i \oslash from PRGs in NC⁰, LPN, and Bilinear Maps Or: **On The Power of Lattice-Free Cryptography Aayush Jain (NTT Research and CMU)** Joint work with:

Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12...]

Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

MKFHE [CM 15, MW 16]

Succinct Functional Encryption [GKPVZ 13]

Universal Thresholdizers [BGG+18]

Lockable Obfuscation [GKW 17, WZ 17]

CI Hash/ NIZK [CCHLRW 19,PS 19]

SNARGS for P [CJJ 21]

Quantum FHE [M 18]

CVQC [M 18]

Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12...]

Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

Fundamental Question

Are Lattice based hardness assumptions essential to building these primitives?

CI Hash/ NIZK [CCHLRW 19,PS 19] SNARGS for P [CJJ 21] Quantum FHE [M 18]

CVQC [M 18]

Our Result in a Nutshell

We can base not only these primitives but almost all known cryptographic primitives from sub exponential security of following "trio":

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate $n^{-\delta}$

PRGs in NC⁰ with stretch $\kappa^{1+\epsilon}$

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?

Are the assumptions truly incomparable to Lattices?

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate $n^{-\delta}$

PRGs in NC⁰ with stretch $\kappa^{1+\epsilon}$

LPN and PRGs aren't even known to imply PKE. Don't know if they are in coAM

DLIN has no known reductions to/from Lattices.

Exciting questions in themselves!

Our Result in a Nutshell

We can base not only these primitives but almost all known cryptographic primitives from sub exponential security of following "trio":

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate $n^{-\delta}$

PRGs in NC⁰ with stretch $\kappa^{1+\epsilon}$

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?

In fact, construct *i* based on 3 well studied "non-lattice" problems. Previous work [JLS 21] additionally assumes LWE.

In fact, construct *i* based on 3 well studied "non-lattice" problems. Previous work [JLS 21] additionally assumes LWE.

> FHE follows from *i* and Perfectly re-randomizable encryption [Canetti-Lin-Tessaro-Vaikunthanathan]

In fact, construct *i* based on 3 well studied "non-lattice" problems. Previous work [JLS 21] additionally assumes LWE.

> FHE follows from *i* and Perfectly re-randomizable encryption [Canetti-Lin-Tessaro-Vaikunthanathan]

And, a number of other applications previously known only via lattices.

Obfuscation Goal Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated. A "Trivial" *iO* Scheme:

A "Trivial" *i* Scheme:

The Truth-Table!

A "Trivial" *i* Scheme:

The Truth-Table!

Problem:
Obfuscation takes time! $|T_{i\mathcal{O}(C)}| \propto N$

Obfuscation $|T_{i\mathcal{O}}(C)| \propto \operatorname{poly}(|C|)$

The Truth-Table! $|T_{i\mathcal{O}(C)}| \propto N$

Obfuscation $|T_{i\mathcal{O}}(C)| \propto \operatorname{poly}(|C|)$

The Truth-Table! $|T_{i\mathcal{O}(C)}| \propto N$

Special Encryption Scheme

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Can learn functions $\{U_x(\tilde{C}) = C(x)\}_{x \in [N]}$

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \cdots U_N(\tilde{C}) \cdots U_N(\tilde{C})$

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Can learn functions $\{U_x(\tilde{C}) = C(x)\}_{x \in [N]}$

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \cdots U_N(\tilde{C}) \cdots U_N(\tilde{C})$

Truth-Table!

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Can learn functions $\{U_x(\tilde{C}) = C(x)\}_{x \in [N]}$

Problem: $U_x(C,r) = C(x)$ is too complex!

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \cdots \cdots U_x(\tilde{C}) \cdots U_N(\tilde{C})$

Truth-Table!

<u>Chaoial Engruption Caboma</u>

How simple can U_x be? Application of [Yao 86, AlK 04, L 17, AS 17]: If PRGs with locality d exist 3d + 1-Local: $U_x(\tilde{C})$ depends on 3d + 1bits of \tilde{C} .

Degree-16 polynomial!

