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Ring-Signature (informal) (Rivest-Shamir-Tauman; Asiacrypt’01)

RSig = (KeyGen,Sign,Verify).

SKB Ring R (PKB ∈ R)

Message m
Signature σ

{True, False}

Correctness: If VK ∈ R, Verify(R,Sign(SK ,R,m)) = True

Applications: Leak secrets anonymously:

Whistleblowing

Cryptocurrencies
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Whistleblower

Secret of

Anonymity under full key exposure: Signatures remain anonymous, even if the adversary
knows all secret keys of the ring.

Unforgeability w.r.t. insider corruption: Infeasibility of signing without a ring member’s
secret key.
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Σ-protocols

3-move protocols with transcripts (a,Chall, z)

Common input: P and V both have a statement x

Private input: P has a witness w showing that x ∈ L

1. P sends a commitment a to V

2. V sends a random challenge Chall ∈R {0, 1}λ

3. P sends a response z

Given (a,Chall, z), V outputs 0 or 1

Special-Soundness: transcripts (a,Chall1, z1), (a,Chall2, z2) reveal a witness

(n + 1)-Special-Soundness: transcripts {(a,Challi , zi )}n+1
i=1 reveal a witness

⇒ For a false statement x 6∈ L, up to n bad challenges may exist
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Fiat-Shamir: From Σ-protocol to Non-Interative Proof

Compiles Σ-protocols into NIZK proofs in the ROM [BR91]

1. Compute a commitment a

2. Compute a random challenge Chall = H(x , a) ∈R {0, 1}λ

3. Compute a response z, and output π = (Chall, z)

Does not guarantee soundness in the standard model [Bar01,GT03]

Instantiable for some protocols and correlation intractable hash functions [CGH98]:

For some relation R, finding x s.t. (x ,H(x)) ∈ R is hard

Canetti et al. (STOC’19): CIH functions for efficiently searchable relations

For any y ∈ Y, at most one (efficiently computable) x ∈ X satisfies (x , y) ∈ R

⇒ Compiles trapdoor Σ-protocols into non-interactive FS proofs
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Fiat-Shamir from Trapdoor Σ-protocols

Trapdoor Σ-protocols [CLW19]: for unique/enumerable relations

Assume a CRS with a trapdoor τ

For a false statement x 6∈ L and a first prover message a

I τ allows computing bad challenges {Challi}ni=1 for which a valid response zi exists

I Allows applying CI hash functions [CLW19,PS19] when n ∈ poly(λ)

Generically implied by Σ-protocols with binary challenges (Ciampi et al., SCN’20)

So far, all instantiations use O(λ) parallel repetitions

Warning: number of bad challenges blows up with parallel repetitions if the basic
Σ-protocol has (n + 1)-special soundness with n > 1

Our goal

Standard-model instantiations in one shot under standard assumptions
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Trapdoor Σ-protocol and one-shot NIZK for DCR

Let N = pq and L := {x = wN mod N2 | w ∈ Z∗
N}

P
a := rN mod N2

//

��

V

��
•

��

•
Chall ∈ {0, . . . , 2λ − 1}oo

��
• z := r · wChall mod N // •

V accepts iff a · xChall = zN mod N2

BadChallenge(x , a): (cf. Lipmaa, FC’17)

1 Compute αx = Dp,q(x) ∈ ZN and αa = Dp,q(a) ∈ ZN

2 Let the congruence

αa + αx · Chall ≡ 0 (mod N
/

gcd(αx ,N))

3 Output Chall = α−1
x · αa mod N

gcd(αx ,N)
if it fits in {0, . . . , 2λ − 1} and ⊥ otherwise.
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State-of-the-art ring signatures in the standard model

Bender-Katz-Morselli (TCC’06): generic construction from ZAPs

Shacham-Waters (PKC’07): efficiently using a CRS, O(R)-size signatures

Chandran-Groth-Sahai (ICALP’07): using a CRS, O(R1/2)-size signatures

Gonzalez (PKC’19): using a CRS, O(R1/3)-size signatures

Backes et al. (Eurocrypt’19): no CRS, O(logR)-size signatures

Chatterjee et al. (Crypto’21): no CRS, O(logR)-size signatures from LWE

This paper

Assumes a CRS; O(logR)-size signatures

Concretely short signatures (comparable to ROM-based schemes) from DCR+LWE
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Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(logR)-size in the ROM

