One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity and Logarithmic-Size Ring Signatures in the Standard Model

Benoît Libert¹ Khoa Nguyen² Thomas Peters³ Moti Yung⁴

¹CNRS, Laboratoire LIP (CNRS, ENSL, U. Lyon, Inria, UCBL) ENS de Lyon (France)

²University of Wollongong (Australia)

³FNRS & UCLouvain, ICTEAM (Belgium)

⁴Google & Columbia University (USA)

June 1, 2022

Ring-Signature (informal) (Rivest-Shamir-Tauman; Asiacrypt'01)

RSig = (KeyGen, Sign, Verify).

Correctness: If VK \in R, Verify(R, Sign(SK, R, m)) = True

Applications: Leak secrets anonymously:

- Whistleblowing
- Cryptocurrencies

Whistleblower

Anonymity under full key exposure: Signatures remain anonymous, even if the adversary knows all secret keys of the ring.

<u>Unforgeability w.r.t. insider corruption</u>: Infeasibility of signing without a ring member's secret key.

Σ -protocols

3-move protocols with transcripts (a, Chall, z)

Common input: *P* and *V* both have a statement *x* **Private input:** *P* has a witness *w* showing that $x \in L$

- 1. P sends a commitment a to V
- 2. V sends a random challenge Chall $\in_R \{0,1\}^{\lambda}$
- 3. P sends a response z

Given (a, Chall, z), V outputs 0 or 1

- Special-Soundness: transcripts (a, Chall₁, z₁), (a, Chall₂, z₂) reveal a witness
- (n + 1)-Special-Soundness: transcripts $\{(a, Chall_i, z_i)\}_{i=1}^{n+1}$ reveal a witness
 - \Rightarrow For a false statement $x \notin L$, up to *n* bad challenges may exist

Fiat-Shamir: From Σ -protocol to Non-Interative Proof

- Compiles Σ-protocols into NIZK proofs in the ROM [BR91]
 - 1. Compute a commitment a
 - 2. Compute a random challenge Chall = $H(x, a) \in_R \{0, 1\}^{\lambda}$
 - 3. Compute a *response* z, and output $\pi = (Chall, z)$
- Does not guarantee soundness in the standard model [Bar01,GT03]

Fiat-Shamir: From Σ -protocol to Non-Interative Proof

- Compiles Σ-protocols into NIZK proofs in the ROM [BR91]
 - 1. Compute a commitment a
 - 2. Compute a random *challenge* Chall = $H(x, a) \in_R \{0, 1\}^{\lambda}$
 - 3. Compute a *response* z, and output $\pi = (Chall, z)$
- Does not guarantee soundness in the standard model [Bar01,GT03]
- Instantiable for some protocols and correlation intractable hash functions [CGH98]:
 For some relation R, finding x s.t. (x, H(x)) ∈ R is hard
- Canetti et al. (STOC'19): CIH functions for efficiently searchable relations

For any $y \in \mathcal{Y}$, at most one (efficiently computable) $x \in \mathcal{X}$ satisfies $(x, y) \in R$

 \Rightarrow Compiles trapdoor Σ -protocols into non-interactive FS proofs

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

- Assume a CRS with a trapdoor τ
- For a false statement $x \notin L$ and a first prover message a
 - τ allows computing bad challenges {Chall_i}ⁿ_{i=1} for which a valid response z_i exists
 - ▶ Allows applying CI hash functions [CLW19,PS19] when $n \in poly(\lambda)$

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

- Assume a CRS with a trapdoor τ
- For a false statement $x \notin L$ and a first prover message a
 - τ allows computing bad challenges {Chall_i}ⁿ_{i=1} for which a valid response z_i exists
 - ▶ Allows applying CI hash functions [CLW19,PS19] when $n \in poly(\lambda)$
- Generically implied by Σ -protocols with binary challenges (Ciampi *et al.*, SCN'20)
- So far, all instantiations use $O(\lambda)$ parallel repetitions

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

- Assume a CRS with a trapdoor τ
- For a false statement $x \notin L$ and a first prover message a
 - ▶ τ allows computing bad challenges {Chall_i}ⁿ_{i=1} for which a valid response z_i exists
 - ▶ Allows applying CI hash functions [CLW19,PS19] when $n \in poly(\lambda)$
- Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN'20)
- So far, all instantiations use $O(\lambda)$ parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic Σ -protocol has (n + 1)-special soundness with n > 1

