Spectral Non-Interactive Reduction and Spectral Analysis of Correlations

Pratyush Agarwal¹ Varun Narayanan² Shreya Pathak¹ Manoj Prabhakaran¹ Vinod M. Prabhakaran³ Mohammad Ali Rehan¹

¹ Indian Institute of Technology Bombay, India

² Technion, Israel

³ Tata Institute of Fundamental Research, India

Eurocrypt 2022

$$C_{1,1} \dots C_{1,y} \dots C_{1,|\mathcal{Y}|}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C_{x,1} \dots C_{x,y} \dots C_{x,|\mathcal{Y}|}$$

$$\vdots \qquad \mathsf{Pr}[X = x, Y = y]$$

$$C_{|\mathcal{X}|,1} \dots C_{|\mathcal{X}|,y} \dots C_{|\mathcal{X}|,|\mathcal{Y}|}$$

C is distribution over $\mathcal{X}\times\mathcal{Y}$

$$\begin{cases}
C_{1,1} \dots C_{1,y} \dots C_{1,|\mathcal{Y}|} \\
\vdots & \vdots \\
C_{x,1} \dots C_{x,y} \dots C_{x,|\mathcal{Y}|} \\
\vdots & \vdots \\
C_{|\mathcal{X}|,1} \dots C_{|\mathcal{X}|,y} \dots C_{|\mathcal{X}|,|\mathcal{Y}|} \\
C \text{ is distribution over } \mathcal{X} \times \mathcal{Y}
\end{cases}$$

$$BEC(p) = \begin{pmatrix}
\frac{1-p}{2} & \frac{p}{2} & 0 \\
0 & \frac{p}{2} & \frac{1-p}{2}
\end{pmatrix}_{1}^{0}$$

0

 \perp 1

$$\begin{pmatrix}
C_{1,1} & \dots & C_{1,y} & \dots & C_{1,|\mathcal{Y}|} \\
\vdots & \vdots & \vdots \\
C_{x,1} & \dots & \boxed{C_{x,y}} & \dots & C_{x,|\mathcal{Y}|} \\
\vdots & \vdots & \vdots \\
C_{|\mathcal{X}|,1} & \dots & C_{|\mathcal{X}|,y} & \dots & C_{|\mathcal{X}|,|\mathcal{Y}|}
\end{pmatrix}^{C}$$
BEC(p) =
$$\begin{pmatrix}
\frac{1-p}{2} & \frac{p}{2} & 0 \\
0 & \frac{p}{2} & \frac{1-p}{2}
\end{pmatrix}^{0}_{1}$$

0

 \perp 1

Attempt 1(for $p < \frac{1}{2}$)1. Alice outputs X2. Bob outputs Y w.p. $\frac{1}{2(1-p)}$; otherwise \perp

Correct but **not secure**

(for $p < \frac{1}{2}$) Attempt 1 1. Alice outputs X2. Bob outputs Y w.p. $\frac{1}{2(1-n)}$; otherwise \perp Correct but not secure Attempt 2 (for $p = 1 - \frac{1}{\sqrt{2}}$) Use 2 copies $(X_1, Y_1), (X_2, Y_2) \sim BEC(p)$ 1. Alice outputs $X_1 \oplus X_2$ 2. Bob outputs $Y_1 \oplus Y_2$ if $Y_1, Y_2 \in \{0, 1\}$; otherwise |

Correct and secure

$(\mathfrak{A},\mathfrak{B})$ is an SNIR of D to C if

- $\blacksquare \ (R,S) \sim D$
- \blacksquare R indep. of Y conditioned on S
- $\blacksquare\ S$ indep. of X conditioned on R

$(\mathfrak{A},\mathfrak{B})$ is an SNIR of D to C if

- $\blacksquare \ (R,S) \sim D$
- $\blacksquare \ R$ indep. of Y conditioned on S
- $\blacksquare\ S$ indep. of X conditioned on R

Fundamental question:

When can D have an SNIR to C?

$(\mathfrak{A},\mathfrak{B})$ is an SNIR of D to C if

- $\blacksquare \ (R,S) \sim D$
- $\blacksquare \ R$ indep. of Y conditioned on S
- S indep. of X conditioned on R

Fundamental question:

When can D have an SNIR to C?

In this work

- A spectral analysis toolkit for (statistical) SNIR
- Exact characterizations for interesting classes of correlations

- Correlations are fundamental in information-theoretic cryptography
- SNIR is the most basic cryptographic question about correlations

- Correlations are fundamental in information-theoretic cryptography
- SNIR is the most basic cryptographic question about correlations
- Non-interactive variant of secure computation
 - Lowerbounds for secure computation is a deep complexity theoretic question
 - SNIR captures all the security aspects of secure computation of correlations. The latter has the form
 - Interaction phase (no security requirements)
 - SNIR phase

- Correlations are fundamental in information-theoretic cryptography
- SNIR is the most basic cryptographic question about correlations
- Non-interactive variant of secure computation
 - Lowerbounds for secure computation is a deep complexity theoretic question
 - SNIR captures all the security aspects of secure computation of correlations. The latter has the form
 - Interaction phase (no security requirements)
 - SNIR phase

