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Our Result in a Nutshell

We can base not only these primitives but almost all
known cryptographic primitives from sub exponential
security of following “trio”:

Decisional Linear assumption over Symmetric Bilinear Maps
Field LPN with noise rate n—°
PRGs in NC" with stretch '+

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?



Are the assumptions truly
Incomparable to Lattices?

Decisional Linear assumption over Symmetric Bilinear Maps
Field LPN with noise rate n~°
PRGs in NC" with stretch x!'+¢

LPN and PRGs aren’t even known to imply PKE.
Don’t know if they are in coAM

DLIN has no known reductions to/from Lattices.

Exciting questions in themselves!
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And, a number of other applications previously known only via lattices.
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Our Approach

Special Encryption Scheme

Encrypt(C o (C r))

Can learn functions ULC,r)=Cx)Is

(ULC) = CO)} e too complex!

UI(C) UZ(C') ................................. Ux(é) UN(C)

Truth-Table! Learn
Nothing Else



How simple can U, be?

Application of [Yao 86, AIK 04, L 17, AS 17]:
If PRGs with locality 4 exist

3d + 1- Local: U (C) depends on 3d + 1
bits of C.

Degree-16 polynomial! |




Our Approach

Special Encryption Scheme

Encrypt(C = (C. F) (

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)




Our Approach

Special Encryption Scheme
Encrypt(C = (C, 1))

|

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)

Recover({U.(C)} ey

Truth-Table: (C(1), ..., C(N))




Our Approach

Special Encryption Scheme
Encrypt(C = (C, 1))

|

Can learn functions

{ Ux(C) }XE[N]
A (0) R I/ (0} J U(C) - Uy(C)

+ Recover({ U,(C)} v Loarm
Truth-Table: (C(1), ..., C(N)) Nothing Else




Our Approach .

Can learn functions
{ Ux(C) }XE[N]
UI(C’) UZ(C’) .............................. Ux((j) e Uy(€)



Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C, )

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

1

Based on .
DLIN Can learn functions

{ Ux(C) }XE[N]
U [(C) Up(C) wrrrrersrerssnerssenssnesanen, U(C) - Upy(C)

~/

U(C) = Z qx,i,jéi - C; mod p
,]



Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C, )

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

1

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J



Our Approach

Good News: L e s
Can handle Encrypt(C = (C, r))

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

@)

n

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J



Our Approach

Good News: Bheruntls i o0
Can handle _Encrypt(C = (C, )

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,
Wee 21].

)
1

Based on Can learn functions
DLIN =
~ o LULO) Ly
U/(C) = 2 qx,;Ci* ¢; mod p U (C) Uy(C) vererereresensnessnnssnenanns U(C) - Uy(C)
i.J

Goal: Replace U_by quadratic functions.




Our Approach

o Public P(C) B Encrypt(S(C))

quadratic fupgs
[Lin 17, AJLMS 15 Coefficients constant

Wee 21]. degree polynomial over

BaDLI | P p functions
~ LULO) ) rerm
U/(C) = Z dyi S+ 5 mod p (o) R 7/ (o) N U(C) - Uy(C)

l,]

Goal: Replace U_by quadratic functions.




Use of LPN

Goal: Replace U_ by quadratic functions.




Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]

Main Ildea: Variable change via LPN.



Use of LPN

Goal: Replace U_ by quadratic functions.
Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]
Main Ildea: Variable change via LPN.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.



Use of LPN

Goal: Replace U, by quadratic functions.

Step 1: Approximate U (C) by quadratic £.(S),

£(S) = U/(C) for mostinputs x € [N]

Main Ildea: Variable change via LPN.

Step 2: Error correction via quadratic Corr,(M)

h(S,M) = f(S) + Corr, (M) = U(C) V x € [N]

Main Idea: Compression via Matrix Factorization.




Applying LPN



Applying LPN

1.Write C = (C, r)



Applying LPN

1.Write C = (C, r)
2. Encode Cinto »



Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

A R
S




Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

I +
A =
s
e




Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

l_I_I_l_I
\)
e C




Applying LPN

1. Write C = (C, r)
2. Encode Cinto b

l+ I | |
s
e

~J

C

b



Applying LPN

1. Write C = (C,r) A: b) encrypts é’ |

2. Encode Cinto »

l+I+I | I
\)
€ C b




Applying LPN

1. Write C = (C. Ab encrypts C!
2. Encode C int

Can be made public!
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Goal: Find £, that is:

{f.}. approximates {U_}
e’ Is sparse, U_depends on 16 bits, for any x
U(C+ 7€) = U/(C)
with high probability (over ¢).

JEU = 1 S
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Step 2: Error Correction

Target

Correction vector = |Target| -
o NN o 0 0 0

Takeaway: Correction vector is sparse!!
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Amortization

Previously we showed that for any circuit C
Map:C — P, S
Size = O(N")
Time = O(N)
Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Main Lemma:
Map: (C,,...,C,) = (P}, Py, ..., P, S}, ..., S,)

Time = O(Nk' ¢ + k)
Sublinear in Nk



Time Succinctness

Show that this suffices for i©®

Efficient circuit implementations for special
RAM prorgams such as lookups and sorting.
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Complexity/algorithm questions:
Reductions to LWE/GAP-SVP for these assumptions?

LPN/PRG: Build PKE/ show that they are in CoAM



