Mitaka

A Simpler, Parallelizable, Maskable Variant of Falcon

Thomas Espitau, Pierre-Alain Fouque, Francois Gérard, Melissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, Yang Yu NTT へ AARHUS UNIVERSITET
 (かだね ())
 (前葉大掌 Teinghua University
 ()

UNIVERSITÉ DU

Eurocrypt 2022

Lattice signatures

Lattice-based signatures in NIST's call

Two finalists among the three:

FALCON

"Hash-and-sign" in lattices [GPV'08] + NTRU trapdoors [DLP'14]

✓ compact, fast

× restricted parameter set, quite hard to implement and protect against side-channels

CRYSTALS-DILITHIUM

Fiat-Shamir "with abort" [Lyu12] + module lattices

× larger bandwith

✓ large range of parameter sets, easier to implement and protect against side-channels

Two finalists among the three:

FALCON

"Hash-and-sign" in lattices [GPV'08] + NTRU trapdoors [DLP'14]

CRYSTALS-DILITHIUM

Fiat-Shamir "with abort" [Lyu12] + module lattices

Introducing: [Mitaka]

trying to reach best of both worlds

✓ compact, fast

 \checkmark large range of parameters sets

 ✓ easier to implement and protect against side-channels
 ✓ implementable in fixed-point

NTRU lattices: free rank 2 modules over cyclotomic ring

Quasi-linear thanks to the ring but

- Few parameter sets
- Complicated implementation
- Complicated masking

Hash-and-sign over lattices

The GPV Framework [GPV'08]

Simplified Sign_{sk, σ}(msg) :

- 1. $\mathbf{m} = \mathcal{H}(\mathsf{msg})$
- 2. $\mathbf{v} \leftarrow \text{GaussianSampler}(\mathbf{sk}, \mathbf{m}, \sigma)$
- 3. Signature: $\mathbf{s} = \mathbf{m} \mathbf{v}$.

Simplified $Verif_{\mathcal{L}=\mathbf{pk}}(msg, \mathbf{s})$:

- 1. If $\|\mathbf{s}\|$ too big, reject.
- 2. If $\mathbf{m} \mathbf{s} \notin \mathcal{L}$, reject.
- 3. Accept.

The GPV Framework [GPV'08]

Simplified Sign_{sk, σ}(msg) :

- 1. $\mathbf{m} = \mathcal{H}(\mathsf{msg})$
- 2. $\mathbf{v} \leftarrow \text{GaussianSampler}(\mathbf{sk}, \mathbf{m}, \sigma)$
- 3. Signature: $\mathbf{s} = \mathbf{m} \mathbf{v}$.

Simplified $Verif_{\mathcal{L}=\mathbf{pk}}(msg, \mathbf{s})$:

- 1. If $\|\mathbf{s}\|$ too big, reject.
- 2. If $\mathbf{m} \mathbf{s} \notin \mathcal{L}$, reject.
- 3. Accept.

Requirements

 \mathbf{CVP}_{γ} hard $\Rightarrow \sigma$ small $\Rightarrow \mathbf{sk}$ has short vectors

Hard to compute **sk** just from **pk** Easy to generate **pk** just from **sk**

sk is called *"a trapdoor"* Generating trapdoors is an interesting challenge [HPSS'00, AP'09, MP'12, DLP'14, CGM'19, GL'20, CPSWX'20...]

Sampling over (structured) lattices

Lattice Gaussian samplers = decoding + randomization

CVP solvers

Babai's Round-off:

$$\mathbf{u} = \mathbf{B} \lceil \mathbf{B}^{-1} \mathbf{t} \rfloor$$

Babai's Nearest Plane:

"adaptive" choice of hyperplanes

Gaussian samplers

Peikert sampler:

Randomize the whole integer rounding

Klein sampler:

Randomize each hyperplane choice

Ducas-Prest hybrid sampler: in between for modules over rings, where rounding is replaced by rounded-sampling over the ring.

	Quality	Pros	Cons
Peikert	$s_1(B)$ (largest sing. value)	fast simple	worst quality (<i>lower security</i>)
Klein	$max_{\mathfrak{i}} \ \widetilde{b_{\mathfrak{i}}} \ $ (Gram-Schmidt)	best quality (higher security)	slower more involved
Hybrid	$s_1(\widetilde{\mathbf{B}})$	Good tradeoffs when ℜ has a <i>good basis</i>	

When $\Re = \mathbb{Z}[x]/(x^d + 1)$, $d = 2^n$, and for NTRU q-ary lattices, qualities are $\alpha \sqrt{q}$

Asymptotic quality

Concrete bitsecurity as a function of α , d = 512

Sampler	$\alpha \sqrt{q}$	Best achievable α
Peikert	$s_1(\mathbf{B})$	$O(d^{1/4}\sqrt{\log d})$
Hybrid	$s_1(\widetilde{\mathbf{B}})$	$O(d^{1/8}\log^{1/4}d)$
Falcon	$max_{\mathfrak{i}} \ \widetilde{\mathbf{b}_{\mathfrak{i}}} \ $	O(1)

Improving the Keygen

NTRU Trapdoors for signatures

Trapdoor

Short basis B of $\mathcal{L}_{NTRU}(a)$ with good quality wrt. a sampler.

