iO from PRGs in \mathbb{NC}^0, LPN, and Bilinear Maps
Or:
On The Power of Lattice-Free Cryptography

Aayush Jain (NTT Research and CMU)

Joint work with:
Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12…]

Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

MKFHE [CM 15, MW 16]

Succinct Functional Encryption [GKPVZ 13]

Universal Thresholdizers [BGG+18]

Lockable Obfuscation [GKW 17, WZ 17]

CI Hash/ NIZK [CCHLRW 19, PS 19]

SNARGS for P [CJJ 21]

Quantum FHE [M 18]

CVQC [M 18]

……..
Crypto from LWE/Lattices

Homomorphic Encryption [Gen 09, BV 11, BGV 12…]
Attribute-Based Encryption/Predicate Encryption [GVW 12, BGG+13, GVW 15]

Fundamental Question
Are Lattice based hardness assumptions essential to building these primitives?

CI Hash/ NIZK [CCHLRW 19, PS 19]
SNARGS for P [CJJ 21]
Quantum FHE [M 18]
CVQC [M 18]
Our Result in a Nutshell

We can base not only these primitives but almost all known cryptographic primitives from sub exponential security of following “trio”:

- Decisional Linear assumption over Symmetric Bilinear Maps
- Field LPN with noise rate $n^{-\delta}$
- PRGs in NC0 with stretch $\kappa^{1+\epsilon}$

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?
Are the assumptions truly incomparable to Lattices?

Decisional Linear assumption over Symmetric Bilinear Maps

Field LPN with noise rate $n^{-\delta}$

PRGs in NC^0 with stretch $\kappa^{1+\epsilon}$

LPN and PRGs aren’t even known to imply PKE.
Don’t know if they are in coAM

DLIN has no known reductions to/from Lattices.

Exciting questions in themselves!
Our Result in a Nutshell

We can base not only these primitives but almost all known cryptographic primitives from sub exponential security of following “trio”:

- **Decisional Linear assumption** over Symmetric Bilinear Maps
- **Field LPN** with noise rate $n^{-\delta}$
- **PRGs in** NC^0 with stretch $\kappa^{1+\epsilon}$

Question 1: Are these assumptions connected to lattices?

Question 2: How do you show such a result?
Main result
Main result

In fact, construct iO based on 3 well studied “non-lattice” problems. Previous work [JLS 21] additionally assumes LWE.
Main result

In fact, construct iO based on 3 well studied “non-lattice” problems. Previous work [JLS 21] additionally assumes LWE.

FHE follows from iO
and
Perfectly re-randomizable encryption
[Canetti-Lin-Tessaro-Vaikunthanathan]
Main result

In fact, construct iO based on 3 well studied “non-lattice” problems. Previous work [JLS 21] additionally assumes LWE.

FHE follows from iO
and
Perfectly re-randomizable encryption
[Canetti-Lin-Tessaro-Vaikunthanathan]

And, a number of other applications previously known only via lattices.
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0, 1\}$ be a boolean circuit to be obfuscated.
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

A “Trivial” iO Scheme:
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

A “Trivial” $i\O$ Scheme:

<table>
<thead>
<tr>
<th>Input:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>$N-1$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>$C(1)$</td>
<td>$C(2)$</td>
<td>$C(3)$</td>
<td>\ldots</td>
<td>$C(N-1)$</td>
<td>$C(N)$</td>
</tr>
</tbody>
</table>

The Truth-Table!
Obfuscation Goal

Let \(C : [N = 2^n] \rightarrow \{0,1\} \) be a boolean circuit to be obfuscated.

A “Trivial” \(iO \) Scheme:

Input:	1	2	3	\cdots \cdots	N - 1	N
--------------	---	---	---	\cdots\cdots	\	
Output:	\(C(1) \)	\(C(2) \)	\(C(3) \)	\cdots \cdots	\(C(N - 1) \)	\(C(N) \)

The Truth-Table!

Problem:
Obfuscation takes time! \(|T_{iO(C)}| \propto N \)
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

The Truth-Table!

