Stacking Sigmas

5 g

A. Goel', M. Greeni, M. Hall-Andersen?, G. Kaptchuk®

1) Johns Hopkins University, Baltimore, USA.

2) Aarhus University, Aarhus, Denmark.

3) Boston University, Boston, USA.

Introduction.
Stackable ¥ -protocols.
Partially Binding Commitments and Stacking Compiler.

Logarithmic Communication via Recursive Application.

Wrapping up.

Introduction

Y -Protocols.

A tuple of algorithms N = (A, Z, ¢)

c c & {011

z<+ Z(c,x,w;r)

¢(x,a,¢c,z) =T

Goal: Proving Disjunctions (of X-Protocols).

-V

Zero-knowledge proofs for statements of the form:

(Xl,...,Xg)E,COR — x €LV ...V xpELy

Goal: |If proving x; € L; using IN; requires CC(IN;) communication, derive M’ for Logr
with cc(M) < 3, cc(1;).

Applications: ring signatures, branching computation, WI from HVZK.

Prior Works: Generic Compiler, or, Space Saving.

Choose one:

e Generic compiler for X-protocols.
e Communication saving for a particular protocol.

> -Compilers Communication Saving

CDS9%4,
HK20,

BMRS20

AOS02,
CPSSV16

This Work: Space Saving for a Large Class of Protocols.

Comm. saving disjunctions for a large class of X-protocols: O(log(¢) 4+ CC(IM))
communication, concrete efficiency.

Not all ¥-protocols, but a wide class. e.g.

1. Homorphism Preimage: Schnorr, Chaum-Pedersen, etc.
2. MPC-in-the-head: KKW19 and Ligero (Circuit Sat.).
3. Classics: Blum87 (Hamiltonicity).

Stacking > -Protocols

Intuition: Preimages of One-Way Homorphism (e.g. Schnorr).

ré dom(v)); a < ¥(r) d
¢ cdc
Z+caw+r % w(z);xca

Where C C Z, e.g. C = Zp, Y(w) =g" € Gp (Schnorr).

How to simulate [1y:

1. Sample 3rd round independently of x: z & dom(7))

2. Compute accepting commitment: a < 1(z) - x~ ¢

Observation: simulation of many >-protocols works similarly:

1. Sample 3rd round from a distribution (dependent on c¢)

2. Complete transcript using x

Notable Example: many MPC-in-the-head protocols: view of the opened parties
often a string of uniformly random field elements.

Simulation: Extended Honest Verifier Zero-Knowledge.

Recyclable: The distribution of z is independent of x, i.e.
z <i DEZ)

EHVZK: Given (1) a statement x, (2) a challenge ¢ and (3) a last round message z.

Can find a st. ¢(x,a,c,z) = 1.
a <« SV (x, ¢, z)

If both are statisified = “Stackable”; our techniques apply.

10

Straw Man: Space Saving Disjunctions for Stackable 1.

has a witness w for x1, prove (w,x;) € RV (w,x2) € R. ldea:

1. Prove the satisfied clause (w, x1) € R obtain 71 = (a1, ¢, z).
2. Apply “extended simulator” for the other clause:

ap + 8" (xp, ¢, 2)

Does Not Work:

P
Q

Cannot generate ap before seeing ¢ (needs to simulate).

Cannot send ¢ before receiving a; (for soundness).

11

1-of-2 Partially Binding Commitments

A commitment scheme enabling “limited equivocation™:

Commit to 2-tuples (vi, v2) and index i € {1,2}

Can later equivocate at position i, but not /.

Never learns the binding position i.

v

AN

(24
Enables = to “send” one of a;/ap to ﬁ ; without revealing which.

Now: a simple construction.

13

Simple Construction: 1-of-2 Example

From Pedersen commitments. Setup: h,g € G.
(ck,ek) < Gen(/), with binding position i € {1, 2}.
1. Pick ek & 7Zg,

2. Let h7 < gek. Pick h; st. ho - hy = h
3. Commitment key is ck = h;.

¢ + Com(ck = (h1), (v1,v2),(r1,r)):

1. Compute hp = h- h;l.
2. Output ¢ = (g"h;*, g h?).

Easy to see: can easily equivocate in position i using x, but equivocating in both
positions == computating dlog,(h).

14

Idea: Space Saving Disjunctions for Stackable I1.

P

run a; < A(xy, wy;r). (ck,ek) « Gen(i = 1)

2. " sends ck,a = Com(ck, (a1, L)) to %

P

sends c to &

4. "@" finishes the first transcript z < Z(xy, wa; r).

5. % simulates a, using (c,z) and opens &’ to (a1, az).

15

Idea: Space Saving Disjunctions for Stackable I1.

(xa,w)eR,i=1

ck,ek « Gen(i =1); a3 < A(xy, w) a’ = Com(ck, (a1, L); r)

c
z<+ Z(c,x1,w)
a SEHVZK(X27 C/,Z)
o / /
r' < Equiv(ek, (a1, L), (a1, a2),r) zZ'=(z,r)

a SEHVZK(CJ’XI’Z)

a2 — SEHVZK(C/’ X27 z)
2 < Com((a1, 22), ') 16

Recursive Application: Log. Communication.

Apply Compiler Again.

Stackable
L, cc(n)

Stackable

L =x1€LVxXxEL
cc(n’) = cc(M) + O(N)
L'=(x€LVxoeL)V(x3e€LVxy€L)=(x1,x)€ L V(x3,x)eL

Do it again! (log,(¢) times for ¢ clauses).
Total Communication: log,(¢) - O(X) + cc(). 17

Slight Generalization: “Cross Stacking”

Generalization: Distinct protocols I1, " which share D()
(or some trivial “conversion” is possible, e.g. padding/packing).

Informally: Finish the transcript of I, obtain (a, ¢, z), simulate I’ using z — as in the

case of a single protocol.

Example: KKW18! over F» and KKW18 over Zy. In both cases “z" consists of
uniformly random ring elements (bits).

L “Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures",
Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang

18

https://ia.cr/2021/422

	Introduction
	Stacking -Protocols
	Partially Binding Commitments

