i© from PRGs in NC', LPN, and Bilinear
Maps
Or:
On The Power of Lattice-Free Cryptography

Aayush Jain (NTT Research and CMU)
Joint work with:

Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12...]
Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

MKFHE [CM 15, MW 16]
Succinct Functional Encryption [GKPVZ 13]
Universal Thresholdizers [BGG+18]

Lockable Obfuscation [GKW 17, WZ 17]

Cl Hash/ NIZK [CCHLRW 19,PS 19]
SNARGS for P [CJJ 21]

Quantum FHE [M 18]
CvQacC [M 18]

Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12...]
Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

Fundamental Question

Are Lattice based hardness assumptions essential to building
these primitives?

Cl Hash/ NIZK [CCHLRW 19,PS 19]
SNARGS for P [CJJ 21]

Quantum FHE [M 18]
CvQacC [M 18]

Our Result in a Nutshell

We can base not only these primitives but almost all
known cryptographic primitives from sub exponential
security of following “trio”:

Decisional Linear assumption over Symmetric Bilinear Maps
Field LPN with noise rate n—°
PRGs in NC" with stretch '+

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?

Are the assumptions truly
Incomparable to Lattices?

Decisional Linear assumption over Symmetric Bilinear Maps
Field LPN with noise rate n~°
PRGs in NC" with stretch x!'+¢

LPN and PRGs aren’t even known to imply PKE.
Don’t know if they are in coAM

DLIN has no known reductions to/from Lattices.

Exciting questions in themselves!

Our Result in a Nutshell

We can base not only these primitives but almost all
known cryptographic primitives from sub exponential
security of following “trio”:

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate n

PRGs in NC° with stretch «!*
Question 1: Are these assumptions connected to lattices? /

Question 2: How do you show such a result?

Main result

Main result

In fact, construct :©® based on 3 well studied “non-lattice” problems.
Previous work [JLS 21] additionally assumes LWE.

Main result

In fact, construct :©® based on 3 well studied “non-lattice” problems.
Previous work [JLS 21] additionally assumes LWE.

FHE follows from i©®
and
Perfectly re-randomizable encryption
[Canetti-Lin-Tessaro-Vaikunthanathan]

Main result

In fact, construct :©® based on 3 well studied “non-lattice” problems.
Previous work [JLS 21] additionally assumes LWE.

FHE follows from i©®
and
Perfectly re-randomizable encryption
[Canetti-Lin-Tessaro-Vaikunthanathan]

And, a number of other applications previously known only via lattices.

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit

to be obfuscated.
C(x)

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
o be obfuscated.

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
to be obfuscated.
A “Trivial” i{©® Scheme:

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
to be obfuscated.
A “Trivial” i© Scheme:

Input: 1

Output: c(y || c@ || c@)

The Truth-Table!

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
to be obfuscated.
A “Trivial” i© Scheme:

Input: 1

Output: c(y || c@ || c@)

The Truth-Table!

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
o be obfuscated.

R
The Truth-Table!
| Ti@(cﬂ x N

Obfuscation Goal
Let C: [N =2"] — {0,1} be a boolean circuit
o be obfuscated.

Obfuscation The Truth-Table!
| T;5(C) | x poly(|C|) | Tiocyl x N

Obfuscation Goal
LletC: [N=2"] - {0,1} be ak
o be obfuscated. Non-Trivial i©®

- | Tio(c)l x N 099
;—l‘.-

Obtuscation The Truth-Table!
| 7;5(C) | & poly(|C]) | Ti5(c)| x N

Obfuscation Goal
LletC: [N=2"] - {0,1} be ak
o be obfuscated. Non-Trivial i©®

- | Ti5cc) | < NV
4@'

Obtuscation The Truth-Table!
| T;5(C) | o poly(|C|) | Tioc)| < N

Non-Trivial ;0 + DLIN— 0!

[BV 15, AJ 15, LPST 16, BNPW 17]

Obfuscation Goal
LletC: [N=2"] - {0,1} be ak
to be obfuscated. Previous work:

- 1iO(C) | x NY?°
[0N -

Obtuscation The Truth-Table!
| T;5(C) | o poly(|C|) | Tioc)| < N

Non-Trivial i 0 + LWE= (O]

[BV 15, AJ 15, LPST 16, BNPW 17]

Our Approach

Our Approach

' eme
Special Encryption Sch

M)
Mi!

Our Approach

Special Encryption Scheme
Encrypt(C = (C. 1)

|

Can [earn functions
{Ux(c) — C(x) }xE[N]

UI(C) UZ(C') Ux(é) UN(C)

Our Approach

Special Encryption Scheme

Encrypt(C o (C r)) ,,?i

Can [earn functions
{Ux(c) — C(x) }xE[N]

UI(C) UZ(C') Ux(é) UN(C)

Truth-Table! Learn
Nothing Else

Our Approach

Special Encryption Scheme

Encrypt(C o (C r))

Can learn functions ULC,r)=Cx)Is

(ULC) = CO)} e too complex!

UI(C) UZ(C') Ux(é) UN(C)

Truth-Table! Learn
Nothing Else

How simple can U, be?

Application of [Yao 86, AIK 04, L 17, AS 17]:
If PRGs with locality 4 exist

3d + 1- Local: U (C) depends on 3d + 1
bits of C.

Degree-16 polynomial! |

Our Approach

Special Encryption Scheme

Encrypt(C = (C. F) (

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)

Our Approach

Special Encryption Scheme
Encrypt(C = (C, 1))

|

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)

Recover({U.(C)} ey

Truth-Table: (C(1), ..., C(N))

Our Approach

Special Encryption Scheme
Encrypt(C = (C, 1))

|

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)

+ Recover({ U,(C)} v Loarm
Truth-Table: (C(1), ..., C(N)) Nothing Else

Our Approach .

