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Binary Erasure Correlation BEC(p)

1-p Y=X
X~Ber(%)
X 2 v—i| Y
R=2A(X) S=%(Y)
5 y=X
X~Ber(%)
i Y=1
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Binary Erasure Correlation BEC(p) Attempt 1 (for p < %)

1— Y=X .
) - 1. Alice outputs X
X ~Ber(z) 2 B 1 . H
. Bob outputs Y w.p. : otherwise L
X P>y | Y P P- 3-p)
Correct but not secure
R =A(X) S =B(Y)
5 y=X
X~Ber(3)
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Binary Erasure Correlation BEC(p)

S =B(Y)

XwBer(%)
X
R =A(X)
X~Ber(3)

Nl

1
2

Y=X
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Binary Erasure Correlation BEC(3)

Attempt 1

1. Alice outputs X

2. Bob outputs Y w.p. ﬁ; otherwise |

Correct but not secure

Attempt 2

Use 2 copies (X1,Y7), (X2,Y3) ~ BEC(p)

1. Alice outputs X; & X5

2. Bob outputs Y1 @ Y3 if Y1,Y5 € {0,1};
otherwise |

Correct and secure



Secure Non-Interactive Reduction (SNIR)

(X,Y) ~ C

Non-Interactive Simulation (NIS)




Secure Non-Interactive Reduction (SNIR)

(X,Y) ~C

R=%4X) (gg~p S=3B()

(A,B) is an SNIR of D to C' if

m (R,S)~D
m R indep. of Y conditioned on S
m S indep. of X conditioned on R



Secure Non-Interactive Reduction (SNIR)

(X,Y) ~C

Fundamental question:

When can D have an SNIR to C?

R=%4X) (gg~p S=3B()

(A,B) is an SNIR of D to C' if

m (R,S)~D
m R indep. of Y conditioned on S
m S indep. of X conditioned on R



Secure Non-Interactive Reduction (SNIR)

(X,Y) ~C

R=%4X) (gg~p S=3B()

(A,B) is an SNIR of D to C' if

m (R,S)~D
m R indep. of Y conditioned on S
m S indep. of X conditioned on R

Fundamental question:

When can D have an SNIR to C?

In this work

m A spectral analysis toolkit for
(statistical) SNIR

m Exact characterizations for inter-
esting classes of correlations
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Why Study SNIR?

m Correlations are fundamental in information-theoretic cryptography

m SNIR is the most basic cryptographic question about correlations

m Non-interactive variant of secure computation

m Lowerbounds for secure computation is a deep complexity theoretic question
m SNIR captures all the security aspects of secure computation of correlations.
The latter has the form

m Interaction phase (no security requirements)
m SNIR phase

m Secure variant of (non-secure) non-interactive correlation simulation (NIS)

m Information theoretic variant of pseudo-random correlation generators
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Our Results

When does D have a statistical SNIR (2(,*8) to C?
m Enough to consider correlations without redundant symbols
m SNIR must be essentially deterministic

m Spectrum of D C spectrum of C

In the spectral domain 2l and B8 mirror each other

m Common information in C' is only trivially useful

BEC/BSC results also
obtained by KMN22

Applications

Exact characterizations of statistical SNIR for interesting classes of correlatiohs







(X,Y) ~ C

(2,%B) e-SNIR of D to C iff, for (R, S) ~ D,

Correctness:
(AX), BY)) = (R.5)
Security against Alice: J simulator Sim 4:
(X, B(Y)) = (Sima(R),5)
Security against Bob: d simulator Simp:

(AX),Y) = (R,Simp(S))
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(A,B) eSNIR of D to C iff: (2,%B) e-SNIR of D to C iff, for (R, S) ~ D,

Correctness: Correctness:
ATCB ~ D (A(X),B(Y)) = (R,S)
Security against Alice: JU: Security against Alice: J simulator Sim 4:
CB ~ U'D (X,B(Y)) = (Sima(R),S)
Security against Bob: JV: Security against Bob: d simulator Simp:
ATC ~ DV (AX),Y) = (R,Simp(S))
Alz,r] = Pry[R = r|X = z] Bly, s] = Prg[S = s|Y = y]