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

- \blacksquare Assume a CRS with a trapdoor τ
- For a false statement $x \notin L$ and a first prover message a
 - τ allows computing bad challenges {Chall_i}ⁿ_{i=1} for which a valid response z_i exists
 - ▶ Allows applying CI hash functions [CLW19,PS19] when $n \in poly(\lambda)$
- Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN'20)
- So far, all instantiations use $O(\lambda)$ parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic Σ -protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions

Trapdoor Σ -protocol and one-shot NIZK for DCR

Let N = pq and $L := \{x = w^N \mod N^2 \mid w \in \mathbb{Z}_N^*\}$

V accepts iff $a \cdot x^{Chall} = z^N \mod N^2$

Trapdoor Σ -protocol and one-shot NIZK for DCR

Let N = pq and $L := \{x = w^N \mod N^2 \mid w \in \mathbb{Z}_N^*\}$

V accepts iff $a \cdot x^{Chall} = z^N \mod N^2$

BadChallenge(x, a): (cf. Lipmaa, FC'17)

• Compute $\alpha_x = \mathcal{D}_{p,q}(x) \in \mathbb{Z}_N$ and $\alpha_a = \mathcal{D}_{p,q}(a) \in \mathbb{Z}_N$

2 Let the congruence

$$\alpha_a + \alpha_x \cdot \text{Chall} \equiv 0 \pmod{N/\text{gcd}(\alpha_x, N)}$$

9 Output Chall = $\alpha_x^{-1} \cdot \alpha_a \mod \frac{N}{\gcd(\alpha_x, N)}$ if it fits in $\{0, \dots, 2^{\lambda} - 1\}$ and \perp otherwise.

State-of-the-art ring signatures in the standard model

- Bender-Katz-Morselli (TCC'06): generic construction from ZAPs
- Shacham-Waters (PKC'07): efficiently using a CRS, O(R)-size signatures
- Chandran-Groth-Sahai (ICALP'07): using a CRS, $O(R^{1/2})$ -size signatures
- Gonzalez (PKC'19): using a CRS, $O(R^{1/3})$ -size signatures
- Backes et al. (Eurocrypt'19): no CRS, O(log R)-size signatures
- Chatterjee et al. (Crypto'21): no CRS, O(log R)-size signatures from LWE

This paper

- Assumes a CRS; O(log R)-size signatures
- Concretely short signatures (comparable to ROM-based schemes) from DCR+LWE

Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt'15) which gives $O(\log R)$ -size in the ROM

GK15 at a high level

- Each public key is an additively homomorphic commitment to 0
- $O(\log R)$ -communication protocol showing that one-out-R commitment opens to 0

Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt'15) which gives $O(\log R)$ -size in the ROM

GK15 at a high level

- Each public key is an additively homomorphic commitment to 0
- $O(\log R)$ -communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting

• Repeating $O(\lambda / \log \lambda)$ times a small-challenge Σ -protocol fails:

Parallel repetitions yield $O((\log R)^{\lambda/\log \lambda})$ bad challenges $(O(\log R)$ per iteration)

• First idea: adapt GK15 to the DCR setting; use the DCR structure to compute bad challenges in a $O(2^{\lambda})$ -size space

Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- Trapdoor Σ -protocol showing that one-out-R commitment opens to 0
- BadChallenge computes the roots of a polynomial of degree r = O(log R) over Z_N and outputs those in {0,..., 2^λ − 1}

 \Rightarrow Efficiently enumerable relation, compatible with LWE-based CI hash functions

Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- Trapdoor Σ -protocol showing that one-out-R commitment opens to 0
- BadChallenge computes the roots of a polynomial of degree r = O(log R) over Z_N and outputs those in {0,..., 2^λ − 1}

 \Rightarrow Efficiently enumerable relation, compatible with LWE-based CI hash functions

Difficulty #2: How to prove unforgeability without the ROM?

- GK15 uses the forking lemma (not an option in the standard model)
- Second idea: argue membership instead of knowledge (no need to rewind)
 - Use (unbounded) simulation-sound arguments
 - \Rightarrow We give new DCR-based USS arguments from lossy encryption
 - Force a forgery to argue a false statement

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- $O(\log R)$ -communication protocol showing that one-out-R commitment opens to 0

Difficulty #3: How to define a true/false statement?

