One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity
and Logarithmic-Size Ring Signatures in the Standard Model

Benoit Libert! Khoa Nguyen? Thomas Peters® Moti Yung®

1CNRS, Laboratoire LIP (CNRS, ENSL, U. Lyon, Inria, UCBL)
ENS de Lyon (France)
2University of Wollongong (Australia)

3FNRS & UCLouvain, ICTEAM (Belgium)

4Google & Columbia University (USA)

June 1, 2022

1/15



Ring-Signature (informal) (Rivest-Shamir-Tauman; Asiacrypt'01)

RSig = (KeyGen, Sign, Verify).

SKg Ring R (PKg € R)

Signature o
Message m ———— it
{True, False}

Correctness: If VK € R, Verify(R, Sign(SK, R, m)) = True

Applications: Leak secrets anonymously:
o Whistleblowing

o Cryptocurrencies

2/15



Whistleblower

Anonymity under full key exposure: Signatures remain anonymous, even if the adversary
knows all secret keys of the ring.

Unforgeability w.r.t. insider corruption: Infeasibility of signing without a ring member’s
secret key.

3/15



> -protocols

3-move protocols with transcripts (a, Chall, z)

Common input: P and V both have a statement x

Private input: P has a witness w showing that x € L

1. P sends a commitment a to V
2. V sends a random challenge Chall €g {0,1}*

3. P sends a response z

Given (a, Chall, z), V outputs 0 or 1

@ Special-Soundness: transcripts (a, Chally, z1), (a, Chally, z) reveal a witness
o (n+ 1)-Special-Soundness: transcripts {(a, Chall;, z))}7f] reveal a witness

= For a false statement x ¢ L, up to n bad challenges may exist

4/15



Fiat-Shamir: From X-protocol to Non-Interative Proof

o Compiles X-protocols into NIZK proofs in the ROM [BR91]

1. Compute a commitment a
2. Compute a random challenge Chall = H(x, a) € {0,1}*

3. Compute a response z, and output © = (Chall, z)

@ Does not guarantee soundness in the standard model [Bar01,GT03]

5/15



Fiat-Shamir: From X-protocol to Non-Interative Proof

o Compiles X-protocols into NIZK proofs in the ROM [BR91]

1. Compute a commitment a
2. Compute a random challenge Chall = H(x, a) €g {0,1}*

3. Compute a response z, and output © = (Chall, z)

@ Does not guarantee soundness in the standard model [Bar01,GT03]

o Instantiable for some protocols and correlation intractable hash functions [CGH98]:

For some relation R, finding x s.t. (x, H(x)) € R is hard
o Canetti et al. (STOC’19): CIH functions for efficiently searchable relations
For any y € Y, at most one (efficiently computable) x € X satisfies (x,y) € R

= Compiles trapdoor X -protocols into non-interactive FS proofs

5/15



Fiat-Shamir from Trapdoor X-protocols

Trapdoor X-protocols [CLW19]: for unique/enumerable relations

®m Assume a CRS with a trapdoor 7

m For a false statement x & L and a first prover message a

> 7 allows computing bad challenges {Chall;}?_; for which a valid response z; exists

> Allows applying Cl hash functions [CLW19,PS19] when n € poly(\)

6/15



Fiat-Shamir from Trapdoor X-protocols

Trapdoor X-protocols [CLW19]: for unique/enumerable relations

®m Assume a CRS with a trapdoor 7

m For a false statement x & L and a first prover message a

> 7 allows computing bad challenges {Chall;}?_; for which a valid response z; exists

> Allows applying Cl hash functions [CLW19,PS19] when n € poly(\)

m Generically implied by X-protocols with binary challenges (Ciampi et al., SCN’20)

m So far, all instantiations use O(X) parallel repetitions

6/15



Fiat-Shamir from Trapdoor X-protocols

Trapdoor X-protocols [CLW19]: for unique/enumerable relations

®m Assume a CRS with a trapdoor 7

m For a false statement x & L and a first prover message a

> 7 allows computing bad challenges {Chall;}?_; for which a valid response z; exists