II UUII-I AIVIGH

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \ \dots \ U_N(\tilde{C}) \ \dots \ U_N(\tilde{C})$

Our Approach **Special Encryption Scheme** Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$ Encrypt($\tilde{C} = (C, r)$) Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x\in[N]}$

Recover($\{U_x(\tilde{C})\}_{x\in[N]}$)

Truth-Table: $(C(1), \ldots, C(N))$

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C} : $|\tilde{C}| \propto N^{0.99}$

Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \cdots U_N(\tilde{C}) \cdots$

 $\mathsf{Recover}(\{\overline{U}_x(\tilde{C})\}_{x\in[N]})$

Truth-Table: (C(1), ..., C(N))

Our Approach Encrypt($\tilde{C} = (C, r)$) Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x\in[N]}$ $U_1(\tilde{C}) \ U_2(\tilde{C}) \ \cdots \ U_N(\tilde{C}) \ \cdots \ U_N(\tilde{C})$

Good News: Can handle quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

> Based on DLIN

Encrypt($\tilde{C} = (C, r)$) Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

 $U_1(\tilde{C}) \ U_2(\tilde{C}) \ \cdots \ U_N(\tilde{C}) \ \cdots \ U_N(\tilde{C})$

$$U_{x}(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_{i} \cdot \tilde{C}_{j} \mod p$$

Good News: Can handle quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

Encrypt($\tilde{C} = (C, r)$)

Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

 $U_{x}(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_{i} \cdot \tilde{C}_{j} \mod p \bigcup_{U_{1}(\tilde{C})} U_{2}(\tilde{C}) \dots U_{X}(\tilde{C}) \dots U_{N}(\tilde{C})$

Good News: Can handle quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

Encrypt($\tilde{C} = (C, r)$)

 $U_{x}(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_{i} \cdot \tilde{C}_{j} \mod p \bigcup_{1} (\tilde{C}) U_{2}(\tilde{C}) \dots U_{x}(\tilde{C}) \dots U_{x}(\tilde{C}) \dots U_{N}(\tilde{C})$

Problem: U_x is degree - 16!!

Good News: Can handle quadratic functions

[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

Can learn "degree-16" functions $\{U_x(\tilde{C})\}_{x \in [N]}$

Encrypt($\tilde{C} = (C, r)$)

 $U_{x}(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_{i} \cdot \tilde{C}_{j} \mod p \ U_{1}(\tilde{C}) \ U_{2}(\tilde{C}) \cdots U_{x}(\tilde{C}) \cdots U_{N}(\tilde{C})$

Problem: U_x is degree - 16!!

Goal: Replace U_x by quadratic functions.

Goal: Replace U_x by quadratic functions.

Use of LPN Goal: Replace U_x by quadratic functions.
Goal: Replace U_x by quadratic functions. Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

 $f_x(S) = U_x(\tilde{C})$ for most inputs $x \in [N]$

Main Idea: Variable change via LPN.

Goal: Replace U_x by quadratic functions. Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

 $f_x(S) = U_x(\tilde{C})$ for most inputs $x \in [N]$

Main Idea: Variable change via LPN.

Step 2: Error correction via quadratic $Corr_x(M)$

 $h_x(S,M) = f_x(S) + \operatorname{Corr}_x(M) = U_x(\tilde{C}) \quad \forall x \in [N]$

Main Idea: Compression via Matrix Factorization.

Goal: Replace U_x by quadratic functions. Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

 $f_x(S) = U_x(\tilde{C})$ for most inputs $x \in [N]$

Main Idea: Variable change via LPN.

Step 2: Error correction via quadratic $Corr_x(M)$

 $h_x(S,M) = f_x(S) + \operatorname{Corr}_x(M) = U_x(\tilde{C}) \quad \forall x \in [N]$

Main Idea: Compression via Matrix Factorization.

1. Write $\tilde{C} = (C, r)$

$$\overrightarrow{A}, \overrightarrow{b}$$
 encrypts \widetilde{C} !

1. Write
$$\tilde{C} = (C,$$

2. Encode \tilde{C} intervals

 \overrightarrow{S}

A

$$\overrightarrow{A}, \overrightarrow{b}$$
 encrypts \widetilde{C} !