- In GK15, signatures commit to the signer's position $\ell^{\star} \in [R]$ in the ring
- We use dual-mode (instead of perfectly hiding) commitments
 - ▶ True statement: Ring $\{vk_1, \ldots, vk_R\}$ such that $vk_{\ell^*} = \text{com}(0; w)$
 - Security proof guesses $\ell^* \in [R]$ with proba 1/R and uses DCR to reach a game where $vk_{\ell^*} = com(1; w)$
 - \Rightarrow Forgery breaks simulation-soundness

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- O(log R)-communication protocol showing that one-out-R commitment opens to 0
 GK15: vk_ℓ ∈ {vk₁,...,vk_R}, commit to the bits of ℓ = ℓ₁ℓ₂···ℓ_r

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- O(log R)-communication protocol showing that one-out-R commitment opens to 0
 GK15: vk_ℓ ∈ {vk₁,..., vk_R}, commit to the bits of ℓ = ℓ₁ℓ₂ ··· ℓ_r

Difficulty #4: How to handle corruptions without erasures?

- Reduction is stuck when it has to explain NIZK-simulated signatures
- We only simulate signatures involving $vk_{\ell^{\star}}$ (index ℓ^{\star} is guessed in advance)

 \Rightarrow With probability 1/R, $vk_{\ell^{\star}}$ never gets corrupted

• Problem:

- Decoding ℓ^{\star} from forgery requires extractable commitments
- ▶ We need statistical NIZK in signing queries involving $vk_{\ell^{\star}}$ to keep guess for ℓ^{\star} hidden
 - \Rightarrow We build sometimes extractable perfectly hiding commitments from DCR (commitment key programmed using admissible hash functions)

Difficulty #5: How to rely on DCR for vk_{ℓ^*} and extract ℓ^* ?

- Reduction is stuck when vk_{ℓ^*} : com(0; w^*) \rightarrow com(1; w^*)
- We always need to extract $\ell^{\star} = \ell_1^{\star} \ell_2^{\star} \cdots \ell_r^{\star}$ thanks to a DCR membership trapdoor

 \Rightarrow Works in distinct groups: i.e., makes use of distinct moduli

• Problem:

▶ GK15 works by "carrying" the bits ℓ_j over the vk's to securely select vk_ℓ More precisely: the vk's are raised to the power of the responses z_i = ℓ_iChall + r_i

Difficulty #5: How to rely on DCR for vk_{ℓ^*} and extract ℓ^* ?

- Reduction is stuck when vk_{ℓ^*} : com(0; w^*) \rightarrow com(1; w^*)
- We always need to extract $\ell^{\star} = \ell_1^{\star} \ell_2^{\star} \cdots \ell_r^{\star}$ thanks to a DCR membership trapdoor

 \Rightarrow Works in distinct groups: i.e., makes use of distinct moduli

• Problem:

GK15 works by "carrying" the bits ℓ_j over the vk's to securely select vk_ℓ More precisely: the vk's are raised to the power of the responses $z_i = \ell_i$ Chall + r_i

Our adaptation of GK15

- Each public key is a DCR commitment vk = com(0; w)
- O(log R)-communication protocol showing that one-out-R commitment opens to 0
 Manage to "carry" the bits of ℓ = ℓ₁ℓ₂ ··· ℓ_r over the integers

Additional difficulty: Proving anonymity when rings contain malformed keys

- Need dual-mode commitments where the statistically hiding mode is dense in $\mathbb{Z}_{N^2}^*$
- Use com $(m; (y, w)) = (1 + N)^m \cdot h^y \cdot w^N \mod N^2$ with $h \sim U(\mathbb{Z}_{N^2}^*)$

Additional difficulty: Proving anonymity when rings contain malformed keys

- Need dual-mode commitments where the statistically hiding mode is dense in $\mathbb{Z}_{N^2}^*$
- Use com $(m; (y, w)) = (1 + N)^m \cdot h^y \cdot w^N \mod N^2$ with $h \sim U(\mathbb{Z}_{N^2}^*)$

Conclusion

 \rightarrow

- First one-shot Trapdoor Σ-protocols (i.e., with negligible soundness error)
- Ring signature with short keys: vk = com(0; (y, w)) and sk = (y, w)
- Signature size: $15 \log R + 7$ group elements (v.s. $5 \log R + 1$ in the ROM)

"Concretely short privacy-preserving signature in the standard model without pairing is feasible"

Thank you!

Questions?