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• Application to quantum crypto [KNY21,ALLZZ21]

• Software watermarking can deal with only unlearnable programs

• Previous works have focused on watermarking crypto programs

Mark

- Simplest, but sufficient for many other crypto primitives

- Especially, most of them studied watermarking PRF

- If a program is learnable, the mark is removed by learning original program

- By combining with quantum money, we can construct secure software leasing
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Our results

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

• Secret extractable scheme based on LWE
• Public extractable scheme based on IO

- Our construction methodology is highly general 
and can be extended to watermarking other primitives such as PKE
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- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program
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Technical overview
• The biggest issue is that quantum programs are stateful programs

- It was pointed out by Zhandry [Zha20] in the context of traitor tracing
- Classical traitor tracing/watermarking assumes pirate programs are stateless

- It is reasonable since we can rewind pirate programs
- It is impossible to rewind quantum program

• We need to define unremovability taking it into consideration

- We can use Zhandry [Zha20]’s technique

• We need to construct our scheme taking it into consideration 
- We cannot use Zhandry [Zha20]’s technique
- We propose new extraction method
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Syntax and functionality preserving
• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)



18

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)



19

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

Markprfk,m C’

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)



20

Syntax and functionality preserving

Gen1λ (prfk,xk)

Eval(prfk,x) y

Markprfk,m C’

Extxk, m

• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.
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• Essentially the same as (single-key) traceable PRF [GKWW21]
• Consists of (Gen,Eval,Mark,Ext)

• Functionality preserving:

C’(x) = Eval(prfk,x) for almost all inputs x

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.
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m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.
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to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
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It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
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and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
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It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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m 1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
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to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
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It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
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It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.
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How to define “good” quantum program?

• Define as quantum programs breaking weak PRF security [GKWW21]

• We have to take the stateful nature of them into consideration

- We have to measure the advantage for breaking weak PRF security

- The measurement itself might destroy the quantum program

• We use the notion of Live by Zhandry[Zha20] as the notion of “good”

- It is defined by using projective implementation (ProjImp)

- If we once confirm a quantum program is a good program,

the post measurement state might not be a good program
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On quantum programs
• Success probability for breaking weak PRF is defined as follows

Dwprf: b ß {0,1}, x ß Dom, y0 ß Ren, y1 ß Eval(prfk,x), output (b,x,yb) 

1.3 Technical Overview
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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On quantum programs
• Success probability for breaking weak PRF is defined as follows

Dwprf: b ß {0,1}, x ß Dom, y0 ß Ren, y1 ß Eval(prfk,x), output (b,x,yb) 

1.3 Technical Overview
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp
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〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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ProjImp and live quantum programs [Zha20]
• Quantum program can be seen as a super-position of many programs
• ProjImp measures the success probability of one of them

1.3 Technical Overview
|ψ〉 = ∑p αp
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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ProjImp and live quantum programs [Zha20]
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• ProjImp measures the success probability of one of them
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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• The set of applicable tests is highly limited compared to classical case
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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• In watermarking, an embedded mark is chosen from super-poly size set

- Extraction of mark is bit-by-bit manner
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• We need to realize a test Ti for every i s.t.
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- Ti can be used to extract the i-th bit of the mark 

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Our idea

• Let Dfail be the distribution generates (b,x,y) ß Dwprf and outputs (1-b,x,y)
- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉 = ∑p αp
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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- ProjImp(Dfail) measures failure probability

1.3 Technical Overview
|ψ〉 = ∑p αp

∣∣ψp
〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m) Ti



mi=0

57

Our extraction method 

ProjImp(Dwprf)

ProjImp(Dfail)mi=1

prfk
m

Live

1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.
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• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m)

- Ti does not destroy the quantum program

Ti

- The outcome of Ti is 1/2+ε if mi=0 and 1/2-ε if mi=1
• From our key fact
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Our extraction method 

ProjImp(Dwprf)

ProjImp(Dfail)mi=1
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1.3 Technical Overview
|ψ〉

