
 from PRGs in , LPN, and Bilinear
Maps

0r:

On The Power of Lattice-Free Cryptography

i𝒪 𝖭𝖢0

Aayush Jain (NTT Research and CMU)
Joint work with:

Crypto from LWE/Lattices
Homomorphic Encryption [Gen 09, BV 11, BGV 12…]
Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

Lockable Obfuscation [GKW 17, WZ 17]
CI Hash/ NIZK [CCHLRW 19,PS 19]

Quantum FHE [M 18]
CVQC [M 18]

Succinct Functional Encryption [GKPVZ 13]

MKFHE [CM 15, MW 16]

Universal Thresholdizers [BGG+18]

…….

SNARGS for P [CJJ 21]

Crypto from LWE/Lattices
Homomorphic Encryption [Gen 09, BV 11, BGV 12…]
Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

Lockable Obfuscation [GKW 17, WZ 17]
CI Hash/ NIZK [CCHLRW 19,PS 19]

Quantum FHE [M 18]
CVQC [M 18]

Succinct Functional Encryption [GKPVZ 13]

MKFHE [CM 15, MW 16]

Universal Thresholdizers [BGG+18]

…….

SNARGS for P [CJJ 21]

Fundamental Question
Are Lattice based hardness assumptions essential to building

these primitives?

Our Result in a Nutshell
We can base not only these primitives but almost all
known cryptographic primitives from sub exponential
security of following “trio”:

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate n−δ

PRGs in with stretch 𝖭𝖢0 κ1+ϵ

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?

Are the assumptions truly
incomparable to Lattices?

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate n−δ

PRGs in with stretch 𝖭𝖢0 κ1+ϵ

LPN and PRGs aren’t even known to imply PKE.

Don’t know if they are in coAM

DLIN has no known reductions to/from Lattices.

Exciting questions in themselves!

Our Result in a Nutshell
We can base not only these primitives but almost all
known cryptographic primitives from sub exponential
security of following “trio”:

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate n−δ

PRGs in with stretch 𝖭𝖢0 κ1+ϵ

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?

Main result

Main result

In fact, construct based on 3 well studied “non-lattice” problems.

i𝒪

Previous work [JLS 21] additionally assumes LWE.

Main result

In fact, construct based on 3 well studied “non-lattice” problems.

i𝒪

FHE follows from

and

Perfectly re-randomizable encryption

[Canetti-Lin-Tessaro-Vaikunthanathan]

i𝒪

Previous work [JLS 21] additionally assumes LWE.

Main result

In fact, construct based on 3 well studied “non-lattice” problems.

i𝒪

FHE follows from

and

Perfectly re-randomizable encryption

[Canetti-Lin-Tessaro-Vaikunthanathan]

i𝒪

And, a number of other applications previously known only via lattices.

Previous work [JLS 21] additionally assumes LWE.

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

x1 x2 ………………. xn

C(x)

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

A “Trivial” Scheme:i𝒪

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

A “Trivial” Scheme:i𝒪

1 2 3 ……….. N − 1 N

C(1) C(2) C(3) ……….. C(N − 1) C(N)

Input:

Output:

The Truth-Table!

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

A “Trivial” Scheme:i𝒪

1 2 3 ……….. N − 1 N

C(1) C(2) C(3) ……….. C(N − 1) C(N)

Input:

Output:

The Truth-Table!
 Problem:

Obfuscation takes time! |Ti𝒪(C) | ∝ N

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

|Ti𝒪(C) | ∝ N
The Truth-Table!

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

|Ti𝒪(C) | ∝ N
Obfuscation
|Ti𝒪(C) | ∝ 𝗉𝗈𝗅𝗒(|C |)

The Truth-Table!

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

|Ti𝒪(C) | ∝ N
Obfuscation
|Ti𝒪(C) | ∝ 𝗉𝗈𝗅𝗒(|C |)

Non-Trivial i𝒪
|Ti𝒪(C) | ∝ N0.99

The Truth-Table!

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

|Ti𝒪(C) | ∝ N
Obfuscation
|Ti𝒪(C) | ∝ 𝗉𝗈𝗅𝗒(|C |)

Non-Trivial i𝒪
|Ti𝒪(C) | ∝ N0.99

The Truth-Table!

Non-Trivial !

[BV 15, AJ 15, LPST 16, BNPW 17]

i𝒪 + 𝖣𝖫𝖨𝖭⟹ i𝒪

Obfuscation Goal

Let be a boolean circuit
to be obfuscated.

C : [N = 2n] → {0,1}

|Ti𝒪(C) | ∝ N
Obfuscation
|Ti𝒪(C) | ∝ 𝗉𝗈𝗅𝗒(|C |)

Previous work:
| i𝒪(C) | ∝ N0.99

The Truth-Table!

Non-Trivial !