U[T) ‘T] - PrSimA[X - 1’|R - T] V[y,S] - PrSimB[Y - y|S = S]



(A,B) &SNIR of D to C iff: (2,%B) eSNIR of D to C iff, for (R, S) ~ D,

Correctness: Correctness:
ATCB = D (A(X),B(Y)) ~ (R,S)
Security against Alice: JU: Security against Alice: d simulator Sim 4:
CB =~ U'™D (X,B(Y)) = (Sima(R),S)
Security against Bob: JV: Security against Bob: d simulator Simp:
ATC ~ DV (A(X),Y) = (R,Simp(9))

SNIR is Deterministic

An e-SNIR of a non-redundant D to C' can be converted into a deterministic
Op(v/€)-SNIR (A, B) with U = A ATAcr and V = AL BTAg.




Spectral analysis simple case: perfect security, square matrices, uniform marginals

Suppose A¢g = Agr = %Ime and Ap = Apr = %Inxn

ATCCT = DVCT . ATC = DV
— ZpBICT where V = A'BTA¢ = —BT
m m
= 2ppU -UTD = CB
m
=DDTAT where U = AL ATACr = %AT

If v is an eigenvector corresponding to eigenvalue A of DDT; i.e., vTDDT = \vT,
VTATCCT = vTDDTAT = \wTAT,
we get theorem

{ eigenvalues of D7D } C { eigenvalues of CTC' }
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Spectrum Containment (simple case)

Ac = Acr = %Imxmy Ap =Apr = %Inxn =— D hasa SNIR to C only if

{ eigenvalues of D7D } C { eigenvalues of CTC'}

For D = BSC(p), eigenvalues of DTD are {1,1 — 2p}
For C = BSC(q)®*, eigenvalues of CTC are {(1 —2¢)*: 0 < k < ¢}

Application

BSC(p) has a SNIR to BSC(q)®* if and only if, 3k < ¢, 1 —2p = (1 — 2q), or
equivalently, p = g * ... x q (k times), where ¢ x¢' = q(1 — ¢') + ¢'(1 — q).

Construction:

k k
When (X* Y*) ~ C®*: Alice outputs @ X; and Bob outputs P Y;

i=1 =1
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Spectrum of a Correlation

We define A¢, the spectrum of C as the (non-zero) singular values of C.

m Can relate A¢ to spectral graph theoretic quantities associated with a bipartite
graph representing C
m All entries in the spectrum fall in (0, 1].

m (Log) Multiplicity of 1 gives the common information (measured as
max-entropy) in C

m The second largest value in the spectrum is the maximal correlation of C'
[Wit75]
m Taking multiple copies of a correlation results in multiplication of the singular

values, i.e.,
J4
Ac®e = (Ac)e = {H >\i|)\z‘ € Ac} .

i=1



Spectral Protocol (for perfect SNIR)

If (A4, B) is an SNIR from D to C, then there are spectral protocols A, B such that

A, B determinsitic

ATCB =D
IV :ATC =DV
U :CC=U"D

—

—
=
=

ATA=1I B'B=1
ATS0B =3
ATSo = SpBT
YoB = AYp
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Spectral Protocol (for perfect SNIR)

If (A4, B) is an SNIR from D to C, then there are spectral protocols A, B such that

A, B determinsitic =— ATA = I, BTB=1
ATCB =D = A'ScB=Yp
FV:ATC=DV = ATSc=%pBT
JW:cC=U'D = %cB=A4%p

ATSeYL = pBTRL, = BpR] AT

Necessary conditions for Perfect SNIR (non-redundant D)

Determinisim: A and B must be deterministic
Spectral criterion:  Ap C Ag

Mirroring property: A=B (after zero-padding)




Results for e-SNIR

Necessary conditions for e-SNIR (non-redundant D)

m There is a deterministic Op(+/€)-SNIR
m Each element in Ap is close to some element in Ao
m ||A — B|| is small (after zero-padding)




