
One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity
and Logarithmic-Size Ring Signatures in the Standard Model

Benôıt Libert1 Khoa Nguyen2 Thomas Peters3 Moti Yung4

1CNRS, Laboratoire LIP (CNRS, ENSL, U. Lyon, Inria, UCBL)
ENS de Lyon (France)

2University of Wollongong (Australia)

3FNRS & UCLouvain, ICTEAM (Belgium)

4Google & Columbia University (USA)

June 1, 2022

1 / 15



Ring-Signature (informal) (Rivest-Shamir-Tauman; Asiacrypt’01)

RSig = (KeyGen,Sign,Verify).

SKB Ring R (PKB ∈ R)

Message m
Signature σ

{True, False}

Correctness: If VK ∈ R, Verify(R,Sign(SK ,R,m)) = True

Applications: Leak secrets anonymously:

Whistleblowing

Cryptocurrencies

2 / 15



Whistleblower

Secret of

Anonymity under full key exposure: Signatures remain anonymous, even if the adversary
knows all secret keys of the ring.

Unforgeability w.r.t. insider corruption: Infeasibility of signing without a ring member’s
secret key.

3 / 15



Σ-protocols

3-move protocols with transcripts (a,Chall, z)

Common input: P and V both have a statement x

Private input: P has a witness w showing that x ∈ L

1. P sends a commitment a to V

2. V sends a random challenge Chall ∈R {0, 1}λ

3. P sends a response z

Given (a,Chall, z), V outputs 0 or 1

Special-Soundness: transcripts (a,Chall1, z1), (a,Chall2, z2) reveal a witness

(n + 1)-Special-Soundness: transcripts {(a,Challi , zi )}n+1
i=1 reveal a witness

⇒ For a false statement x 6∈ L, up to n bad challenges may exist

4 / 15



Fiat-Shamir: From Σ-protocol to Non-Interative Proof

Compiles Σ-protocols into NIZK proofs in the ROM [BR91]

1. Compute a commitment a

2. Compute a random challenge Chall = H(x , a) ∈R {0, 1}λ

3. Compute a response z, and output π = (Chall, z)

Does not guarantee soundness in the standard model [Bar01,GT03]

Instantiable for some protocols and correlation intractable hash functions [CGH98]:

For some relation R, finding x s.t. (x ,H(x)) ∈ R is hard

Canetti et al. (STOC’19): CIH functions for efficiently searchable relations

For any y ∈ Y, at most one (efficiently computable) x ∈ X satisfies (x , y) ∈ R

⇒ Compiles trapdoor Σ-protocols into non-interactive FS proofs

5 / 15



Fiat-Shamir: From Σ-protocol to Non-Interative Proof

Compiles Σ-protocols into NIZK proofs in the ROM [BR91]

1. Compute a commitment a

2. Compute a random challenge Chall = H(x , a) ∈R {0, 1}λ

3. Compute a response z, and output π = (Chall, z)

Does not guarantee soundness in the standard model [Bar01,GT03]

Instantiable for some protocols and correlation intractable hash functions [CGH98]:

For some relation R, finding x s.t. (x ,H(x)) ∈ R is hard

Canetti et al. (STOC’19): CIH functions for efficiently searchable relations

For any y ∈ Y, at most one (efficiently computable) x ∈ X satisfies (x , y) ∈ R

⇒ Compiles trapdoor Σ-protocols into non-interactive FS proofs

5 / 15



Fiat-Shamir from Trapdoor Σ-protocols

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

Assume a CRS with a trapdoor τ

For a false statement x 6∈ L and a first prover message a

I τ allows computing bad challenges {Challi}ni=1 for which a valid response zi exists

I Allows applying CI hash functions [CLW19,PS19] when n ∈ poly(λ)

Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN’20)

So far, all instantiations use O(λ) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Σ-protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions

6 / 15



Fiat-Shamir from Trapdoor Σ-protocols

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

Assume a CRS with a trapdoor τ

For a false statement x 6∈ L and a first prover message a

I τ allows computing bad challenges {Challi}ni=1 for which a valid response zi exists

I Allows applying CI hash functions [CLW19,PS19] when n ∈ poly(λ)

Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN’20)

So far, all instantiations use O(λ) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Σ-protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions

6 / 15



Fiat-Shamir from Trapdoor Σ-protocols

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

Assume a CRS with a trapdoor τ

For a false statement x 6∈ L and a first prover message a

I τ allows computing bad challenges {Challi}ni=1 for which a valid response zi exists

I Allows applying CI hash functions [CLW19,PS19] when n ∈ poly(λ)

Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN’20)

So far, all instantiations use O(λ) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Σ-protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions

6 / 15



Fiat-Shamir from Trapdoor Σ-protocols

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

Assume a CRS with a trapdoor τ

For a false statement x 6∈ L and a first prover message a

I τ allows computing bad challenges {Challi}ni=1 for which a valid response zi exists

I Allows applying CI hash functions [CLW19,PS19] when n ∈ poly(λ)

Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN’20)

So far, all instantiations use O(λ) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Σ-protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions

6 / 15



Trapdoor Σ-protocol and one-shot NIZK for DCR

Let N = pq and L := {x = wN mod N2 | w ∈ Z∗
N}

P
a := rN mod N2

//

��

V

��
•

��

•
Chall ∈ {0, . . . , 2λ − 1}oo

��
• z := r · wChall mod N // •

V accepts iff a · xChall = zN mod N2

BadChallenge(x , a): (cf. Lipmaa, FC’17)

1 Compute αx = Dp,q(x) ∈ ZN and αa = Dp,q(a) ∈ ZN

2 Let the congruence

αa + αx · Chall ≡ 0 (mod N
/

gcd(αx ,N))

3 Output Chall = α−1
x · αa mod N

gcd(αx ,N)
if it fits in {0, . . . , 2λ − 1} and ⊥ otherwise.

7 / 15



Trapdoor Σ-protocol and one-shot NIZK for DCR

Let N = pq and L := {x = wN mod N2 | w ∈ Z∗
N}

P
a := rN mod N2

//

��

V

��
•

��

•
Chall ∈ {0, . . . , 2λ − 1}oo

��
• z := r · wChall mod N // •

V accepts iff a · xChall = zN mod N2

BadChallenge(x , a): (cf. Lipmaa, FC’17)

1 Compute αx = Dp,q(x) ∈ ZN and αa = Dp,q(a) ∈ ZN

2 Let the congruence

αa + αx · Chall ≡ 0 (mod N
/

gcd(αx ,N))

3 Output Chall = α−1
x · αa mod N

gcd(αx ,N)
if it fits in {0, . . . , 2λ − 1} and ⊥ otherwise.

7 / 15



State-of-the-art ring signatures in the standard model

Bender-Katz-Morselli (TCC’06): generic construction from ZAPs

Shacham-Waters (PKC’07): efficiently using a CRS, O(R)-size signatures

Chandran-Groth-Sahai (ICALP’07): using a CRS, O(R1/2)-size signatures

Gonzalez (PKC’19): using a CRS, O(R1/3)-size signatures

Backes et al. (Eurocrypt’19): no CRS, O(logR)-size signatures

Chatterjee et al. (Crypto’21): no CRS, O(logR)-size signatures from LWE

This paper

Assumes a CRS; O(logR)-size signatures

Concretely short signatures (comparable to ROM-based schemes) from DCR+LWE

8 / 15



Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(logR)-size in the ROM

GK15 at a high level

Each public key is an additively homomorphic commitment to 0

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting

Repeating O(λ/ log λ) times a small-challenge Σ-protocol fails:

Parallel repetitions yield O((logR)λ/ log λ) bad challenges (O(logR) per iteration)

First idea: adapt GK15 to the DCR setting; use the DCR structure to compute
bad challenges in a O(2λ)-size space

9 / 15



Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(logR)-size in the ROM

GK15 at a high level

Each public key is an additively homomorphic commitment to 0

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting

Repeating O(λ/ log λ) times a small-challenge Σ-protocol fails:

Parallel repetitions yield O((logR)λ/ log λ) bad challenges (O(logR) per iteration)

First idea: adapt GK15 to the DCR setting; use the DCR structure to compute
bad challenges in a O(2λ)-size space

9 / 15



Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

Trapdoor Σ-protocol showing that one-out-R commitment opens to 0

BadChallenge computes the roots of a polynomial of degree r = O(logR) over ZN

and outputs those in {0, . . . , 2λ − 1}

⇒ Efficiently enumerable relation, compatible with LWE-based CI hash functions

Difficulty #2: How to prove unforgeability without the ROM?

GK15 uses the forking lemma (not an option in the standard model)

Second idea: argue membership instead of knowledge (no need to rewind)

I Use (unbounded) simulation-sound arguments

⇒ We give new DCR-based USS arguments from lossy encryption

I Force a forgery to argue a false statement

10 / 15



Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

Trapdoor Σ-protocol showing that one-out-R commitment opens to 0

BadChallenge computes the roots of a polynomial of degree r = O(logR) over ZN

and outputs those in {0, . . . , 2λ − 1}

⇒ Efficiently enumerable relation, compatible with LWE-based CI hash functions

Difficulty #2: How to prove unforgeability without the ROM?