[BV 15, AJ 15, LPST 16, BNPW 17]

i𝒪 + 𝖫𝖶𝖤⟹ i𝒪

Our Approach

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn functions

{Ux(C̃) = C(x)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃)…………………………… UN(C̃)…

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn functions

{Ux(C̃) = C(x)}x∈[N]

Truth-Table!
Ux(C̃)U1(C̃) U2(C̃)…………………………… UN(C̃)…

Learn

Nothing Else

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn functions

{Ux(C̃) = C(x)}x∈[N]

Truth-Table!
Ux(C̃)U1(C̃) U2(C̃)…………………………… UN(C̃)…

Learn

Nothing Else

Problem:

 is

too complex!
Ux(C, r) = C(x)

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn functions

{Ux(C̃) = C(x)}x∈[N]

Truth-Table!
Ux(C̃)U1(C̃) U2(C̃)…………………………… UN(C̃)…

Learn

Nothing Else

Problem:

 is

too complex!
Ux(C, r) = C(x)

Application of [Yao 86, AIK 04, L 17, AS 17]:

- Local: depends on

bits of .
3d + 1 Ux(C̃) 3d + 1

C̃

Degree-16 polynomial!

How simple can be?Ux

If PRGs with locality exist d

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…

Recover(){Ux(C̃)}x∈[N]

Truth-Table: (C(1), …, C(N))

Our Approach

| C̃ | ∝ N0.99

Size of :C̃Special Encryption Scheme
Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…

Recover(){Ux(C̃)}x∈[N]

Truth-Table: (C(1), …, C(N))
Learn

Nothing Else

Our Approach

Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…

Our Approach

Good News:
Can handle

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,

Wee 21].

Based on

DLIN

Ux(C̃) = ∑
i,j

qx,i,jC̃i ⋅ C̃j mod p

Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…

Our Approach

Good News:
Can handle

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,

Wee 21].

Based on

DLIN

Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…
Ux(C̃) = ∑
i,j

qx,i,jC̃i ⋅ C̃j mod p

Our Approach

Good News:
Can handle

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,

Wee 21].

Based on

DLIN

Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…
Ux(C̃) = ∑
i,j

qx,i,jC̃i ⋅ C̃j mod p

Problem: is degree - 16!!Ux

Our Approach

Good News:
Can handle

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,

Wee 21].

Based on

DLIN

Encrypt()C̃ = (C, r)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…
Ux(C̃) = ∑
i,j

qx,i,jC̃i ⋅ C̃j mod p

Problem: is degree - 16!!Ux

Goal: Replace by quadratic functions.Ux

Our Approach

Good News:
Can handle

quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20,

Wee 21].

Based on

DLIN

Encrypt()S(C̃)

Can learn “degree-16” functions

{Ux(C̃)}x∈[N]

Ux(C̃)U1(C̃) U2(C̃) ………………………… UN(C̃)…
Ux(C̃) = ∑
i,j

qx,i,jSi ⋅ Sj mod p

Problem: is degree - 16!!Ux

Goal: Replace by quadratic functions.Ux

Public
P(C̃)

Coefficients constant
degree polynomial over

P

Use of LPN
Goal: Replace by quadratic functions.
Ux

Use of LPN
Goal: Replace by quadratic functions.
Ux
Step 1: Approximate by quadratic ,Ux(C̃) fx(S)

fx(S) = Ux(C̃) for most inputs x ∈ [N]

Main Idea: Variable change via LPN.

Use of LPN
Goal: Replace by quadratic functions.
Ux
Step 1: Approximate by quadratic ,Ux(C̃) fx(S)

fx(S) = Ux(C̃) for most inputs x ∈ [N]

Main Idea: Variable change via LPN.

 ∀ x ∈ [N]

Step 2: Error correction via quadratic
𝖢𝗈𝗋𝗋x(M)

hx(S, M) = fx(S) + 𝖢𝗈𝗋𝗋x(M) = Ux(C̃)

Main Idea: Compression via Matrix Factorization.

Use of LPN
Goal: Replace by quadratic functions.
Ux
Step 1: Approximate by quadratic ,Ux(C̃) fx(S)

fx(S) = Ux(C̃) for most inputs x ∈ [N]

Main Idea: Variable change via LPN.

 ∀ x ∈ [N]

Step 2: Error correction via quadratic
𝖢𝗈𝗋𝗋x(M)

hx(S, M) = fx(S) + 𝖢𝗈𝗋𝗋x(M) = Ux(C̃)

Main Idea: Compression via Matrix Factorization.