Can be made public!

Encoded by much smaller \vec{s}

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_x(\tilde{C})$

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_x(\tilde{C})$

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_x(\tilde{C})$

$$A = \frac{1}{\vec{s}} + \frac{1}{\vec{e}} + \vec{c} = \frac{1}{\vec{c}} + \vec{c} = \frac{1}{\vec{b}}$$

$$U_x(\vec{b} - A\vec{s})$$
Degree - 16 in \vec{s}

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_x(\tilde{C})$

$$U_{x}(\tilde{C} + \vec{e}) = U_{x}(\vec{b} - A\vec{s})$$

Degree - 16 in \vec{s}

Goal: Find f_x that is: • Ouadratic in short *S*.

 ${f_x}_x$ approximates ${U_x}_x$

 \overrightarrow{e} is sparse, U_x depends on 16 bits, for any x $U_x(\widetilde{C} + \overrightarrow{e}) = U_x(\widetilde{C})$ with high probability (over \overrightarrow{e}).

Degree - 16 In s

A

╋

 $\overrightarrow{\ell}$

 \tilde{C}

 \overrightarrow{S}

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_x(\tilde{C})$

$$U_{x}(\tilde{C} + \overrightarrow{e}) = U_{x}(\overrightarrow{b} - A\overrightarrow{s})$$

Degree - 16 in \overrightarrow{s}

A

╋

 \overrightarrow{e}

Õ

 \overrightarrow{S}

Goal: Find f_x that is: • Quadratic in short *S*, • For most $x, f_x(S) = U_y(\tilde{C})$

$$U_{x}(\tilde{C} + \vec{e}) = U_{x}(\vec{b} - A\vec{s})$$

Degree - 16 in \vec{s}
 $|\vec{s}|$ is very smal

Goal: Replace U_x by quadratic functions. Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$, $f_x(S) = U_x(\tilde{C})$ for most inputs $x \in [N]$ Main Idea: Variable change via Random Linear Codes. Step 2: Error correction via quadratic $Corr_x(M)$

 $h_x(S,M) = f_x(S) + \operatorname{Corr}_x(M) = U_x(\tilde{C}) \quad \forall x \in [N]$

Main Idea: Compression via Matrix Factorization.

Goal: Replace U_x by quadratic functions. **Step 1: Approximate** $U_x(\tilde{C})$ by quadratic $f_x(S)$,

 $f_x(S) = U_x(\tilde{C})$ for most inputs $x \in [N]$

Main Idea: Variable change via Random Linear Codes.

Step 2: Error correction via quadratic $Corr_x(M)$

 $h_x(S,M) = f_x(S) + \operatorname{Corr}_x(M) = U_x(\tilde{C}) \quad \forall x \in [N]$

Main Idea: Compression via Matrix Factorization.

Step 2: Error Correction

Takeaway: Correction vector is sparse!!

Amortization

Previously we showed that for any circuit C

Map: $\tilde{C} \rightarrow P, S$ Size = $\tilde{O}(N^{0.99})$

Time = $\tilde{O}(N)$

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Amortization

Previously we showed that for any circuit C

Map: $\tilde{C} \rightarrow P, S$ Size = $\tilde{O}(N^{0.99})$ Time = $\tilde{O}(N)$

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Main Lemma:

$$\begin{split} \text{Map:} & (\tilde{C}_1, \dots, \tilde{C}_k) \to (P_1, P_2, \dots, P_k, S_1, \dots, S_k) \\ & \text{Time} = \tilde{O}(Nk^{1-\epsilon} + k^c) \\ & \text{Sublinear in } Nk \end{split}$$

Time Succinctness

Show that this suffices for $i \mathcal{O}$

Efficient circuit implementations for special RAM prorgams such as lookups and sorting.

Thank you!

Thank you!

FHE directly from these assumptions?
Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions: Reductions to LWE/GAP-SVP for these assumptions?

Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions: Reductions to LWE/GAP-SVP for these assumptions? LPN/PRG: Build PKE/ show that they are in CoAM