Secure variant of (non-secure) non-interactive correlation simulation (NIS)

- Correlations are fundamental in information-theoretic cryptography
- SNIR is the most basic cryptographic question about correlations
- Non-interactive variant of secure computation
 - Lowerbounds for secure computation is a deep complexity theoretic question
 - SNIR captures all the security aspects of secure computation of correlations. The latter has the form
 - Interaction phase (no security requirements)
 - SNIR phase

Secure variant of (non-secure) non-interactive correlation simulation (NIS)

Information theoretic variant of pseudo-random correlation generators

Our Results

Toolkit

When does D have a **statistical** SNIR $(\mathfrak{A}, \mathfrak{B})$ to C?

- Enough to consider correlations without redundant symbols
- SNIR must be essentially **deterministic**
- **Spectrum** of $D \subseteq$ spectrum of C
- \blacksquare In the spectral domain ${\mathfrak A}$ and ${\mathfrak B}$ mirror each other
- \blacksquare Common information in C is only trivially useful

Our Results

Toolkit

When does D have a **statistical** SNIR $(\mathfrak{A}, \mathfrak{B})$ to C?

- Enough to consider correlations without redundant symbols
- SNIR must be essentially **deterministic**
- **Spectrum** of $D \subseteq$ spectrum of C
- \blacksquare In the spectral domain ${\mathfrak A}$ and ${\mathfrak B}$ mirror each other
- \blacksquare Common information in C is only trivially useful

Applications

Exact characterizations of statistical SNIR for interesting classes of correlations

Our Results

Correctness:

Security against Alice: \exists simulator Sim_A:

 $(X,\mathfrak{B}(Y)) \stackrel{\epsilon}{pprox} (\operatorname{Sim}_A(R),S)$

Security against Bob: \exists simulator Sim_B:

 $(\mathfrak{A}(X),Y) \stackrel{\epsilon}{\approx} (R,\mathsf{Sim}_B(S))$

 $(A,B) \epsilon$ -SNIR of D to C iff:

Correctness:

 $A^{\mathsf{T}}CB \stackrel{\epsilon}{\approx} D$

Security against Alice: $\exists U$:

 $CB \stackrel{\epsilon}{\approx} U^{\mathsf{T}}D$

Security against Bob: $\exists V$:

$$A^{\mathsf{T}}C \stackrel{\epsilon}{\approx} DV$$

 $(\mathfrak{A},\mathfrak{B})$ ϵ -SNIR of D to C iff, for $(R,S) \sim D$,

Correctness:

 $(\mathfrak{A}(X),\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (R,S)$

Security against Alice: \exists simulator Sim_A:

 $(X,\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (\mathsf{Sim}_A(R),S)$

Security against Bob: \exists simulator Sim_B:

 $(\mathfrak{A}(X),Y) \stackrel{\epsilon}{\approx} (R,\mathsf{Sim}_B(S))$

 $(A,B) \epsilon$ -SNIR of D to C iff:

Correctness:

 $A^{\mathsf{T}}CB \stackrel{\epsilon}{\approx} D$

Security against Alice: $\exists U$:

 $CB \stackrel{\epsilon}{\approx} U^{\mathsf{T}}D$

Security against Bob: $\exists V$:

$$A^{\mathsf{T}}C \stackrel{\epsilon}{\approx} DV$$

 $(\mathfrak{A},\mathfrak{B}) \epsilon$ -SNIR of D to C iff, for $(R,S) \sim D$,

Correctness:

 $(\mathfrak{A}(X),\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (R,S)$

Security against Alice: \exists simulator Sim_A:

 $(X,\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (\mathsf{Sim}_A(R),S)$

Security against Bob: \exists simulator Sim_B:

 $(\mathfrak{A}(X),Y) \stackrel{\epsilon}{\approx} (R,\mathsf{Sim}_B(S))$

$$\begin{split} A[x,r] &= \mathsf{Pr}_{\mathfrak{A}}[R=r|X=x]\\ U[r,x] &= \mathsf{Pr}_{\mathsf{Sim}_A}[X=x|R=r] \end{split}$$

$$B[y,s] = \Pr_{\mathfrak{B}}[S=s|Y=y]$$
$$V[y,s] = \Pr_{\mathsf{Sim}_B}[Y=y|S=s]$$

 $(A,B) \epsilon$ -SNIR of D to C iff:

Correctness:

 $A^{\mathsf{T}}CB \stackrel{\epsilon}{\approx} D$

Security against Alice: $\exists U$:

 $CB \stackrel{\epsilon}{\approx} U^{\mathsf{T}}D$

Security against Bob: $\exists V$:

 $A^{\mathsf{T}}C \stackrel{\epsilon}{\approx} DV$

 $(\mathfrak{A},\mathfrak{B})$ ϵ -SNIR of D to C iff, for $(R,S) \sim D$,

Correctness:

