Watermarking PRF
against Quantum Adversaries

Fuyuki Kitagawa (NTT Corporation)
Ryo Nishimaki (NTT Corporation)

Software watermarking

Software watermarking

We can embed a mark
into a program

Software watermarking

We can embed a mark
into a program

If the mark is removed
the program is destroyed

Software watermarking

We can embed a mark If the mark is removed
into a program the program is destroyed

 The purpose: proving ownership, preventing illegal copies, and so on

Watermarking crypto programs NTT ©

* Software watermarking can deal with only unlearnable programs

- If a program is learnable, the mark is removed by learning original program

Watermarking crypto programs NTT ©

* Software watermarking can deal with only unlearnable programs

- If a program is learnable, the mark is removed by learning original program

* Previous works have focused on watermarking crypto programs

Mark

- Especially, most of them studied watermarking PRF

- Simplest, but sufficient for many other crypto primitives

Watermarking crypto programs NTT ©

* Software watermarking can deal with only unlearnable programs

- If a program is learnable, the mark is removed by learning original program

* Previous works have focused on watermarking crypto programs

Mark

- Especially, most of them studied watermarking PRF
- Simplest, but sufficient for many other crypto primitives
* Application to quantum crypto [KNY21,ALLZZ21]

- By combining with quantum money, we can construct secure software leasing

This work

* Watermarking PRF against quantum adversaries

Y vy
VATAA, 4
@ M !’

157 é
4mm¢y

Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

Our results NTT ©

1. We define watermarking PRF against quantum adversaries

 We define unremovability against adversaries who output quantum program

2. We construct watermarking PRF against quantum adversaries

Our results NTT ©

1. We define watermarking PRF against quantum adversaries

 We define unremovability against adversaries who output quantum program

2. We construct watermarking PRF against quantum adversaries

e Secret extractable scheme based on LWE
e Public extractable scheme based on 10

Our results NTT ©

1. We define watermarking PRF against quantum adversaries

 We define unremovability against adversaries who output quantum program

2. We construct watermarking PRF against quantum adversaries

e Secret extractable scheme based on LWE
e Public extractable scheme based on 10

- Our construction methodology is highly general
and can be extended to watermarking other primitives such as PKE

Technical overview NTT ©

 The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing

- Classical traitor tracing/watermarking assumes pirate programs are stateless
- It is reasonable since we can rewind pirate programs

- It is impossible to rewind quantum program

Technical overview NTT ©

 The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing

- Classical traitor tracing/watermarking assumes pirate programs are stateless
- It is reasonable since we can rewind pirate programs

- It is impossible to rewind quantum program

* We need to define unremovability taking it into consideration

 We need to construct our scheme taking it into consideration

Technical overview NTT ©

 The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing

- Classical traitor tracing/watermarking assumes pirate programs are stateless
- It is reasonable since we can rewind pirate programs

- It is impossible to rewind quantum program

* We need to define unremovability taking it into consideration

- We can use Zhandry [Zha20]’s technique

 We need to construct our scheme taking it into consideration

Technical overview NTT ©

 The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing

- Classical traitor tracing/watermarking assumes pirate programs are stateless
- It is reasonable since we can rewind pirate programs

- It is impossible to rewind quantum program

* We need to define unremovability taking it into consideration

- We can use Zhandry [Zha20]’s technique

 We need to construct our scheme taking it into consideration
- We cannot use Zhandry [Zha20]’s technique

- We propose new extraction method

Syntax and functionality preserving

» Essentially the same as (single-key) traceable PRF [GKWW?21]
* Consists of (Gen,Eval,Mark,Ext)

Syntax and functionality preserving

» Essentially the same as (single-key) traceable PRF [GKWW?21]
* Consists of (Gen,Eval,Mark,Ext)

1* — Gen— (prfk,xk)

(prfk,x) — Eval — y

Syntax and functionality preserving

» Essentially the same as (single-key) traceable PRF [GKWW?21]
* Consists of (Gen,Eval,Mark,Ext)

1* — Gen— (prfk,xk) prfkm — Mark— C’

(prfk,x) — Eval — y

Syntax and functionality preserving

» Essentially the same as (single-key) traceable PRF [GKWW?21]
* Consists of (Gen,Eval,Mark,Ext)

