
Watermarking PRF
against Quantum Adversaries
Fuyuki Kitagawa (NTT Corporation)
Ryo Nishimaki (NTT Corporation)

Software watermarking

1

C

Software watermarking

2

C
NTT

We can embed a mark
into a program

Software watermarking

3

C
NTT

We can embed a mark
into a program

If the mark is removed
the program is destroyed

Software watermarking

4

• The purpose: proving ownership, preventing illegal copies, and so on

C
NTT

We can embed a mark
into a program

If the mark is removed
the program is destroyed

Watermarking crypto programs

5

• Software watermarking can deal with only unlearnable programs
- If a program is learnable, the mark is removed by learning original program

Watermarking crypto programs

sk
m

6

sk

• Software watermarking can deal with only unlearnable programs

• Previous works have focused on watermarking crypto programs

Mark

- Simplest, but sufficient for many other crypto primitives

- Especially, most of them studied watermarking PRF

- If a program is learnable, the mark is removed by learning original program

Watermarking crypto programs

sk
m

7

sk

• Application to quantum crypto [KNY21,ALLZZ21]

• Software watermarking can deal with only unlearnable programs

• Previous works have focused on watermarking crypto programs

Mark

- Simplest, but sufficient for many other crypto primitives

- Especially, most of them studied watermarking PRF

- If a program is learnable, the mark is removed by learning original program

- By combining with quantum money, we can construct secure software leasing

8

This work

prfk
m

• Watermarking PRF against quantum adversaries

m

9

Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

10

Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

11

Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

• Secret extractable scheme based on LWE
• Public extractable scheme based on IO

12

Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

• Secret extractable scheme based on LWE
• Public extractable scheme based on IO

- Our construction methodology is highly general
and can be extended to watermarking other primitives such as PKE

13

Technical overview
• The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing
- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program

14

Technical overview
• The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing
- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program

• We need to define unremovability taking it into consideration

• We need to construct our scheme taking it into consideration

15

Technical overview
• The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing
- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program

• We need to define unremovability taking it into consideration

- We can use Zhandry [Zha20]’s technique

• We need to construct our scheme taking it into consideration

16

Technical overview
• The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing
- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program

• We need to define unremovability taking it into consideration

- We can use Zhandry [Zha20]’s technique

• We need to construct our scheme taking it into consideration
- We cannot use Zhandry [Zha20]’s technique
- We propose new extraction method

17

Syntax and functionality preserving
• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

18

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

19

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

Markprfk,m C’

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

20

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

Markprfk,m C’

Extxk, m

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

21

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

Markprfk,m C’

Extxk, m

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

• Functionality preserving:

C’(x) = Eval(prfk,x) for almost all inputs x

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Unremovability

22

prfk

C’ = Mark(prfk,m)

m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• The definition is roughly as follows

Unremovability

23

No adversary can generate s.t.

- is “good” in the sense that its functionality is close to Eval(prfk,!)
- Ext fails to extract m

prfk

C’ = Mark(prfk,m)

m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• The definition is roughly as follows

Unremovability

24

No adversary can generate s.t.

- is “good” in the sense that its functionality is close to Eval(prfk,!)
- Ext fails to extract m

prfk

C’ = Mark(prfk,m)

m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• To make the definition rigorous, we have to define “good” more concretely

• The definition is roughly as follows

25

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

26

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration

27

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security

28

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security
- The measurement itself might destroy the quantum program

29

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security
- The measurement itself might destroy the quantum program
- If we once confirm a quantum program is a good program,
the post measurement state might not be a good program

30

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration

- We have to measure the advantage for breaking weak PRF security

- The measurement itself might destroy the quantum program

• We use the notion of Live by Zhandry[Zha20] as the notion of “good”

- If we once confirm a quantum program is a good program,
the post measurement state might not be a good program

31

How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration

- We have to measure the advantage for breaking weak PRF security

- The measurement itself might destroy the quantum program

• We use the notion of Live by Zhandry[Zha20] as the notion of “good”

- It is defined by using projective implementation (ProjImp)

- If we once confirm a quantum program is a good program,

the post measurement state might not be a good program

32

On quantum programs
• Success probability for breaking weak PRF is defined as follows

Dwprf: b ß {0,1}, x ß Dom, y0 ß Ren, y1 ß Eval(prfk,x), output (b,x,yb)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

(b,x,yb) ß Dwprf

(x,yb) b

Success probability is
the probability that

33

On quantum programs
• Success probability for breaking weak PRF is defined as follows

Dwprf: b ß {0,1}, x ß Dom, y0 ß Ren, y1 ß Eval(prfk,x), output (b,x,yb)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