Results for Statistical SNIR

D has a statistical SNIR to C if, Ve > 0 3¢ s.t. D has an e-secure SNIR to C'®*.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim: W.l.o.g. A and B are deterministic
Spectral criterion:  Ap C A¢ (same as for perfect SNIR!)
Mirroring property: ||A — B|| — 0  (after zero-padding)




Results for Statistical SNIR

D has a statistical SNIR to C if, Ve > 0 3¢ s.t. D has an e-secure SNIR to C'®*.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim: W.l.o.g. A and B are deterministic
Spectral criterion:  Ap C A¢ (same as for perfect SNIR!)
Mirroring property: ||A — B|| — 0  (after zero-padding)

C BSC(q) BEC(q)
D secure non-secure | secure non-secure
BSC(p) | p=gq** p>q impossible [KMN22] | p > ¢
BEC(p) impossible | impossible | p = ¢* p>q




Results for Statistical SNIR

D has a statistical SNIR to C if, Ve > 0 3¢ s.t. D has an e-secure SNIR to C'®*.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim: W.l.o.g. A and B are deterministic
Spectral criterion:  Ap g

Mirroring property: ||ﬁ

© BSC(q)

D secure non-secure

BSC(p) |p=d¢"* |p=>4
BEC(p) impossible | impossible




Results for Statistical SNIR

D has a statistical SNIR to C if, Ve > 0 3¢ s.t. D has an e-secure SNIR to C'®*.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim: W.l.o.g. A and B are deterministic
Spectral criterion:  Ap C A¢ (same as for perfect SNIR!)
Mirroring property: ||A — B|| — 0  (after zero-padding)

C BSC(q) BEC(q)
D secure non-secure | secure non-secure
BSC(p) | p=gq** p>q impossible [KMN22] | p > ¢
BEC(p) impossible | impossible | p = ¢* p>q




Other Results in the Paper

m OLE over field F has an SNIR to OLE over F’ only if F and F’ have the same
characteristic

m Characteristic of IF is a prime number p such that |F| = p* for some integer k.
m Spectrum of OLE over field I has {1, ﬁ}

m/|F| = \/]IF’]é only if F and F/ have same characteristic.



Other Results in the Paper

m OLE over field F has an SNIR to OLE over F’ only if F and F’ have the same
characteristic

m Characteristic of IF is a prime number p such that |F| = p* for some integer k.
m Spectrum of OLE over field F has {1, ﬁ}
m/|F| = \/]IF’]é only if F and F’ have same characteristic.

m OT has no SNIR to BSC

m A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]



Other Results in the Paper

m OLE over field F has an SNIR to OLE over F’ only if F and F’ have the same
characteristic
m Characteristic of IF is a prime number p such that |F| = p* for some integer k.
m Spectrum of OLE over field I has {1, ﬁ}
[ \/m = \/Wé only if F and F’ have same characteristic.
m OT has no SNIR to BSC

m A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

m There are no SNIR-complete correlations



Other Results in the Paper

m OLE over field F has an SNIR to OLE over F’ only if F and F’ have the same
characteristic

m Characteristic of IF is a prime number p such that |F| = p* for some integer k.
m Spectrum of OLE over field F has {1, ﬁ}
m/|F| = \/]F’lé only if F and F’ have same characteristic.

m OT has no SNIR to BSC

m A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

m There are no SNIR-complete correlations
m Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: “Not useful” unless D has common information
e-SNIR: Conditioned on common randomness in C, it remains an Op(€)-SNIR
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Conclusion and Open Problems

Spectral analysis reveals structure in SNIR
m Characterized SNIR between natural correlations
m Towards decidability of SNIR (settled in upcoming follow-up work)

m Towards secure interactive reductions
m Decidability is long settled, with a combinatorial characterization
m Open for one-way communication

m Rate (how many copies of C' per copy of D) is open, but faces
circuit-complexity barriers

m Rate of SNIR?



Thank you