Syntax of watermarking PRF. We first review the syntax of watermarking PRF used in this work. A
watermarking PRF scheme consists of five algorithms (Setup, Gen, Eval, Mark, Extract).4 Setup outputs
a public parameter pp and an extraction key xk. Gen is given pp and outputs a PRF key prfk and a public
tag τ. Eval is the PRF evaluation algorithm that takes as an input prfk and x in the domain and outputs y.
By using Mark, we can generate a marked evaluation circuit that has embedded message m ∈ {0, 1}!m

and can be used to evaluate Eval(prfk, x′) for almost all x′. Finally, Extract is the extraction algorithm
supposed to extract the embedded message from a pirated quantum evaluation circuit generated from
the marked evaluation circuit. By default, in this work, we consider the public marking setting, where
anyone can execute Mark. Thus, Mark takes pp as an input. On the other hand, we consider both the
private extraction and the public extraction settings. Thus, the extraction key xk used by Extract is kept
secret by an authority in the private extraction setting and made public in the public extraction setting.

In this work, we allow Extract to take the public tag τ generated with the original PRF key corre-
sponding to the pirate circuit. In reality, we execute Extract for a software when a user claims that the
software is illegally generated by using her/his PRF key. Thus, it is natural to expect we can use a user’s
public tag for extraction. Moreover, pirate circuits are distinguishers, not predictors in this work. As
discussed by Goyal et al. [GKWW21], security against pirate distinguishers is much preferable compared
to security against pirate predictors considered in many previous works on watermarking. In this case, it
seems that such additional information fed to Extract is unavoidable. For a more detailed discussion on
the syntax, see the discussion in Section 3.1.

It is also natural to focus on distinguishers breaking weak pseudorandomness of PRFs when we
consider pirate distinguishers instead of pirate predictors. Goyal et al. [GKWW21] already discussed
this point. Thus, we focus on watermarking weak PRF in this work.

Definition of unremovability against quantum adversaries. We say that a watermarking PRF scheme
satisfies unremovability if given a marked evaluation circuit C̃ that has an embedded message m,
any adversary cannot generate a circuit such that it is a “good enough circuit”, but the extraction
algorithm fails to output m. In this work, we basically follow the notion of “good enough circuit”
defined by Goyal et al. [GKWW21] as stated above. Let D be the following distribution for a PRF
Eval(prfk, ·) : Dom→ Ran.
D: Generate b← {0, 1}, x ← Dom, and y0 ← Ran. Compute y1 ← Eval(prfk, x). Output (b, x, yb).
A circuit is defined as good enough circuit with respect to Eval(prfk, ·) if given (x, yb) output by D, it
can correctly guess b with probability significantly greater than 1/2. In other words, a circuit is defined
as good enough if the circuit breaks weak PRF security.

Below, for a distribution D′ whose output is of the form (b, x, y), let MD′ = (MD′,0, MD′,1) be
binary positive operator valued measures (POVMs) that represents generating random (b, x, y) from D′
and testing if a quantum circuit can guess b from (x, y). Then, for a quantum state |ψ〉, the overall
distinguishing advantage of it for the above distribution D is 〈ψ| MD,0 |ψ〉. Thus, a natural adaptation
of the above notion of goodness for quantum circuits might be to define a quantum state |ψ〉 as good if
〈ψ| MD,0 |ψ〉 is significantly greater than 1/2. However, this notion of goodness for quantum circuits
is not really meaningful. The biggest issue is that it does not consider the stateful nature of quantum
programs.

This issue was previously addressed by Zhandry [Zha20] in the context of traitor tracing against
quantum adversaries. In the context of classical traitor tracing or watermarking, we can assume that a

4In this paper, standard math font stands for classical algorithms, and calligraphic font stands for quantum algorithms.

3

• Our extraction uses Ti with the following properties for every i

C’ = Mark(prfk,m)

- Ti does not destroy the quantum program
• Our extraction method correctly extracts every bit of m J

Ti

- The outcome of Ti is 1/2+ε if mi=0 and 1/2-ε if mi=1
• From our key fact
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Summary

1. We define watermarking PRF against quantum adversaries

2. We construct watermarking PRF against quantum adversaries

• We define unremovability against adversaries who output quantum program

• Secret extraction scheme based on LWE
• Public extraction scheme based on IO

- Our construction methodology is highly general 
and can be extended to watermarking other primitives such as PKE