GK15 uses the forking lemma (not an option in the standard model)

Second idea: argue membership instead of knowledge (no need to rewind)

I Use (unbounded) simulation-sound arguments

⇒ We give new DCR-based USS arguments from lossy encryption

I Force a forgery to argue a false statement

10 / 15



Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #3: How to define a true/false statement?

In GK15, signatures commit to the signer’s position `? ∈ [R] in the ring

We use dual-mode (instead of perfectly hiding) commitments

I True statement: Ring {vk1, . . . , vkR} such that vk`? = com(0 ;w)

I Security proof guesses `? ∈ [R] with proba 1/R and uses DCR to reach a game where
vk`? = com(1 ;w)

⇒ Forgery breaks simulation-soundness

11 / 15



Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I GK15: vk` ∈ {vk1, . . . , vkR}, commit to the bits of ` = `1`2 · · · `r

Difficulty #4: How to handle corruptions without erasures?

Reduction is stuck when it has to explain NIZK-simulated signatures

We only simulate signatures involving vk`? (index `? is guessed in advance)

⇒ With probability 1/R, vk`? never gets corrupted

Problem:

I Decoding `? from forgery requires extractable commitments

I We need statistical NIZK in signing queries involving vk`? to keep guess for `? hidden

⇒ We build sometimes extractable perfectly hiding commitments from DCR
(commitment key programmed using admissible hash functions)

12 / 15



Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I GK15: vk` ∈ {vk1, . . . , vkR}, commit to the bits of ` = `1`2 · · · `r

Difficulty #4: How to handle corruptions without erasures?

Reduction is stuck when it has to explain NIZK-simulated signatures

We only simulate signatures involving vk`? (index `? is guessed in advance)

⇒ With probability 1/R, vk`? never gets corrupted

Problem:

I Decoding `? from forgery requires extractable commitments

I We need statistical NIZK in signing queries involving vk`? to keep guess for `? hidden

⇒ We build sometimes extractable perfectly hiding commitments from DCR
(commitment key programmed using admissible hash functions)

12 / 15



Short Log-Size Ring signatures (cont.)

Difficulty #5: How to rely on DCR for vk`? and extract `??

Reduction is stuck when vk`? : com(0 ;w?)→ com(1 ;w?)

We always need to extract `? = `?1`
?
2 · · · `?r thanks to a DCR membership trapdoor

⇒ Works in distinct groups: i.e., makes use of distinct moduli

Problem:

I GK15 works by “carrying” the bits `j over the vk’s to securely select vk`

More precisely: the vk’s are raised to the power of the responses zj = `jChall + rj

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I Manage to “carry” the bits of ` = `1`2 · · · `r over the integers

13 / 15



Short Log-Size Ring signatures (cont.)

Difficulty #5: How to rely on DCR for vk`? and extract `??

Reduction is stuck when vk`? : com(0 ;w?)→ com(1 ;w?)

We always need to extract `? = `?1`
?
2 · · · `?r thanks to a DCR membership trapdoor

⇒ Works in distinct groups: i.e., makes use of distinct moduli

Problem:

I GK15 works by “carrying” the bits `j over the vk’s to securely select vk`

More precisely: the vk’s are raised to the power of the responses zj = `jChall + rj

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I Manage to “carry” the bits of ` = `1`2 · · · `r over the integers

13 / 15



Additional difficulty: Proving anonymity when rings contain malformed keys

Need dual-mode commitments where the statistically hiding mode is dense in Z∗
N2

Use com(m; (y ,w)) = (1 + N)m · hy · wN mod N2 with h ∼ U(Z∗
N2)

Conclusion

First one-shot Trapdoor Σ-protocols (i.e., with negligible soundness error)

Ring signature with short keys: vk = com(0 ; (y ,w)) and sk = (y ,w)

Signature size: 15 logR + 7 group elements (v.s. 5 logR + 1 in the ROM)

−→

“Concretely short privacy-preserving signature

in the standard model without pairing is feasible”

14 / 15



Additional difficulty: Proving anonymity when rings contain malformed keys

Need dual-mode commitments where the statistically hiding mode is dense in Z∗
N2

Use com(m; (y ,w)) = (1 + N)m · hy · wN mod N2 with h ∼ U(Z∗
N2)

Conclusion

First one-shot Trapdoor Σ-protocols (i.e., with negligible soundness error)

Ring signature with short keys: vk = com(0 ; (y ,w)) and sk = (y ,w)

Signature size: 15 logR + 7 group elements (v.s. 5 logR + 1 in the ROM)

−→

“Concretely short privacy-preserving signature

in the standard model without pairing is feasible”

14 / 15



Thank you!

Questions?

15 / 15


	Introduction