> Allows applying Cl hash functions [CLW19,PS19] when n € poly(\)

m Generically implied by X-protocols with binary challenges (Ciampi et al., SCN’20)

m So far, all instantiations use O(X) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Y -protocol has (n + 1)-special soundness with n > 1

6/15



Fiat-Shamir from Trapdoor X-protocols

Trapdoor X-protocols [CLW19]: for unique/enumerable relations
®m Assume a CRS with a trapdoor 7

m For a false statement x & L and a first prover message a
> 7 allows computing bad challenges {Chall;}?_; for which a valid response z; exists
> Allows applying Cl hash functions [CLW19,PS19] when n € poly(\)

m Generically implied by X-protocols with binary challenges (Ciampi et al., SCN’20)

m So far, all instantiations use O(X) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Y -protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions J

6/15



Trapdoor X-protocol and one-shot NIZK for DCR

Let N = pg and L := {x = w" mod N? | w € Zj}

a:=r" mod N?

Chall € {0,...,2* — 1}

e<—eoe<—T

z:=r -w"" mod N

V accepts iff a- x®" = zN mod N?

e —<

7/15



Trapdoor X-protocol and one-shot NIZK for DCR
Let N = pg and L := {x = w" mod N? | w € Zj}

a:=r" mod N?

Chall € {0,...,2* — 1}

z:=r -w"" mod N

e<—eoe<—T
e—e<—<

V accepts iff a- x®" = zN mod N?

BadChallenge(x, a): (cf. Lipmaa, FC’17)

@ Compute ax = Dpq(x) € Zn and a, = Dp4(a) € Zn

@ Let the congruence

@2+ ax - Chall=0 (mod N/ged(ax, N))

© Output Chall = a;! - @, mod gcdi if it fits in {0, . — 1} and L otherwise.

7/15



State-of-the-art ring signatures in the standard model

Bender-Katz-Morselli (TCC'06): generic construction from ZAPs

Shacham-Waters (PKC'07): efficiently using a CRS, O(R)-size signatures

Chandran-Groth-Sahai (ICALP’07): using a CRS, O(R'/?)-size signatures

Gonzalez (PKC'19): using a CRS, O(RY/®)-size signatures
m Backes et al. (Eurocrypt'19): no CRS, O(log R)-size signatures

m Chatterjee et al. (Crypto'21): no CRS, O(log R)-size signatures from LWE

This paper
o Assumes a CRS; O(log R)-size signatures
o Concretely short signatures (comparable to ROM-based schemes) from DCR+LWE

8/15



Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(log R)-size in the ROM

GK15 at a high level

@ Each public key is an additively homomorphic commitment to 0

@ O(log R)-communication protocol showing that one-out-R commitment opens to 0

9/15



Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(log R)-size in the ROM

GK15 at a high level
o Each public key is an additively homomorphic commitment to 0

@ O(log R)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting
@ Repeating O()\/ log \) times a small-challenge ¥-protocol fails:

Parallel repetitions yield O((log R)*/'°6*) bad challenges (O(log R) per iteration)

o First idea: adapt GK15 to the DCR setting; use the DCR structure to compute
bad challenges in a O(2*)-size space

9/15




Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15
o Each public key is a DCR commitment vk = com(0; w)

@ Trapdoor X-protocol showing that one-out-R commitment opens to 0

o BadChallenge computes the roots of a polynomial of degree r = O(log R) over Zy
and outputs those in {0,...,2* — 1}

= Efficiently enumerable relation, compatible with LWE-based Cl hash functions

10/15



Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15
o Each public key is a DCR commitment vk = com(0; w)

@ Trapdoor X-protocol showing that one-out-R commitment opens to 0

o BadChallenge computes the roots of a polynomial of degree r = O(log R) over Zy
and outputs those in {0,...,2* — 1}

= Efficiently enumerable relation, compatible with LWE-based Cl hash functions

Difficulty #2: How to prove unforgeability without the ROM?

