
Mitaka
A Simpler, Parallelizable, Maskable Variant of Falcon

Thomas Espitau, Pierre-Alain Fouque,
Francois Gérard, Melissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet,
Yang Yu

Eurocrypt 2022

1

Lattice signatures

Lattice-based signatures in NIST’s call

Two finalists among the three:

FALCON

“Hash-and-sign” in lattices [GPV’08]
+ NTRU trapdoors [DLP’14]

3 compact, fast

5 restricted parameter set, quite
hard to implement and protect
against side-channels

CRYSTALS-DILITHIUM

Fiat-Shamir “with abort” [Lyu12]
+ module lattices

5 larger bandwith

3 large range of parameter sets,
easier to implement and protect
against side-channels

3

Lattice-based signatures in NIST’s call

Two finalists among the three:

FALCON

“Hash-and-sign” in lattices [GPV’08]
+ NTRU trapdoors [DLP’14]

CRYSTALS-DILITHIUM

Fiat-Shamir “with abort” [Lyu12]
+ module lattices

Introducing: [Mitaka]
trying to reach best of both worlds

3 compact, fast

3 large range of parameters sets

3 easier to implement and protect
against side-channels
3 implementable in fixed-point
arithmetic 3

Rationale of Falcon

NTRU lattices
Compact trapdoors

 NTRUSign+[DLP+14]

FFO Sampler
(recursive Klein on Ring)

[DP16]

Falcon
“ Efficient GPV ”

Power-of-two
Cylotomic rings

NTRU lattices: free rank 2 modules
over cyclotomic ring

Quasi-linear thanks to the ring but
• Few parameter sets
• Complicated implementation
• Complicated masking

4

Towards Mitaka

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

FFO Sampler
(recursive Klein on Ring)

[DP16]

Falcon
“ Efficient GPV ”

Power-of-two
Cylotomic rings

5

Towards Mitaka

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
Simpler, efficient

MITAKA

(not yet)

Power-of-two
Cylotomic rings

5

Towards Mitaka

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
Simpler, efficient

MITAKA Power-of-two
Cylotomic rings

Improved Keygen
(better private basis)

5

Towards Mitaka

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
Simpler, efficient

MITAKA Smooth
Cylotomic rings

Improved Keygen
(better private basis)

5

Towards Mitaka

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
Simpler, efficient

MITAKA Smooth
Cylotomic rings

Improved Keygen
(better private basis)

5

Towards Mitaka

£ùäĈ�ȇŏʄʄǥŽƛɶ
,ȭȗɘŏŽɿ�ɿɢŏɘƇȭȭɢɲ
�17586LJQ�>'/3��@

-)4!+! êȗȭȭɿǘ
,˃ȇȰʄȰșǥŽ�ɦǥȟǆɶ

íǥșɜȇƛ��ٟ��Eǃ˚Žǥƛȟʄ��ٟ��,ȰșɜŏŽʄ��ٟ��ĥƛɦɶŏʄǥȇƛ��ٟ���ŏɶȁŏųȇƛ
xșɜɦȰʶƛƈ��ƛ˃ǆƛȟ
ųƚɿɿƚɢ�ɘɢǣʱŏɿƚ�ųŏɲǣɲ

p˃ųɦǥƈ�íŏșɜȇƛɦ
ׄ6Ýֶׅ��êǣȗɘȅƚɢֱ �ƚǂ˚Žǣƚȝɿ

5

Towards Mitaka

£ùäĈ�ȇŏʄʄǥŽƛɶ
,ȭȗɘŏŽɿ�ɿɢŏɘƇȭȭɢɲ
�17586LJQ�>'/3��@

-)4!+! êȗȭȭɿǘ
,˃ȇȰʄȰșǥŽ�ɦǥȟǆɶ

íǥșɜȇƛ��ٟ��Eǃ˚Žǥƛȟʄ��ٟ��,ȰșɜŏŽʄ��ٟ��ĥƛɦɶŏʄǥȇƛ��ٟ���ŏɶȁŏųȇƛ
xșɜɦȰʶƛƈ��ƛ˃ǆƛȟ
ųƚɿɿƚɢ�ɘɢǣʱŏɿƚ�ųŏɲǣɲ

