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Post-quantum security for symmetric cryptography

Far less of a concern than for public-key 
crypto….

But we should prove post-quantum security 
where possible!
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Beyond post-quantum (Q2)

‣ Quantum computation allowed

‣ Quantum access to “offline primitives”: QROM, Q-ideal permutation/
cipher etc.
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‣ Quantum computation allowed

‣ Quantum access to “offline primitives”: QROM, Q-ideal permutation/
cipher etc.

‣ Quantum access to online-primitives: qCPA, qCCA, qCMA…

Challenge: Mix of classical and quantum oracles!

Unre
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#:{0,1}& × {0,1}& → {0,1}&

#" [! ]($) = ! ($ ⊕ ") ⊕ "

‣ Minimal Construction

‣ Key ingredient in many symmetric-key 
constructions, e.g. Elephant, Chaskey
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‣ Classical: . [EM97]qE ⋅ qP = Ω(2n)
‣ Q2 (beyond post-quantum): Apply Simon’s algorithm to give an attack 

using only  queries. [KM12]((n)
‣Q1 (post-quantum)?
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Main Result

Theorem (Alagic, Bai, Katz, M): 

Let  and  be a random permutations and  the Even-Mansour 

cipher using . Any quantum adversary making at most  quantum 

queries to  and  classical queries to an oracle  has 

distinguishing advantage between  and  at most 

P R Ek

P qP

P qE O
O = Ek O = R

10 ⋅ 2− n
2 (qP qE + qE qP)

‣ Shown by Jaeger, Song and Tessaro (TCC 21) for non-adaptive 
adversaries

‣ Tight characterization of query complexity assuming  (matching 
attacks: BHT/offline Simon’s)

qE ≪ qP
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General approach

‣ Classical security proofs of Even-Mansour use global techniques. 
Examples:
✦ Characterize the probability of bad events defined in terms of query 

transcripts
✦ H-coefficient technique

‣ Quantum queries  no transcript!⇒
‣ Resort to “more primitive” technique: hybrid argument
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So  gets messed up more and more as  grows… but in the end it’s gone!P̃ i
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Technical Lemmas

‣ Two steps in hybrid transition: 
1. Replace  with  and “repair” Ek R P̃
2. Replace the first  with P̃ P

‣  2 Technical lemmas:⇒
1. A resampling lemma for random permutations
2. A reprogramming lemma in terms of expected number of queries
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Resampling Lemma

Lemma: Advantage ≤ O ( q ⋅ 2−n)

Permutation version of “adaptive reprogramming lemma” (Grilo, Hövelmanns, 
Hülsing and Majenz, AC ’21)
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Coming soon: PhD position in 
provable post-quantum security 
@DTU (Copenhagen area)



Thank you for your attention!