@ GK15 uses the forking lemma (not an option in the standard model)
e Second idea: argue membership instead of knowledge (no need to rewind)

Use (unbounded) simulation-sound arguments

= We give new DCR-based USS arguments from lossy encryption

Force a forgery to argue a false statement )

10/15



Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

@ Each public key is a DCR commitment vk = com(0; w)

@ O(log R)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #3: How to define a true/false statement?

@ In GK15, signatures commit to the signer's position £* € [R] in the ring
@ We use dual-mode (instead of perfectly hiding) commitments

True statement: Ring {vki, ..., vkg} such that vkyx = com(0; w)

Security proof guesses £* € [R] with proba 1/R and uses DCR to reach a game where
vkex = com(1; w)

= Forgery breaks simulation-soundness

11/15




Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

@ Each public key is a DCR commitment vk = com(0; w)
o O(log R)-communication protocol showing that one-out-R commitment opens to 0
GK15: vky € {vki,...,vkg}, commit to the bits of £ = £145--- ¢,

12/15



Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

@ Each public key is a DCR commitment vk = com(0; w)
o O(log R)-communication protocol showing that one-out-R commitment opens to 0
GK15: vky € {vki,...,vkg}, commit to the bits of £ = £145--- ¢,

Difficulty #4: How to handle corruptions without erasures?
@ Reduction is stuck when it has to explain NIZK-simulated signatures
o We only simulate signatures involving vkex (index £* is guessed in advance)
= With probability 1/R, vk~ never gets corrupted

@ Problem:

Decoding ¢* from forgery requires extractable commitments
We need statistical NIZK in signing queries involving vkyx to keep guess for £* hidden

= We build sometimes extractable perfectly hiding commitments from DCR
(commitment key programmed using admissible hash functions)

12/15



Short Log-Size Ring signatures (cont.)

Difficulty #5: How to rely on DCR for vky+ and extract £*7?
@ Reduction is stuck when vkex: com(0; w*) — com(1; w*)
@ We always need to extract £* = £745 - - - £; thanks to a DCR membership trapdoor
= Works in distinct groups: i.e., makes use of distinct moduli

@ Problem:

GK15 works by “carrying” the bits £; over the vk's to securely select vk,
More precisely: the vk's are raised to the power of the responses z; = £;Chall + r;

13/15



Short Log-Size Ring signatures (cont.)

Difficulty #5: How to rely on DCR for vky+ and extract £*7?
@ Reduction is stuck when vkex: com(0; w*) — com(1; w*)
@ We always need to extract £* = £745 - - - £; thanks to a DCR membership trapdoor
= Works in distinct groups: i.e., makes use of distinct moduli

@ Problem:

GK15 works by “carrying” the bits £; over the vk's to securely select vk,
More precisely: the vk's are raised to the power of the responses z; = £;Chall + r;

Our adaptation of GK15

@ Each public key is a DCR commitment vk = com(0; w)
@ O(log R)-communication protocol showing that one-out-R commitment opens to 0
Manage to “carry” the bits of £ = ¢145 - - - £, over the integers

13/15



Additional difficulty: Proving anonymity when rings contain malformed keys
@ Need dual-mode commitments where the statistically hiding mode is dense in Zj,

o Use com(m; (y,w)) = (L+ N)™- b - w" mod N? with h ~ U(Z},)

14 /15



Additional difficulty: Proving anonymity when rings contain malformed keys
@ Need dual-mode commitments where the statistically hiding mode is dense in Zj,

o Use com(m; (y,w)) = (L+ N)™- b - w" mod N? with h ~ U(Z},)

Conclusion
@ First one-shot Trapdoor X-protocols (i.e., with negligible soundness error)
e Ring signature with short keys: vk = com(0; (y,w)) and sk = (y, w)
@ Signature size: 15log R + 7 group elements (v.s. 5log R + 1 in the ROM)

—

“Concretely short privacy-preserving signature
in the standard model without pairing is feasible”

14 /15



Thank you!

Questions?

15/15



	Introduction

