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Post-quantum security for symmetric cryptography

Far less of a concern than for public-key
crypto....

But we should prove post-quantum security
where possible!
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» Discrete Log
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Post-quantum (Q1)

> Quantum computation allowed

> Quantum access to “offline primitives”: QROM, Q-ideal permutation/
cipher etc.

» Classical-only access to online-primitives: CPA, CCA, CMA...

Challenge: Mix of classical and quantum oracles!

> Quantum computation allowed ?k“
m&% OM, Q-ideal permutation/

> Quantum access to “offline pr

cipher etc.
> toxy| Iffe-primitives: qCPA, qCCA, gCMA...
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Given a public permutation P:{0,1}" — {0,1}" and a key k € {0,1}",
the cipher E:{0,1}" x {0,1}" — {0,1}" is defined as:

E.[PIx)= Px® k) @ k

» Minimal Construction
» Key ingredient in many symmetric-key
constructions, e.g. Elephant, Chaskey K
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Security of Even-Mansour

Suppose the adversary makes qr queries to E, and gp queries to P:

» Classical: gg - gp = Q(2"). [EM97]

» Q2 (beyond post-quantum): Apply Simon’s algorithm to give an attack

using only O(n) queries. [KM12]
» Q1 (post-quantum)?
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Main Result

Theorem (Alagic, Bai, Katz, M):

Let P and R be a random permutations and £, the Even-Mansour
cipher using P. Any quantum adversary making at most gp quantum
queries to P and g, classical queries to an oracle O has

distinguishing advantage between O = E, and O = R at most

10-272 <6]P qg + QE\/QP>

> Shown by Jaeger, Song and Tessaro (TCC 21) for non-adaptive
adversaries

» Tight characterization of query complexity assuming g < gp (matching
attacks: BHT/offline Simon’s)
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General approach

» Classical security proofs of Even-Mansour use global techniques.
Examples:
+ Characterize the probability of bad events defined in terms of query
transcripts
+ H-coefficient technique
» Quantum queries = no transcript!
> Resort to “more primitive” technique: hybrid argument
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The hybrid argument - -

» Think of adversary having gz + 1 stages: \\//

—> Ek —> —> Ek —>

gg—1 qdE

» Each of{ makes arbitrary number of quantum queries to P, sum < gp

» Naive hybrids: replace E, with R for first i calls
» Consistency of the oracles? Postpone problem until it goes away



The hybrids
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The hybrids

H::
— | R |— — | R |— || E,
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> > >
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Qyi) df) . P: P with necessary modifications

to ensure consistency of £, and R

So P gets messed up more and more as i grows... but in the end it's gone!
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Technical Lemmas

» Two steps in hybrid transition:

1. Replace E, with R and “repair” P
2. Replace the first P with P
» = 2 Technical lemmas:

1. A resampling lemma for random permutations
2. A reprogramming lemma in terms of expected number of queries
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Resampling Lemma

Permutation version of “adaptive reprogramming lemma” (Grilo, Hovelmanns,
Hullsing and Majenz, AC '21)

Phase 1: Phase 2:
$
P b < {0,1} P,
s < {0,1}"
‘ o s, & {0,1}" ‘ g
b/
90 > |St> <|St>,S0, S1> e 91 >
D winsiftb =>b’

rP(SO) ifx=s _
Py = Peswap ;= P(s;) ifx=s Lemma: Advantage < O <\/q -2 ”)

P(x) otherwise
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Reprogramming Lemma

Expected # of queries version of “blinding lemma” (Alagic, Majenz, Russell,
Song, EC '20)

Reprogramming game:

1. Distinguisher & supplies function F and specifies randomized
reprogramming routine

2. For random bit b, & receives oracle F), (Fy = F and F is
reprogrammed)

3. D loses access to I}, receives description of F;, outputs b’

D winsitb=2>b

Lemma: Advantage < O <C]\/2_”)
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Summary

» We proved post-quantum security of the Even-Mansour cipher
» Applications? Elephant and Chaskey use generlized versions of Even-

Mansour. Also Jaeger et al. can actually do FX! = Follow-up work
(us+Patrick Struck), on eprint “soon” :)

Coming soon: PhD position in
provable post-quantum security
@DTU (Copenhagen area)




Thank you tor your attention!