$| T_{i\mathcal{O}(C)} | \propto N$
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

Obfuscation

$|T_{i\phi}(C)| \propto \text{poly}(|C|)$

The Truth-Table!

$|T_{i\phi}(C)| \propto N$
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

Non-Trivial $i\mathcal{O}$

\[|T_{i\mathcal{O}(C)}| \propto N^{0.99} \]

Obfuscation

\[|T_{i\mathcal{O}(C)}| \propto \text{poly}(|C|) \]

The Truth-Table!

\[|T_{i\mathcal{O}(C)}| \propto N \]
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0, 1\}$ be a boolean circuit to be obfuscated. Let $T_{i\mathcal{O}}(C)$ be a non-trivial truth-table of

$|T_{i\mathcal{O}}(C)| \propto N^{0.99}$

The Truth-Table!

$|T_{i\mathcal{O}}(C)| \propto N$

Obfuscation

$|T_{i\mathcal{O}}(C)| \propto \text{poly}(|C|)$

Non-Trivial $i\mathcal{O} + \text{DLIN} \implies i\mathcal{O}$!

[BV 15, AJ 15, LPST 16, BNPW 17]
Obfuscation Goal

Let $C : [N = 2^n] \rightarrow \{0,1\}$ be a boolean circuit to be obfuscated.

Previous work:

$|i\mathcal{O}(C)| \propto N^{0.99}$

Obfuscation

$|T_{i\mathcal{O}}(C)| \propto \text{poly}(|C|)$

The Truth-Table!

$|T_{i\mathcal{O}}(C)| \propto N$

Non-Trivial $i\mathcal{O} + \text{LWE} \implies i\mathcal{O}$!

[BV 15, AJ 15, LPST 16, BNPW 17]
Our Approach
Our Approach

Special Encryption Scheme

\[
\text{Encrypt}(\tilde{C} = (C, r))
\]

Size of \(\tilde{C} \):

\[
| \tilde{C} | \propto N^{0.99}
\]
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Size of \tilde{C}:

$|\tilde{C}| \propto N^{0.99}$

Can learn functions

$\{U_x(\tilde{C}) = C(x)\}_{x \in [N]}$

$U_1(\tilde{C}) \; U_2(\tilde{C}) \ldots U_x(\tilde{C}) \ldots U_N(\tilde{C})$
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Can learn functions:

$$\{ U_x(\tilde{C}) = C(x) \}_{x \in [N]}$$

Truth-Table!

Size of \tilde{C}:

$$| \tilde{C} | \propto N^{0.99}$$

Learn Nothing Else
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Can learn functions

$\{U_x(\tilde{C}) = C(x)\}_{x \in [N]}$

Size of \tilde{C}:

$|\tilde{C}| \propto N^{0.99}$

Problem:

$U_x(C, r) = C(x)$ is too complex!

Truth-Table!

Learn Nothing Else
Our Approach

Special Encryption Scheme

How simple can U_x be?

Application of [Yao 86, AIK 04, L 17, AS 17]:

If PRGs with locality d exist

$3d + 1$- Local: $U_x(\tilde{C})$ depends on $3d + 1$ bits of \tilde{C}.

Degree-16 polynomial!
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Can learn “degree-16” functions

$\{U_x(\tilde{C})\}_{x \in [N]}$

$U_1(\tilde{C})$ $U_2(\tilde{C})$ $U_3(\tilde{C})$ $U_4(\tilde{C})$ $U_5(\tilde{C})$ $U_6(\tilde{C})$ $U_7(\tilde{C})$ $U_8(\tilde{C})$ $U_9(\tilde{C})$ $U_{10}(\tilde{C})$ $U_{11}(\tilde{C})$ $U_{12}(\tilde{C})$ $U_{13}(\tilde{C})$ $U_{14}(\tilde{C})$ $U_{15}(\tilde{C})$ $U_{16}(\tilde{C})$

Size of \tilde{C}:

