sent m to v⃗ before.
c = E(sskA2, (rpkB2, rpkB4), m)

Is the sender A2 and the
two receivers (B2, B4)?

Is the sender A2 and the
two receivers (B2, B4)?

Eurocrypt’ 22 30/35



Outline

1. Contributions

2. Public Key Encryption for Broadcast (PKEBC)

3. PKEBC Scheme Construction

4. Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)

5. MDRS-PKE Scheme Construction

Eurocrypt’ 22 31/35



5. Our MDRS-PKE Scheme Construction

Building Blocks:
• MDVS = (Setup, GenSig, GenVrf, Sign, Vfy);
• (IK-CCA-2 secure) PKEBC = (Setup, GenSnd, GenRcv, Enc, Dec);

Main idea: “Sign-then-Encrypt”
Use MDVS to sign vector of receivers and message;
Then, use PKEBC to encrypt the sender’s and all receivers’ public keys, message and the
signature.

Eurocrypt’ 22 32/35



5. Our MDRS-PKE Scheme Construction

Building Blocks:
• MDVS = (Setup, GenSig, GenVrf, Sign, Vfy);
• (IK-CCA-2 secure) PKEBC = (Setup, GenSnd, GenRcv, Enc, Dec);

Main idea: “Sign-then-Encrypt”
Use MDVS to sign vector of receivers and message;
Then, use PKEBC to encrypt the sender’s and all receivers’ public keys, message and the
signature.

Eurocrypt’ 22 32/35



5. Our MDRS-PKE Scheme Construction

Building Blocks:
• MDVS = (Setup, GenSig, GenVrf, Sign, Vfy);
• (IK-CCA-2 secure) PKEBC = (Setup, GenSnd, GenRcv, Enc, Dec);

Main idea: “Sign-then-Encrypt”

Use MDVS to sign vector of receivers and message;
Then, use PKEBC to encrypt the sender’s and all receivers’ public keys, message and the
signature.

Eurocrypt’ 22 32/35



5. Our MDRS-PKE Scheme Construction

Building Blocks:
• MDVS = (Setup, GenSig, GenVrf, Sign, Vfy);
• (IK-CCA-2 secure) PKEBC = (Setup, GenSnd, GenRcv, Enc, Dec);

Main idea: “Sign-then-Encrypt”
Use MDVS to sign vector of receivers and message;
Then, use PKEBC to encrypt the sender’s and all receivers’ public keys, message and the
signature.

Eurocrypt’ 22 32/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1] Ours

Eurocrypt’ 22 33/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1] Ours

Eurocrypt’ 22 33/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1] Ours

Eurocrypt’ 22 33/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1]

Ours

Eurocrypt’ 22 33/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1] Ours

Eurocrypt’ 22 33/35



5. Our MDRS-PKE Scheme Construction

NIZK
Simulation Sound

PKE (IND-CPA)

PKEBC

From [2]

Commitment Scheme
Statistically BindingIK-CPA

Anonymous

Ours

MDVS

From [1]

MDRS-PKE
Anonymous

Ours

Anonymous

From [1] Ours

Eurocrypt’ 22 33/35



Thank you!



Bibliography

[1] Ivan Damgård, Helene Haagh, Rebekah Mercer, Anca Nitulescu, Claudio Orlandi, and Sophia
Yakoubov.
Stronger security and constructions of multi-designated verifier signatures.
In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages
229–260. Springer, Heidelberg, November 2020.

[2] Moni Naor and Moti Yung.
Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.

[3] Amit Sahai.
Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In 40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

Eurocrypt’ 22 35/35



Outline

6. Full MDRS-PKE construction

Eurocrypt’ 22 1/4



6. MDRS-PKE Scheme Construction

MDRS-PKE.Setup:
ppMDVS ← MDVS.Setup(1k);
ppPKEBC ← PKEBC.Setup(1k);
Output pp = (ppMDVS, ppPKEBC);

MDRS-PKE.GenSnd(pp = (ppMDVS, ppPKEBC)):
(spkMDVS, sskMDVS)← MDVS.GenSig(ppMDVS);
Output (spk := spkMDVS, ssk := (spk, sskMDVS));

MDRS-PKE.GenRcv(pp = (ppMDVS, ppPKEBC)):
(vpkMDVS, vskMDVS)← MDVS.GenV (ppMDVS);
(rpkPKEBC, rskPKEBC)← PKEBC.Gen(ppPKEBC);
Output

(
rpk := (vpkMDVS, rpkPKEBC), rsk :=

(
rpk, (vskMDVS, rskPKEBC)

))
;

Eurocrypt’ 22 2/4



6. MDRS-PKE Scheme Construction

MDRS-PKE.Enc(sski := (spki, sskMDVSi), v⃗ :=
(
rpk1, . . . , rpk|v⃗|

)
, m):

(where rpki := (vpkMDVSi
, rpkPKEBCi

))
Let v⃗PKEBC = (rpkPKEBC1, . . . , rpkPKEBC|v⃗|);
Let v⃗MDVS = (vpkMDVS1, . . . , vpkMDVS|v⃗|);
σ ← MDVS.Sign(sskMDVSi, v⃗MDVS, (v⃗PKEBC, m));
Output PKEBC.Enc

(
v⃗PKEBC, (spki, v⃗MDVS, m, σ)

)
;

Eurocrypt’ 22 3/4



6. MDRS-PKE Scheme Construction

MDRS-PKE.Dec(rskj :=
(
rpkj , (vskMDVSj , rskPKEBCj)

)
, c):

(where rpkj := (vpkMDVSj
, rpkPKEBCj

))(
v⃗PKEBC, (spki, v⃗MDVS, m, σ)

)
← PKEBC.D(rskPKEBCj , c);

Output ⊥ if
(
v⃗PKEBC, (spki, v⃗MDVS, m, σ)

)
= ⊥ or |v⃗PKEBC| ̸= |v⃗MDVS|;

Let v⃗ =
(
(vMDVS1, vPKEBC1), . . . , (vMDVS|v⃗PKEBC|, vPKEBC|v⃗PKEBC|)

)
;

Output ⊥ if rpkj ̸∈ v⃗ or MDVS.Vfy(spki, vskMDVSj , v⃗MDVS, (v⃗PKEBC, m), σ) ̸= valid;
Output (spki, v⃗, m);

Eurocrypt’ 22 4/4


	Contributions
	Public Key Encryption for Broadcast (PKEBC)
	PKEBC Scheme Construction
	Multi-Designated Receiver Signed Public Key Encryption (MDRS-PKE)
	MDRS-PKE Scheme Construction
	Appendix
	Full MDRS-PKE construction