1* — Gen— (prfk,xk) prfkm — Mark— C’

(prfk,x) — Eval — y xk, |9) — Ext — m

Syntax and functionality preserving

» Essentially the same as (single-key) traceable PRF [GKWW?21]
* Consists of (Gen,Eval,Mark,Ext)

1* — Gen— (prfk,xk) prfkm — Mark— C’

(prfk,x) — Eval — y xk, |9) — Ext — m

* Functionality preserving:

C’(x) = Eval(prfk,x) for almost all inputs x

Unremovability

* The definition is roughly as follows

C’ = Mark(prfk,m)

foL ;f;
// /
/
“é
’;4”/3’/#’“//////

)

Unremovability

The definition is roughly as follows

Gy o %

//// R L,
/ v y
bty
',// Y/ { 7 7
- s
22

/]

S

N
NN N

.

C’ = Mark(prfk,m) |'7b>
No adversary can generate) s.t.

-|9) is “good” in the sense that its functionality is close to Eval(prfk,-)
- Ext fails to extract m

Unremovability

* The definition is roughly as follows

s o S,
4

2004 YN w
4
7 /,/?é /
W5 7
Z vy »
/ '/
Us

V4 B2 L i i

C’ = Mark(prfk,m) |’7b>

No adversary can generate |¥) s.t.

-|9) is “good” in the sense that its functionality is close to Eval(prfk,-)

- Ext fails to extract m

To make the definition rigorous, we have to define “good” more concretely

How to define “good” quantum program?

* Define as quantum programs breaking weak PRF security [GKWW21]

How to define “good” quantum program?

Define as quantum programs breaking weak PRF security [GKWW21]

We have to take the stateful nature of them into consideration

How to define “good” quantum program?

Define as quantum programs breaking weak PRF security [GKWW21]

We have to take the stateful nature of them into consideration

- We have to measure the advantage for breaking weak PRF security

How to define “good” quantum program? NTT ©

* Define as quantum programs breaking weak PRF security [GKWW21]

e We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security

- The measurement itself might destroy the quantum program

How to define “good” quantum program? NTT ©

* Define as quantum programs breaking weak PRF security [GKWW21]

* We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security
- The measurement itself might destroy the quantum program

- If we once confirm a quantum program is a good program,
the post measurement state might not be a good program

How to define “good” quantum program? NTT ©

* Define as quantum programs breaking weak PRF security [GKWW21]

* We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security
- The measurement itself might destroy the quantum program

- If we once confirm a quantum program is a good program,
the post measurement state might not be a good program

* We use the notion of Live by Zhandry[Zha20] as the notion of “good”

How to define “good” quantum program? NTT ©

* Define as quantum programs breaking weak PRF security [GKWW21]

* We have to take the stateful nature of them into consideration
- We have to measure the advantage for breaking weak PRF security
- The measurement itself might destroy the quantum program

- If we once confirm a quantum program is a good program,
the post measurement state might not be a good program

* We use the notion of Live by Zhandry[Zha20] as the notion of “good”

- It is defined by using projective implementation (Projlmp)

On quantum programs NTT ©

* Success probability for breaking weak PRF is defined as follows
Dyori: b € {0,1}, x € Dom, y, € Ren, y; < Eval(prfk,x), output (b,x,yp)

Success probability is (b,%,Y5) € Do
the probability that

(xy,) —— #% —— b

A

9)

On quantum programs NTT ©

* Success probability for breaking weak PRF is defined as follows

Dyori: b € {0,1}, x € Dom, y, € Ren, y; < Eval(prfk,x), output (b,x,yp)

Success probability is (b,X,Yp) € Dyprt
the probability that ¥ 3 9 < Acfor
(xy,) — #7%% s —b
)

e |¥) can be seen as super-position of programs with
different success probabilities w.r.t D, ¢

- [¥) =Y, ap |¥p) , where |¢p) has success probability p w.r.t Dyprs and Ly ay =1

Projlmp and live quantum programs [Zha20] NTT ©

* Quantum program can be seen as a super-position of many programs
* Projlmp measures the success probability of one of them

 Concretely, it is defined as follows

Fi3%
A
, i
’ @
7

Py)