p˃ųɦǥƈ�íŏșɜȇƛɦ
ׄ6Ýֶׅ��êǣȗɘȅƚɢֱ �ƚǂ˚ŽǣƚȝɿÝƛǥȁƛɦʄؚp˃ųɦǥƈ�ֻâä

�ȇȇȰʺɶ�ǥȟʄƛǆɦŏȇ�dí��
aǥ˂ƛƈגÝȰǥȟʄ�ǥșɜȇƛș� 5

Hash-and-sign over lattices

The GPV Framework [GPV’08]

Simplified Signsk,σ(msg) :

1. m = H(msg)

2. v← GaussianSampler(sk,m,σ)

3. Signature: s = m− v.

Simplified VerifL=pk(msg, s) :

1. If ∥s∥ too big, reject.

2. If m− s ̸∈ L, reject.

3. Accept.

m

v

Acceptance
radius

7

The GPV Framework [GPV’08]

Simplified Signsk,σ(msg) :

1. m = H(msg)

2. v← GaussianSampler(sk,m,σ)

3. Signature: s = m− v.

Simplified VerifL=pk(msg, s) :

1. If ∥s∥ too big, reject.

2. If m− s ̸∈ L, reject.

3. Accept.

Requirements

CVPγ hard ⇒ σ small ⇒ sk has short vectors

Hard to compute
sk just from pk

Easy to generate
pk just from sk

sk is called “a trapdoor”
Generating trapdoors is an interesting challenge

[HPSS’00, AP’09, MP’12, DLP’14, CGM’19, GL’20,
CPSWX’20...]

7

Sampling over (structured) lattices

Gaussian samplers: what are they!?

Lattice Gaussian samplers = decoding + randomization

CVP solvers
Babai’s Round-off:

u = B⌈B−1t⌋

Babai’s Nearest Plane:
“adaptive” choice of hyperplanes

Gaussian samplers
Peikert sampler:
Randomize the whole integer rounding

Klein sampler:
Randomize each hyperplane choice

Ducas-Prest hybrid sampler: in between for modules over rings, where rounding is
replaced by rounded-sampling over the ring.

9

Recap

Peikert

Klein

Hybrid

Quality

s1(B)
(largest sing. value)

maxi ∥b̃i∥
(Gram-Schmidt)

Pros

fast
simple

best quality
(higher security)

Cons

worst quality
(lower security)

slower
more involved

s1(B̃)
Good tradeoffs when R

has a good basis

10

Security considerations

When R = Z[x]/(xd + 1), d = 2n, and for NTRU q-ary lattices, qualities are α
√
q

Asymptotic quality

Sampler α
√
q Best achievable α

Peikert s1(B) O(d1/4√logd)
Hybrid s1(B̃) O(d1/8 log1/4 d)

Falcon maxi ∥b̃i∥ O(1)

Concrete bitsecurity as a function of α, d = 512

11

Improving the Keygen

NTRU Trapdoors for signatures

NTRU lattice LNTRU(a)

f,g ∈ R→ a := f−1g [q].
[

u v
] [a

−1

]
= 0 [q]

Trapdoor
Short basis B of LNTRU(a)

with good quality wrt. a
sampler.

[
f g

? ?

]
︸ ︷︷ ︸

=B

[
a

−1

]
= 0 [q]

Computing B

• Sample f,g Gaussians so that

∥(f,g)∥ ≈ √q

• Complete the basis: unimodularity
problem: Euclid+geometry

Achieve good quality

Sample (f,g)’s until:

• Falcon: max(∥b̃1∥, ∥b̃d+1∥) ≈ 1.17√q

• Hybrid: s1(B̃) as close as possible to √q

Both metrics can be computed just with f,g
13

Into the key generation algorithm

(naive) KeyGen:

1) Do
f,g← DZd,

√
q
2d

Until f inv. mod q And ∥f,g∥ ⩽ 1.17√q;

2) (F) quality check: ∥b̃d+1∥ ⩽ 1.17√q ?
else restart;

4) bd+1 ← NTRUSolve(f,g,q);
Compute all needed data;
Output (pk, sk).