GK15 at a high level

Each public key is an additively homomorphic commitment to 0

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting

Repeating O(λ/ log λ) times a small-challenge Σ-protocol fails:

Parallel repetitions yield O((logR)λ/ log λ) bad challenges (O(logR) per iteration)

First idea: adapt GK15 to the DCR setting; use the DCR structure to compute
bad challenges in a O(2λ)-size space

9 / 15



Short Log-Size Ring signatures in the CRS model

Adaptation of Groth-Kohlweiss (Eurocrypt’15) which gives O(logR)-size in the ROM

GK15 at a high level

Each public key is an additively homomorphic commitment to 0

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #1: computing bad challenges in the DLOG setting

Repeating O(λ/ log λ) times a small-challenge Σ-protocol fails:

Parallel repetitions yield O((logR)λ/ log λ) bad challenges (O(logR) per iteration)

First idea: adapt GK15 to the DCR setting; use the DCR structure to compute
bad challenges in a O(2λ)-size space

9 / 15



Short Log-Size Ring signatures: High-level ideas

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

Trapdoor Σ-protocol showing that one-out-R commitment opens to 0

BadChallenge computes the roots of a polynomial of degree r = O(logR) over ZN

and outputs those in {0, . . . , 2λ − 1}

⇒ Efficiently enumerable relation, compatible with LWE-based CI hash functions

Difficulty #2: How to prove unforgeability without the ROM?

GK15 uses the forking lemma (not an option in the standard model)

Second idea: argue membership instead of knowledge (no need to rewind)

I Use (unbounded) simulation-sound arguments

⇒ We give new DCR-based USS arguments from lossy encryption

I Force a forgery to argue a false statement
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Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0

Difficulty #3: How to define a true/false statement?

In GK15, signatures commit to the signer’s position `? ∈ [R] in the ring

We use dual-mode (instead of perfectly hiding) commitments

I True statement: Ring {vk1, . . . , vkR} such that vk`? = com(0 ;w)

I Security proof guesses `? ∈ [R] with proba 1/R and uses DCR to reach a game where
vk`? = com(1 ;w)

⇒ Forgery breaks simulation-soundness
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Short Log-Size Ring signatures (cont.)

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I GK15: vk` ∈ {vk1, . . . , vkR}, commit to the bits of ` = `1`2 · · · `r

Difficulty #4: How to handle corruptions without erasures?

Reduction is stuck when it has to explain NIZK-simulated signatures

We only simulate signatures involving vk`? (index `? is guessed in advance)

⇒ With probability 1/R, vk`? never gets corrupted

Problem:

I Decoding `? from forgery requires extractable commitments

I We need statistical NIZK in signing queries involving vk`? to keep guess for `? hidden

⇒ We build sometimes extractable perfectly hiding commitments from DCR
(commitment key programmed using admissible hash functions)
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Short Log-Size Ring signatures (cont.)

Difficulty #5: How to rely on DCR for vk`? and extract `??

Reduction is stuck when vk`? : com(0 ;w?)→ com(1 ;w?)

We always need to extract `? = `?1`
?
2 · · · `?r thanks to a DCR membership trapdoor

⇒ Works in distinct groups: i.e., makes use of distinct moduli

Problem:

I GK15 works by “carrying” the bits `j over the vk’s to securely select vk`

More precisely: the vk’s are raised to the power of the responses zj = `jChall + rj

Our adaptation of GK15

Each public key is a DCR commitment vk = com(0 ;w)

O(logR)-communication protocol showing that one-out-R commitment opens to 0
I Manage to “carry” the bits of ` = `1`2 · · · `r over the integers
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Additional difficulty: Proving anonymity when rings contain malformed keys

Need dual-mode commitments where the statistically hiding mode is dense in Z∗
N2

Use com(m; (y ,w)) = (1 + N)m · hy · wN mod N2 with h ∼ U(Z∗
N2)

Conclusion

First one-shot Trapdoor Σ-protocols (i.e., with negligible soundness error)

Ring signature with short keys: vk = com(0 ; (y ,w)) and sk = (y ,w)

Signature size: 15 logR + 7 group elements (v.s. 5 logR + 1 in the ROM)

−→

“Concretely short privacy-preserving signature

in the standard model without pairing is feasible”
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Thank you!

Questions?
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