L

|1P> — Zp Kp

Projlmp and live quantum programs [Zha20] NTT ©

* Quantum program can be seen as a super-position of many programs
* Projlmp measures the success probability of one of them

* Concretely, it is defined as follows

T AL

P2 PN ' Ah
:%{é & 0 Outcome p
; g with probability a2

BAT) P 1

|1P> — Zp Kp

1ljp> Projlmp(prrf)

Projlmp and live quantum programs [Zha20] NTT ©

* Quantum program can be seen as a super-position of many programs
* Projlmp measures the success probability of one of them

* Concretely, it is defined as follows

WRIP A S
7

%2 2 AN - a8
Success probability p /5”% ; (LR Outcome p
DHiie: with probability a2
9p) Hnssmmnnd ;

PI’Oj Im p(prrf)

Projlmp and live quantum programs [Zha20] NTT ©

* Quantum program can be seen as a super-position of many programs
* Projlmp measures the success probability of one of them

 Concretely, it is defined as follows

g P o AP
222X N

- Oé

Success probability p ¢/€,4 : ‘K

Outcome p

v
‘4

with probability a2
‘¢p> BTN P Yy a,

PI’Oj Im p(prrf)

* |¥) is Live if the result p of Projimp(D,,) is significantly greater than 1/2
p

- For classical programs, it is the same as classical “good” [GKWW?21]

Unremovability

;//// G
/ﬂfﬁ X /»»*«

Lz
Byl

I
7

/ BTSN

C’ = Mark(prfk,m) |'7b>
No adversary can generate ¥) st

-|¥) is a Live quantum program
- Ext fails to extract m

How to extract mark?

 Qurgoalis

Live

PPY . o Hy

' 2

14/ Y/ <

?W G g Ext — m
¥ M '

/
RN

C’ = Mark(prfk,m) |9)

How to extract mark?

Our goal is

C’ = Mark(prfk,m)

&

LY P v Ay,
/’//// @." /47

V4 /é 7
;/g/ ¢
‘4 /

; %

7

I/? R

)

\\ NS S

Live

Ext ™ m

Apply several tests
on success probability

How to extract mark?

 Qurgoalis

Live
: Vb A
’,/ > ; v @ 2N
@] 75”7% \ 4) R Ext — m
LA L 1
C’ = Mark(prfk,m) ¥) Apply several tests

on success probability

The set of applicable tests is highly limited compared to classical case

- Due to the stateful nature, a test can destroy the quantum program

Difficulty NTT ©

* In watermarking, an embedded mark is chosen from super-poly size set

Difficulty NTT ©

* In watermarking, an embedded mark is chosen from super-poly size set

- Extraction of mark is bit-by-bit manner

Difficulty NTT ©

In watermarking, an embedded mark is chosen from super-poly size set
- Extraction of mark is bit-by-bit manner

We need to realize a test T, for every i s.t.

NN
N N\
A
{ AN
N X
N N
)
£y
:Q\\ ‘
Qe =

ic

) Ty

- T. can be used to extract the i-th bit of the mark

- T, does not destroy the quantum program

Difficulty

In watermarking, an embedded mark is chosen from super-poly size set
- Extraction of mark is bit-by-bit manner

We need to realize a test T, for every i s.t.

; 4 # ’ m 1
2 K2
) Ty

- T. can be used to extract the i-th bit of the mark

- T, does not destroy the quantum program

Our idea NTT ©

 We use reverse projective property of Projimp

* Let Dy, be the distribution generates (b,x,y) < D, and outputs (1-b,x,y)

- Projlmp(Dy,;) measures failure probability

Our idea NTT ©

 We use reverse projective property of Projimp

* Let Dy, be the distribution generates (b,x,y) < D, and outputs (1-b,x,y)

- Projlmp(Dy,;) measures failure probability

Our idea NTT ©

 We use reverse projective property of Projimp

* Let Dy, be the distribution generates (b,x,y) < D, and outputs (1-b,x,y)

- Projlmp(Dy,;) measures failure probability

)% | Success probability p

& o i ™
;//.l 24 ;// w7 -
4 r g

4

Success probability p BT/

¥p)

Our idea

NTT (©)

We use reverse projective property of Projimp

Let Dy, be the distribution generates (b,x,y) €< D,,,s and outputs (1-b,x,y)
- Projlmp(Dy,;) measures failure probability

)<

Success probability p

},y{///,// /’/4 AP,
7//// i B 1y

T AT, ¢
é v/ ; ﬁ” .