(b,x,yb) ß Dwprf

(x,yb) b

• can be seen as super-position of programs with

different success probabilities w.r.t Dwprf

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

has success probability p w.r.t Dwprf and

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

, where-

1.3 Technical Overview
∑p α2

p = 1

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability is

the probability that

34

ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Concretely, it is defined as follows

35

ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Outcome p

ProjImp(Dwprf)
with probability αp

2

• Concretely, it is defined as follows

36

ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Outcome p

ProjImp(Dwprf)
with probability αp

2
1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Concretely, it is defined as follows

Success probability p

37

ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Outcome p

ProjImp(Dwprf)
with probability αp

2
1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Concretely, it is defined as follows

• is Live if the result p of ProjImp(Dwprf) is significantly greater than 1/2

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

- For classical programs, it is the same as classical “good” [GKWW21]

Success probability p

Unremovability

38

No adversary can generate s.t.

- is a Live quantum program
- Ext fails to extract m

prfk

C’ = Mark(prfk,m)

m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

39

How to extract mark?

prfk
m

Live

Ext m

C’ = Mark(prfk,m)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our goal is

40

How to extract mark?

prfk
m

Live

Ext m

Apply several tests
on success probability

C’ = Mark(prfk,m)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our goal is

41

How to extract mark?

prfk
m

Live

Ext m

Apply several tests
on success probability

C’ = Mark(prfk,m)

• The set of applicable tests is highly limited compared to classical case

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

- Due to the stateful nature, a test can destroy the quantum program

• Our goal is

42

Difficulty
• In watermarking, an embedded mark is chosen from super-poly size set

43

Difficulty
• In watermarking, an embedded mark is chosen from super-poly size set

- Extraction of mark is bit-by-bit manner

44

Difficulty
• In watermarking, an embedded mark is chosen from super-poly size set

- Extraction of mark is bit-by-bit manner

m1

• We need to realize a test Ti for every i s.t.

T1

- Ti can be used to extract the i-th bit of the mark

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

...

Ti

...

mn

Tn

- Ti does not destroy the quantum program

mi

45

Difficulty
• In watermarking, an embedded mark is chosen from super-poly size set

- Extraction of mark is bit-by-bit manner

m1

• We need to realize a test Ti for every i s.t.

T1

- Ti can be used to extract the i-th bit of the mark

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

...

Ti

...

mn

Tn

- Ti does not destroy the quantum program

mi

46

Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

• We use reverse projective property of ProjImp

47

Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• We use reverse projective property of ProjImp

48

Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p

ProjImp(Dwprf)

• We use reverse projective property of ProjImp

49

Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p Failure probability 1-p

ProjImp(Dwprf)

• We use reverse projective property of ProjImp

ProjImp(Dfail)

50

Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

Success probability p Failure probability 1-p

ProjImp(Dwprf)

• We use reverse projective property of ProjImp

- ProjImp(Dwprf) and ProjImp(Dfail) consist of the same set of operators
and the only difference is labels of them

ProjImp(Dfail)

51

Key fact

Live

52

Key fact

for some
inverse poly ε

Outcome 1/2+ε

ProjImp(Dwprf)

Live

53

Key fact

for some
inverse poly ε

Outcome 1/2+ε
ProjImp(Dwprf)

ProjImp(Dfail)
ProjImp(Dwprf)

Live

54

Key fact

for some
inverse poly ε

Outcome 1/2+ε
Outcome 1/2+ε

ProjImp(Dwprf)

ProjImp(Dfail)
ProjImp(Dwprf)

Live

55

Key fact

for some
inverse poly ε

Outcome 1/2+ε
Outcome 1/2+ε

ProjImp(Dwprf)

ProjImp(Dfail)
ProjImp(Dwprf)

Outcome 1/2-ε

Live

mi=0

56

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m) Ti

mi=0

57

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m) Ti

mi=0

58

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m) Ti

mi=0

59

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m) Ti

- The outcome of Ti is 1/2+ε if mi=0 and 1/2-ε if mi=1
• From our key fact

mi=0

60

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m)

- Ti does not destroy the quantum program

Ti

- The outcome of Ti is 1/2+ε if mi=0 and 1/2-ε if mi=1
• From our key fact

mi=0

61

Our extraction method

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m)

- Ti does not destroy the quantum program
• Our extraction method correctly extracts every bit of m J

Ti

- The outcome of Ti is 1/2+ε if mi=0 and 1/2-ε if mi=1
• From our key fact

62

Summary

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

• Secret extraction scheme based on LWE
• Public extraction scheme based on IO

- Our construction methodology is highly general
and can be extended to watermarking other primitives such as PKE