Applying LPN

pℓ

A

1. Write C̃ = (C, r)

Applying LPN

pℓ

A

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

Applying LPN

pℓ

A

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

Applying LPN

pℓ

⃗s
A

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

⃗e

Applying LPN

pℓ

⃗s
A

+

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

⃗e C̃

Applying LPN

pℓ

⃗s
A

+ +

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

⃗e C̃ ⃗b

Applying LPN

pℓ

⃗s
A

+ =+

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

⃗e C̃ ⃗b

Applying LPN

pℓ

⃗s
A

+ =+

 encrypts !⃗A , ⃗b C̃

1. Write C̃ = (C, r)

2. Encode into C̃ ⃗b

⃗e C̃ ⃗b

Can be made public!
Encoded by much smaller
⃗s

Applying LPN

pℓ

⃗s
A

+ =+

 encrypts !⃗A , ⃗b C̃

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 Ux(C̃ + ⃗e) =

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 Ux(C̃ + ⃗e) =

 approximates {fx}x {Ux}x

 is sparse, depends on 16 bits, for any ⃗e Ux x

,Ux(C̃ + ⃗e) = Ux(C̃)
with high probability (over).⃗e

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 Ux(C̃ + ⃗e) =

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 is very small| ⃗s |

 Ux(C̃ + ⃗e) =

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 is very small| ⃗s |
Quadratic in S = (⃗s,1)⊗8

 = fx(S) Ux(C̃ + ⃗e) =

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 is very small| ⃗s |
Quadratic in S = (⃗s,1)⊗8

 = fx(S)

 is small|S |

 Ux(C̃ + ⃗e) =

⟹

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 is very small| ⃗s |
Quadratic in S = (⃗s,1)⊗8

 = fx(S)

 is small|S |
| ⃗s | ≪ N0.10 |S | ≪ N0.80

 Ux(C̃ + ⃗e) =

⟹

Applying LPN

pℓ

⃗s
A +

⃗e

=

⃗bC̃

+
Goal: Find that is:

•Quadratic in short ,

•For most

fx
S

x, fx(S) = Ux(C̃)

Consider:

 Ux(⃗b − A ⃗s)
Degree - 16 in ⃗s

 is very small| ⃗s |
Quadratic in S = (⃗s,1)⊗8

 = fx(S)

 is small|S |
| ⃗s | ≪ N0.10 |S | ≪ N0.80

 Ux(C̃ + ⃗e) =

⟹

Use of LPN
Goal: Replace by quadratic functions.
Ux
Step 1: Approximate by quadratic ,Ux(C̃) fx(S)

fx(S) = Ux(C̃) for most inputs x ∈ [N]

Main Idea: Variable change via Random Linear Codes.

 ∀ x ∈ [N]

Step 2: Error correction via quadratic
𝖢𝗈𝗋𝗋x(M)

hx(S, M) = fx(S) + 𝖢𝗈𝗋𝗋x(M) = Ux(C̃)

Main Idea: Compression via Matrix Factorization.

Use of LPN
Goal: Replace by quadratic functions.
Ux
Step 1: Approximate by quadratic ,Ux(C̃) fx(S)

fx(S) = Ux(C̃) for most inputs x ∈ [N]

Main Idea: Variable change via Random Linear Codes.

 ∀ x ∈ [N]

Step 2: Error correction via quadratic
𝖢𝗈𝗋𝗋x(M)

hx(S, M) = fx(S) + 𝖢𝗈𝗋𝗋x(M) = Ux(C̃)

Main Idea: Compression via Matrix Factorization.

Step 2: Error Correction
pℓ−δℓ

Step 2: Error Correction
pℓ−δℓ

Target
U1(C̃) U2(C̃) UN(C̃)…………………………………

f1(S) f2(S) fN(S)…………………………………

Step 2: Error Correction
pℓ−δℓ

Target

Actual

U1(C̃) U2(C̃) UN(C̃)…………………………………

f1(S) f2(S) fN(S)…………………………………

Step 2: Error Correction
pℓ−δℓ

Correction vector =

Target

Actual -

U1(C̃) U2(C̃) UN(C̃)…………………………………

Target Actual-

f1(S) f2(S) fN(S)…………………………………

Step 2: Error Correction
pℓ−δℓ

Correction vector =

Target

Actual -

U1(C̃) U2(C̃) UN(C̃)…………………………………

0 0 0 0 0

Target Actual-

Takeaway: Correction vector is sparse!!

Amortization
pℓ−δℓ

Previously we showed that for any circuit C
Map: C̃ → P, S

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Size = Õ(N0.99)

Time = Õ(N)

Amortization
pℓ−δℓ

Previously we showed that for any circuit C
Map: C̃ → P, S

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Size = Õ(N0.99)

Time = Õ(N)

Main Lemma:
Map: (C̃1, …, C̃k) → (P1, P2, …, Pk, S1, …, Sk)

Time =

Sublinear in

Õ(Nk1−ϵ + kc)
Nk

Time Succinctness
pℓ−δℓ

Show that this suffices for i𝒪

Efficient circuit implementations for special

RAM prorgams such as lookups and sorting.

Thank you!

Thank you!
FHE directly from these assumptions?

Thank you!
FHE directly from these assumptions?

Complexity/algorithm questions:

Reductions to LWE/GAP-SVP for these assumptions?

Thank you!
FHE directly from these assumptions?

Complexity/algorithm questions:

Reductions to LWE/GAP-SVP for these assumptions?

LPN/PRG: Build PKE/ show that they are in CoAM