Z
/ 78

Success probability p e

¥p)

AR

Proj Im p(prrf)

N

)<

Failure probability 1-p

Projimp(Ds,;)

Our idea NTT ©

 We use reverse projective property of Projimp

* Let Dy, be the distribution generates (b,x,y) < D, and outputs (1-b,x,y)

- Projlmp(Dy,;) measures failure probability

)% | Success probability p

& o i ™
;//.l 24 ;// w7 -
4 r g

4

Success probability p PPPIIIII.)&

¥p)

Failure probability 1-p
Projimp(Dg,;)

- Projlmp(D,,,.s) and Projlmp(Dy,;) consist of the same set of operators
and the only difference is labels of them

Key fact

Live

V
Wé

Mm

%.;.:-, ;{.i)f

Key fact

Live ke
Outcome 1/2+¢ & %ﬁ/ﬁ’ o
0 ;
for some a’ W/ 4 #5 é
inverse pOly € ’/'1»«7///;%/////

Projlmp(prrf)

Key fact

Live

w :
éuwwmmv

=)

0

N
v

Ak
v

PI’Oj Im p(prrf)

Projimp(Ds,;)

Key fact

Live

P AP
?/,é’% o
Y /
% 7

’ /

émmwmv/

=)

=)

*

o*

Outcome 1/2+¢€

Projimp(D,,prf)

Projimp(Ds,;)

Key fact

Live

g//

L&

?‘/

P,
/Z
} ///// 7

e

24

P o AP
5 . 1Y
5

7
¥

g

0

0

Ah
v

Ak
v

Outcome 1/2+¢€

Projlmp(prrf)
Outcome 1/2-¢

Projimp(Ds,;)

Our extraction method

Our extraction uses T; with the following properties for every i

Live

PP 1 Iy

;/ylj,éﬂ .. P
, 97 K
% 42 BV
/]

L AIIVN 4

C’ = Mark(prfk,m))

Our extraction method

* Our extraction uses T, with the following properties for every i

Live

%///”/«‘ o™
Ilﬂ b 5. W

Y /7/9 7.

#/{ “
‘e
/ R

)<

[

C’ = Mark(prfk,m)) Ti

Proj Im p(prrf)

Our extraction method NTT ©

* Our extraction uses T, with the following properties for every i

Live

%///”/«‘ o™
Ilﬂ 5 .. W

/% 7.
W «

)<
id

/x/////mmw i E Projlmp(Dfail)

C’ = Mark(prfk,m)) T,

mi=1

Our extraction method

Our extraction uses T; with the following properties for every i

Live
é,;///; /f 7 //:; () é
W x
7% .
‘f///////ﬂ/////// T Projlmp(Dfail)
i

mi=1
C’ = Mark(prfk,m))

* From our key fact
- The outcome of T; is 1/2+€ if m=0 and 1/2-¢ if m=1

Our extraction method

* Our extraction uses T, with the following properties for every i

Live

4. v e
2 s, W«

4
* P/

154 4
7 7

C’ = Mark(prfk,m))

N
»
N
Wt

Sy
S

N\
N

NN

N NN

m;=1

* From our key fact
- The outcome of T; is 1/2+€ if m=0 and 1/2-¢ if m=1

- T; does not destroy the quantum program

)<

i E Projlmp(Ds,;)

T

Our extraction method NTT ©

Our extraction uses T; with the following properties for every i

Live
235 e .
“14/%
:’% ﬁ’ /2 x .
mi=1 / BT Ly IV ,;;/j PrOJ I mp(DfaII)
C’ = Mark(prfk,m) - ;

From our key fact
- The outcome of T; is 1/2+€ if m=0 and 1/2-¢ if m=1

- T; does not destroy the quantum program

Our extraction method correctly extracts every bit of m ©

Summary NTT ©

1. We define watermarking PRF against quantum adversaries

 We define unremovability against adversaries who output quantum program

2. We construct watermarking PRF against quantum adversaries

 Secret extraction scheme based on LWE
 Public extraction scheme based on 10

- Our construction methodology is highly general
and can be extended to watermarking other primitives such as PKE