Can learn functions
{ Ux(C) }XE[N]
UI(C’) UZ(C’) Ux((j) e Uy(€)

Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C,)

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

1

Based on .
DLIN Can learn functions

{ Ux(C) }XE[N]
U [(C) Up(C) wrrrrersrerssnerssenssnesanen, U(C) - Upy(C)

~/

U(C) = Z qx,i,jéi - C; mod p
,]

Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C,)

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

1

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J

Our Approach

Good News: L e s
Can handle Encrypt(C = (C, r))

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

n

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J

Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C,)

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

)
1

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J

Goal: Replace U_by quadratic functions.

Our Approach

o Public P(C) B Encrypt(S(C))

quadratic fupgs
[Lin 17, AJLMS 15 Coefficients constant

Wee 21]. degree polynomial over

BaDLI | P p functions
~ LULO)) rerm
U/(C) = Z dyi S+ 5 mod p (o) R 7/ (o) N U(C) - Uy(C)

l,]

Goal: Replace U_by quadratic functions.

Use of LPN

Goal: Replace U_ by quadratic functions.

Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]

Main Ildea: Variable change via LPN.

Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]
Main Ildea: Variable change via LPN.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.

Use of LPN

Goal: Replace U, by quadratic functions.

Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]

Main Ildea: Variable change via LPN.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.

Applying LPN

Applying LPN

1.Write C = (C, r)

Applying LPN

1.Write C = (C, r)
2. Encode Cinto »

Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

A R
S

Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

I +
A =
s
e

Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

l_I_I_l_I
\)
e C

Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

l+ I | |
s
e

~J

C

b

Applying LPN

1. Write C = (C,r) A: b) encrypts é’ |

2. Encode Cinto »

l+I+I | I
\)
€ C b

Applying LPN

1. Write C = (C. Ab encrypts C!
2. Encode C int

Can be made public!

Encoded by much smaller s
l |

Applying LPN

A I+ T B =
s
e C b

Applying LPN

Goal: Find /_ that is:

® Quadratic in short S,
e For most x, £.(S) = U (C)

~/

C

A I+ T B =
s
s b

Applying LPN

Goal: Find /_ that is:

® Quadratic in short S,
e For most x, £.(S) = U (C)

Consider:

~/

C

A I+ T B =
s
s b

Applying LPN

Goal: Find /_ that is:

® Quadratic in short S,
e For most x, £.(S) = U (C)

Consider:

U(b — A5)

Degree - 16in s

A I+ +
S
e

~/

C

b

Applying LPN

Goal: Find /_ that is:

® Quadratic in short S,
e For most x, £.(S) = U (C)

Consider:

U(C+72)= U(b — A5)

Degree - 16in s

A I+ +
S
e

~/

C

b

Applying LPN

Goal: Find £, that is:

{f.}. approximates {U_}
e’ Is sparse, U_depends on 16 bits, for any x
U(C+ 7€) = U/(C)
with high probability (over ¢).

JEU = 1 S

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

U(C+72)= U(b — A5)

Degree - 16in s

A I+ +
S
e

~/

C

b

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

~/

C

A I+ T B =
s
s b

U(C+72)= U(b — A5)
Degree - 16in s
| 5| IS very small

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

~/

C

A I —+ + =
5
ra b
U(C+72)= U(b — A5) = f(S)

Degree - 16 in 5| |Quadratic in S = (5,1)®°

| 5| IS very small

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

U(C+72)= U(b — A5)

A I+ +
S
e

~/

C

b
= /x(S)

Degree - 16in s

Quadratic in S = (5,1)®°

|s| is very small = | S| is small

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

U(C+72)= U(b — A5)

A I+ +
S
e

~/

C

b
= /x(S)

Degree - 16in s

Quadratic in S = (5,1)®°

|s| is very small = | S| is small

|3:‘ < NO.IO

‘S‘ < NO.SO

Applying LPN

Goal: Find /_ that is:
® Quadratic in short S,

®For most x, /.(S) = Ui‘ C)

Consider:

U(C+72)= U(b — A5)

~J

~/

C

I+ +
s
e

= /x(S)

b

Degree - 16 in 5| |Quadratic in S = (5,1)®°

|s| is very small = | S| is small

|3:‘ < NO.IO

‘S‘ < NO.SO

Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]
Main Idea: Variable change via Random Linear Godes.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.

Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]

Main Idea: Variable change via Random Linear Godes.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.

Step 2: Error Correction

Step 2: Error Correction
Target

U,(C) Uy(C)

Step 2: Error Correction

Target

Step 2: Error Correction

Target

Correction vector = |Target| -

Step 2: Error Correction

Target

Correction vector = |Target| -
o NN o 0 0 0

Takeaway: Correction vector is sparse!!

Amortization

Previously we showed that for any circuit C
Map:C — P, S
Size = O(N")
Time = O(N)
Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Amortization

Previously we showed that for any circuit C
Map:C — P, S
Size = O(N")
Time = O(N)
Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Main Lemma:
Map: (C,,...,C,) = (P}, Py, ..., P, S}, ..., S,)

Time = O(Nk' ¢ + k)
Sublinear in Nk

Time Succinctness

Show that this suffices for i©®

Efficient circuit implementations for special
RAM prorgams such as lookups and sorting.

Thank you!

FHE directly from these assumptions?

Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions:
Reductions to LWE/GAP-SVP for these assumptions?

Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions:
Reductions to LWE/GAP-SVP for these assumptions?

LPN/PRG: Build PKE/ show that they are in CoAM