$|\tilde{C}| \propto N^{0.99}$
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Can learn “degree-16” functions

$$\{ U_x(\tilde{C}) \}_{x \in [N]}$$

$U_1(\tilde{C})$ $U_2(\tilde{C})$ \cdots $U_N(\tilde{C})$

Recover($\{ U_x(\tilde{C}) \}_{x \in [N]}$)

Truth-Table: $(C(1), \ldots, C(N))$

Size of \tilde{C}:

$| \tilde{C} | \propto N^{0.99}$
Our Approach

Special Encryption Scheme

Encrypt($\tilde{C} = (C, r)$)

Can learn “degree-16” functions

$\{U_x(\tilde{C})\}_{x \in [N]}$

$U_1(\tilde{C}) \ U_2(\tilde{C}) \ldots U_x(\tilde{C}) \ldots U_N(\tilde{C})$

Recover($\{U_x(\tilde{C})\}_{x \in [N]}$)

Truth-Table: $(C(1), \ldots, C(N))$

Size of \tilde{C}:

$|\tilde{C}| \propto N^{0.99}$

Learn Nothing Else
Our Approach

Encrypt($\tilde{C} = (C, r)$)

Can learn “degree-16” functions

$\{U_x(\tilde{C})\}_{x\in[N]}$

$U_1(\tilde{C}) \quad U_2(\tilde{C}) \quad \ldots \quad U_x(\tilde{C}) \ldots U_N(\tilde{C})$
Our Approach

Good News:
Can handle quadratic functions
[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

Encrypt($\tilde{C} = (C, r)$)

Can learn “degree-16” functions
\[\{ U_x(\tilde{C}) \}_{x \in [N]} \]

\[U_1(\tilde{C}) \quad U_2(\tilde{C}) \quad \cdots \quad U_{N}(\tilde{C}) \]

\[U_x(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_i \cdot \tilde{C}_j \mod p \]
Our Approach

Good News:
Can handle quadratic functions
[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

\[U_x(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_i \cdot \tilde{C}_j \mod p \]

Encrypt(\(\tilde{C} = (C, r) \))

Can learn “degree-16” functions
\[\{ U_x(\tilde{C}) \}_{x \in [N]} \]

\[U_1(\tilde{C}) \ U_2(\tilde{C}) \ \cdots \ U_N(\tilde{C}) \]
Our Approach

Good News:
Can handle quadratic functions
[Lin 17, AJJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

\[U_x(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_i \cdot \tilde{C}_j \mod p \]

Encrypt(\(\tilde{C} = (C, r)\))

Can learn “degree-16” functions
\(\{ U_x(\tilde{C}) \}_{x \in [N]} \)

Problem: \(U_x \) is degree - 16!!
Our Approach

Good News:
Can handle quadratic functions
[Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on DLIN

\[U_x(\tilde{C}) = \sum_{i,j} q_{x,i,j} \tilde{C}_i \cdot \tilde{C}_j \mod p \]

Problem: \(U_x \) is degree - 16!!

Goal: Replace \(U_x \) by quadratic functions.

Encrypt(\(\tilde{C} = (C, r) \))

Can learn “degree-16” functions
\[\{ U_x(\tilde{C}) \} \text{ for } x \in [N] \]

\[U_1(\tilde{C}) \ U_2(\tilde{C}) \ldots \ U_N(\tilde{C}) \]
Our Approach

Good News:
Can handle quadratic functions [Lin 17, AJLMS 19, JLMS 19, GJLS 20, Wee 21].

Based on:
DLIN

Public: $P(\tilde{C})$

Encrypt: $S(\tilde{C})$

Problem: U_x is degree - 16!!

Goal: Replace U_x by quadratic functions.

Coefficients constant degree polynomial over P:

$$U_x(\tilde{C}) = \sum_{i,j} q_{x,i,j} S_i \cdot S_j \mod p$$

In “degree-16” functions:

$$\{ U_x(\tilde{C}) \}_{x \in [N]}$$

$$U_1(\tilde{C}) \ U_2(\tilde{C}) \ldots \ U_N(\tilde{C})$$
Use of LPN

Goal: Replace U_x by quadratic functions.
Use of LPN

Goal: Replace U_x by quadratic functions.

Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

$$f_x(S) = U_x(\tilde{C}) \quad \text{for most inputs } x \in [N]$$

Main Idea: Variable change via LPN.
Use of LPN

Goal: Replace U_x by quadratic functions.

Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

$$f_x(S) = U_x(\tilde{C}) \quad \text{for most inputs } x \in [N]$$

Main Idea: Variable change via LPN.

Step 2: Error correction via quadratic $\text{Corr}_x(M)$

$$h_x(S, M) = f_x(S) + \text{Corr}_x(M) = U_x(\tilde{C}) \quad \forall \ x \in [N]$$

Main Idea: Compression via Matrix Factorization.
Use of LPN

Goal: Replace U_x by quadratic functions.

Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

$$f_x(S) = U_x(\tilde{C}) \quad \text{for most inputs } x \in [N]$$

Main Idea: Variable change via LPN.

Step 2: Error correction via quadratic $\text{Corr}_x(M)$

$$h_x(S, M) = f_x(S) + \text{Corr}_x(M) = U_x(\tilde{C}) \quad \forall \ x \in [N]$$

Main Idea: Compression via Matrix Factorization.
Applying LPN
Applying LPN

1. Write $\tilde{C} = (C, r)$
Applying LPN

1. Write $\tilde{C} = (C, r)$
2. Encode \tilde{C} into \overrightarrow{b}
1. Write $\tilde{C} = (C, r)$

2. Encode \tilde{C} into \tilde{b}
Applying LPN

1. Write $\mathcal{C} = (C, r)$

2. Encode \mathcal{C} into b

\[A \rightarrow s + e \]
1. Write $\tilde{C} = (C, r)$

2. Encode \tilde{C} into \vec{b}
Applying LPN

1. Write $\tilde{C} = (C, r)$

2. Encode \tilde{C} into \vec{b}
Applying LPN

1. Write \(\tilde{C} = (C, r) \)

2. Encode \(\tilde{C} \) into \(\vec{b} \)

\[\vec{A}, \vec{b} \text{ encrypts } \tilde{C}! \]
1. Write $\tilde{C} = (C, r)$
2. Encode \tilde{C} into $\tilde{\vec{C}}$.

Applying LPN

Can be made public!

Encoded by much smaller \tilde{s}
Applying LPN

\[A \vec{s} + \vec{e} + \tilde{C} = \vec{b} \]
Applying LPN

Goal: Find f_x that is:

- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$
Applying LPN

Goal: Find f_x that is:

- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$$U_x(\vec{b} - A\vec{s})$$

Degree - 16 in \vec{s}
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$$U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s})$$

Degree - 16 in \vec{s}
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S.

\{f_x\}_x$ approximates $\{U_x\}_x$

\vec{e} is sparse, U_x depends on 16 bits, for any x:

$$U_x(\tilde{C} + \vec{e}) = U_x(\tilde{C})$$

with high probability (over \vec{e}).

Degree - 16 in S
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$$U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s})$$

Degree - 16 in \vec{s}
Goal: Find f_x that is:

- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$$U_x(\tilde{C} + \overrightarrow{e}) = U_x(\overrightarrow{b} - A\overrightarrow{s})$$

Degree - 16 in \overrightarrow{s}

$|\overrightarrow{s}|$ is very small
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s})$

Degree - 16 in \vec{s}

$|\vec{s}|$ is very small

Quadratic in $S = (\vec{s}, 1) \otimes 8$
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

\[U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s}) \]

Degree - 16 in \vec{s}

Quadratic in $S = (\vec{s}, 1) \otimes 8$

$| \vec{s} |$ is very small $\implies | S |$ is small
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$$U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s}) = f_x(S)$$

- Degree - 16 in \vec{s}
- Quadratic in $S = (\vec{s},1)^\otimes 8$

$|\vec{s}|$ is very small $\implies |S|$ is small

$|\vec{s}| \ll N^{0.10}$ $|S| \ll N^{0.80}$
Applying LPN

Goal: Find f_x that is:
- Quadratic in short S,
- For most x, $f_x(S) = U_x(\tilde{C})$

Consider:

$U_x(\tilde{C} + \vec{e}) = U_x(\vec{b} - A\vec{s})$

Degree - 16 in \vec{s}

\vec{s} is very small \Rightarrow $|S|$ is small

$|\vec{s}| \ll N^{0.10}$

$|S| \ll N^{0.80}$
Use of LPN

Goal: Replace U_x by quadratic functions.

Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

$$f_x(S) = U_x(\tilde{C}) \quad \text{for most inputs } x \in [N]$$

Main Idea: Variable change via Random Linear Codes.

Step 2: Error correction via quadratic $\text{Corr}_x(M)$

$$h_x(S, M) = f_x(S) + \text{Corr}_x(M) = U_x(\tilde{C}) \quad \forall \ x \in [N]$$

Main Idea: Compression via Matrix Factorization.
Use of LPN

Goal: Replace U_x by quadratic functions.

Step 1: Approximate $U_x(\tilde{C})$ by quadratic $f_x(S)$,

$$f_x(S) = U_x(\tilde{C}) \quad \text{for most inputs } x \in [N]$$

Main Idea: Variable change via Random Linear Codes.

Step 2: Error correction via quadratic $\text{Corr}_x(M)$

$$h_x(S, M) = f_x(S) + \text{Corr}_x(M) = U_x(\tilde{C}) \quad \forall \ x \in [N]$$

Main Idea: Compression via Matrix Factorization.
Step 2: Error Correction
Step 2: Error Correction

Target

$U_1(\tilde{C}) \quad U_2(\tilde{C}) \quad \ldots \quad \ldots \quad U_N(\tilde{C})$
Step 2: Error Correction

Target

\[U_1(\tilde{C}) \quad U_2(\tilde{C}) \quad \cdots \quad U_N(\tilde{C}) \]

Actual

\[f_1(S) \quad f_2(S) \quad \cdots \quad f_N(S) \]
Step 2: Error Correction

Target

\[U_1(\tilde{C}) \quad U_2(\tilde{C}) \quad \cdots \quad U_N(\tilde{C}) \]

Actual

\[f_1(S) \quad f_2(S) \quad \cdots \quad f_N(S) \]

Correction vector = **Target** - **Actual**
Step 2: Error Correction

Target

<table>
<thead>
<tr>
<th>$U_1(\tilde{C})$</th>
<th>$U_2(\tilde{C})$</th>
<th>\cdots</th>
<th>$U_N(\tilde{C})$</th>
</tr>
</thead>
</table>

Actual

<table>
<thead>
<tr>
<th>$f_1(S)$</th>
<th>$f_2(S)$</th>
<th>\cdots</th>
<th>$f_N(S)$</th>
</tr>
</thead>
</table>

Correction vector = Target - Actual

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Takeaway: Correction vector is sparse!!
Previously we showed that for any circuit C

Map: $\tilde{C} \rightarrow P, S$

Size $= \tilde{O}(N^{0.99})$

Time $= \tilde{O}(N)$

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]
Amortization

Previously we showed that for any circuit C

Map: $\tilde{C} \rightarrow P, S$

Size = $\tilde{O}(N^{0.99})$

Time = $\tilde{O}(N)$

Requires LWE [GKPVZ 13, BV 15, AJ 15, LPST 16, BNPW 16]

Main Lemma:

Map: $(\tilde{C}_1, \ldots, \tilde{C}_k) \rightarrow (P_1, P_2, \ldots, P_k, S_1, \ldots, S_k)$

Time = $\tilde{O}(Nk^{1-\epsilon} + k^c)$

Sublinear in Nk
Time Succinctness

Show that this suffices for $i\mathcal{O}$

Efficient circuit implementations for special RAM programs such as lookups and sorting.
Thank you!
Thank you!

FHE directly from these assumptions?
Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions:
Reductions to LWE/GAP-SVP for these assumptions?
Thank you!

FHE directly from these assumptions?

Complexity/algorithm questions:
Reductions to LWE/GAP-SVP for these assumptions?
LPN/PRG: Build PKE/show that they are in CoAM