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Fundamental Question
Are Lattice based hardness assumptions essential to building 

these primitives?
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DLIN has no known reductions to/from Lattices.
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FHE follows from  
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Perfectly re-randomizable encryption 

[Canetti-Lin-Tessaro-Vaikunthanathan]

i𝒪

And, a number of other applications previously known only via lattices.

Previous work [JLS 21] additionally assumes LWE.
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Learn 

Nothing Else

Problem: 

 is 


too complex!
Ux(C, r) = C(x)

Application of [Yao 86, AIK 04, L 17, AS 17]:

- Local:  depends on 

bits of . 
3d + 1 Ux(C̃) 3d + 1

C̃

Degree-16 polynomial!

How simple can  be?Ux

If PRGs with locality  exist d
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Our Approach

Good News:
Can handle 

quadratic functions 

[Lin 17, AJLMS 19, JLMS 19, GJLS 20, 

Wee 21].

Based on 

DLIN

Encrypt( )S(C̃)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…  
Ux(C̃) = ∑
i,j

qx,i,jSi ⋅ Sj mod p

Problem:  is degree - 16!!Ux

Goal: Replace  by quadratic functions.Ux

Public 
P(C̃)

Coefficients constant 
degree polynomial over 


P
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Step 2: Error Correction
pℓ−δℓ

Correction vector =

Target

Actual -

U1(C̃) U2(C̃) UN(C̃)…………………………………

0 0 0 0 0

Target Actual-

Takeaway: Correction vector is sparse!!
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Size = Õ(N0.99)

Time = Õ(N)



Amortization
pℓ−δℓ

Previously we showed that for any circuit  C
Map: C̃ → P, S

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Size = Õ(N0.99)

Time = Õ(N)

Main Lemma:
Map: (C̃1, …, C̃k) → (P1, P2, …, Pk, S1, …, Sk)

Time = 

Sublinear in 

Õ(Nk1−ϵ + kc)
Nk



Time Succinctness
pℓ−δℓ

Show that this suffices for i𝒪

Efficient circuit implementations for special 

RAM prorgams such as lookups and sorting.
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Complexity/algorithm questions: 

Reductions to LWE/GAP-SVP for these assumptions?

LPN/PRG: Build PKE/ show that they are in CoAM