$$\underbrace{\begin{bmatrix} f & g \\ ? & ? \end{bmatrix}}_{=B} \begin{bmatrix} a \\ -1 \end{bmatrix} = 0 [q]$$

Computing B

- Sample f, g Gaussians so that $\|(f,g)\|\approx \sqrt{q}$
- Complete the basis: *unimodularity* problem: Euclid+geometry

Achieve good quality

Sample (f, g)'s until:

- Falcon: $\max(\|\widetilde{\boldsymbol{b}}_1\|,\|\widetilde{\boldsymbol{b}}_{d+1}\|)\approx 1.17\sqrt{q}$
- Hybrid: $s_1(\widetilde{\mathbf{B}})$ as close as possible to \sqrt{q}

Both metrics can be computed just with f, g

(naive) KeyGen:

1) Do

$$\begin{split} \text{f, g} &\leftarrow D_{\mathbb{Z}^d, \sqrt{\frac{q}{2d}}}\\ \text{Until f inv. mod } q \text{ And } \|\text{f, g}\| \leqslant 1.17\sqrt{q}; \end{split}$$

- 2) (F) quality check: $\|\widetilde{\mathbf{b}}_{d+1}\| \leqslant 1.17\sqrt{q}$? else restart;

(naive) KeyGen:

1) **Do**

$$\begin{split} \text{f, g} &\leftarrow D_{\mathbb{Z}^d, \sqrt{\frac{q}{2d}}}\\ \text{Until f inv. mod } q \text{ And } \|\text{f, g}\| \leqslant 1.17\sqrt{q}; \end{split}$$

- 2) (F) quality check: $\|\widetilde{\mathbf{b}}_{d+1}\| \leqslant 1.17\sqrt{q}$? else restart;

(naive) KeyGen:

Do f, g ← D_{Z^d, √^q/_{2d}} Until f inv. mod q And ||f, g|| ≤ 1.17√q; (F) quality check: || b d+1|| ≤ 1.17√q ? else restart;

- 2-bis) (M) quality check: $s_1(\tilde{\mathbf{B}}) \leqslant 2.05\sqrt{q}$? else restart;

(naive) KeyGen:

1) **Do**

- $\begin{array}{l} \mathsf{f},\mathsf{g}\leftarrow\mathsf{D}_{\mathbb{Z}^{d},\sqrt{\frac{q}{2d}}}\\ \text{Until }\mathsf{f} \text{ inv. mod }\mathsf{q} \text{ And }\|\mathsf{f},\mathsf{g}\|\leqslant 1.17\sqrt{q}; \end{array}$
- 2) (F) quality check: $\|\widetilde{\mathbf{b}}_{d+1}\| \leqslant 1.17\sqrt{q}$? else restart;
- 2-bis) (M) quality check: $s_1(\widetilde{\textbf{B}})\leqslant 2.05\sqrt{q}$? else restart;
 - 4) $\mathbf{b}_{d+1} \leftarrow \mathsf{NTRUSolve}(f, g, q);$ Compute all needed data; Output (pk, sk).

- This already happens often in Falcon
- Need ***a lot*** of tries to reach 2.05
- And randomness is expensive.

(naive) KeyGen:

1) **Do**

- f, $g \leftarrow D_{\mathbb{Z}^{d}, \sqrt{\frac{q}{2d}}}$ Until f inv. mod q And $||f, g|| \leq 1.17\sqrt{q}$; 2) (F) quality check: $\|\widetilde{\mathbf{b}}_{d+1}\| \leq 1.17\sqrt{q}$? else restart:
- 2-bis) (M) quality check: $s_1(\widetilde{\mathbf{B}}) \leq 2.05\sqrt{q}$? else restart;
 - 4) b_{d+1} ← NTRUSolve(f, g, q); Compute all needed data; Output (pk, sk).

Our solution

- + Reuse randomness
- + Galois automorphisms
- = "Free" blow-up of search-space
- better trapdoors in reasonable time
 better trapdoors in reasonable
 better trapdoors in reasonable
 better trapdoors in reasonable
 better trapdoors
 better trapdoors

Masking Mitaka

t-probing attacker model [ISW03]

- Adversary obtains t intermediate values of the computation
- Successfully models practical noisy side-channel leakage [DDF14]

Provable security: t-probing security

• Any set of at most t intermediate variables is independent of the secret.

t-probing attacker model [ISW03]

- Adversary obtains t intermediate values of the computation
- Successfully models practical noisy side-channel leakage [DDF14]

Provable security: t-probing security

• Any set of at most t intermediate variables is independent of the secret.

Mitaka is maskable !

- Protect the whole scheme using arithmetic masking
- Standard multiplier + FFT → pointwise multiplication.
- Gaussian generation:
 - Generate arithmetic shares of gaussians [Offline]
 - Sum of them is a Gaussian ! [Online]

Implementation results

	Falcon	Mitaka	Ratio
d = 512	2800	6300	2.25
d = 1024	1400	3100	2.21

experiments done with a **non-masked & non constant-time** implementation^(*) and reusing Falcon's C reference code (as submitted to NIST round 3)

(*): both schemes can be made constant-time with [BBEF+19], [ZSS'20], [HPRR'20]

Wrapping up