Our solution
+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

14

Into the key generation algorithm

(naive) KeyGen:

1) Do
f,g← DZd,

√
q
2d

Until f inv. mod q And ∥f,g∥ ⩽ 1.17√q;

2) (F) quality check: ∥b̃d+1∥ ⩽ 1.17√q ?
else restart;

4) bd+1 ← NTRUSolve(f,g,q);
Compute all needed data;
Output (pk, sk).

Our solution
+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

14

Into the key generation algorithm

(naive) KeyGen:

1) Do
f,g← DZd,

√
q
2d

Until f inv. mod q And ∥f,g∥ ⩽ 1.17√q;

2) (F) quality check: ∥b̃d+1∥ ⩽ 1.17√q ?
else restart;

2-bis) (M) quality check: s1(B̃) ⩽ 2.05√q ?
else restart;

4) bd+1 ← NTRUSolve(f,g,q);
Compute all needed data;
Output (pk, sk).

Our solution
+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

14

Into the key generation algorithm

(naive) KeyGen:

1) Do
f,g← DZd,

√
q
2d

Until f inv. mod q And ∥f,g∥ ⩽ 1.17√q;

2) (F) quality check: ∥b̃d+1∥ ⩽ 1.17√q ?
else restart;

2-bis) (M) quality check: s1(B̃) ⩽ 2.05√q ?
else restart;

4) bd+1 ← NTRUSolve(f,g,q);
Compute all needed data;
Output (pk, sk).

• This already happens often in
Falcon

• Need *a lot* of tries to reach 2.05

• And randomness is expensive.

Our solution

+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

14

Into the key generation algorithm

(naive) KeyGen:

1) Do
f,g← DZd,

√
q
2d

Until f inv. mod q And ∥f,g∥ ⩽ 1.17√q;

2) (F) quality check: ∥b̃d+1∥ ⩽ 1.17√q ?
else restart;

2-bis) (M) quality check: s1(B̃) ⩽ 2.05√q ?
else restart;

4) bd+1 ← NTRUSolve(f,g,q);
Compute all needed data;
Output (pk, sk).

Our solution
+ Reuse randomness

+ Galois automorphisms

= “Free” blow-up of search-space

, better trapdoors in reasonable time

14

Masking Mitaka

Modeling side-channel adversaries

t-probing attacker model [ISW03]

• Adversary obtains t intermediate values of the
computation

• Successfully models practical noisy side-channel
leakage [DDF14]

Provable security: t-probing security

• Any set of at most t intermediate variables is
independent of the secret.

16

Modeling side-channel adversaries

t-probing attacker model [ISW03]

• Adversary obtains t intermediate values of the
computation

• Successfully models practical noisy side-channel
leakage [DDF14]

Provable security: t-probing security

• Any set of at most t intermediate variables is
independent of the secret.

Mitaka is maskable !

• Protect the whole scheme
using arithmetic masking

• Standard multiplier + FFT →
pointwise multiplication.

• Gaussian generation:

• Generate arithmetic
shares of gaussians
[Offline]

• Sum of them is a
Gaussian ! [Online]

16

Implementation results

About performances (signatures / sec.)

Falcon Mitaka Ratio

d = 512 2800 6300 2.25
d = 1024 1400 3100 2.21

experiments done with a non-masked & non constant-time implementation(∗)
and reusing Falcon’s C reference code (as submitted to NIST round 3)

(∗): both schemes can be made constant-time with [BBEF+19], [ZSS’20], [HPRR’20]

18

Wrapping-up

Wrapping up

NTRU lattices
Compact trapdoors
 NTRUSign+[DLP14]

Hybrid Sampler
Simpler, efficient

MITAKA Smooth
Cylotomic rings

Simple | Efficient | Compact | Versatile | Maskable
Improved Keygen
(better private basis)

20