 $(\mathfrak{A}(X),\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (R,S)$

Security against Alice: \exists simulator Sim_A:

 $(X,\mathfrak{B}(Y)) \stackrel{\epsilon}{\approx} (\mathsf{Sim}_A(R),S)$

Security against Bob: \exists simulator Sim_B:

 $(\mathfrak{A}(X),Y) \stackrel{\epsilon}{\approx} (R,\mathsf{Sim}_B(S))$

SNIR is Deterministic

An ϵ -SNIR of a non-redundant D to C can be converted into a **deterministic** $O_D(\sqrt{\epsilon})$ -SNIR (A, B) with $U = \Delta_{D^{\mathsf{T}}}^{-1} A^{\mathsf{T}} \Delta_{C^{\mathsf{T}}}$ and $V = \Delta_D^{-1} B^{\mathsf{T}} \Delta_C$.

Spectral analysis

Suppose
$$\Delta_C = \Delta_{C^{\intercal}} = \frac{1}{m} I_{m \times m}$$
 and $\Delta_D = \Delta_{D^{\intercal}} = \frac{1}{n} I_{n \times n}$
 $A^{\intercal} C C^{\intercal} = D V C^{\intercal}$ $\therefore A^{\intercal} C = D V$
 $= \frac{n}{m} D B^{\intercal} C^{\intercal}$ where $V = \Delta_D^{-1} B^{\intercal} \Delta_C = \frac{n}{m} B^{\intercal}$
 $= \frac{n}{m} D D^{\intercal} U$ $\therefore U^{\intercal} D = C B$
 $= D D^{\intercal} A^{\intercal}$ where $U = \Delta_D^{-1} A^{\intercal} \Delta_{C^{\intercal}} = \frac{n}{m} A^{\intercal}$

If v^{\intercal} is an eigenvector corresponding to eigenvalue λ of DD^{\intercal} ; i.e., $v^{\intercal}DD^{\intercal} = \lambda v^{\intercal}$,

$$\boldsymbol{v}^{\mathsf{T}}A^{\mathsf{T}}CC^{\mathsf{T}} = \boldsymbol{v}^{\mathsf{T}}DD^{\mathsf{T}}A^{\mathsf{T}} = \lambda\boldsymbol{v}^{\mathsf{T}}A^{\mathsf{T}},$$

we get theorem

$$\{ \text{ eigenvalues of } D^{\mathsf{T}}D \} \subseteq \{ \text{ eigenvalues of } C^{\mathsf{T}}C \}$$

$$\Delta_C = \Delta_{C^\intercal} = rac{1}{m} I_{m imes m}$$
, $\Delta_D = \Delta_{D^\intercal} = rac{1}{n} I_{n imes n} \implies D$ has a SNIR to C only if

 $\{ \text{ eigenvalues of } D^{\mathsf{T}}D \} \subseteq \{ \text{ eigenvalues of } C^{\mathsf{T}}C \}$

$$\Delta_C = \Delta_{C^\intercal} = \frac{1}{m} I_{m imes m}$$
, $\Delta_D = \Delta_{D^\intercal} = \frac{1}{n} I_{n imes n} \implies D$ has a SNIR to C only if

 $\{ \text{ eigenvalues of } D^{\mathsf{T}}D \} \subseteq \{ \text{ eigenvalues of } C^{\mathsf{T}}C \}$

$$\Delta_C = \Delta_{C^\intercal} = \frac{1}{m} I_{m imes m}$$
, $\Delta_D = \Delta_{D^\intercal} = \frac{1}{n} I_{n imes n} \implies D$ has a SNIR to C only if

 $\{ \text{ eigenvalues of } D^{\mathsf{T}}D \} \subseteq \{ \text{ eigenvalues of } C^{\mathsf{T}}C \}$

For D = BSC(p), eigenvalues of $D^{\intercal}D$ are $\{1, 1 - 2p\}$ For $C = BSC(q)^{\otimes \ell}$, eigenvalues of $C^{\intercal}C$ are $\{(1 - 2q)^k : 0 \le k \le \ell\}$

$$\Delta_C = \Delta_{C^\intercal} = \frac{1}{m} I_{m imes m}$$
, $\Delta_D = \Delta_{D^\intercal} = \frac{1}{n} I_{n imes n} \implies D$ has a SNIR to C only if

 $\{ \text{ eigenvalues of } D^{\mathsf{T}}D \} \subseteq \{ \text{ eigenvalues of } C^{\mathsf{T}}C \}$

For D = BSC(p), eigenvalues of $D^{\intercal}D$ are $\{1, 1 - 2p\}$ For $C = BSC(q)^{\otimes \ell}$, eigenvalues of $C^{\intercal}C$ are $\{(1 - 2q)^k : 0 \le k \le \ell\}$

Application

BSC(p) has a SNIR to BSC(q)^{$\otimes \ell$} if and only if, $\exists k \leq \ell, 1-2p = (1-2q)^k$, or equivalently, $p = q * \ldots * q$ (k times), where q * q' = q(1-q') + q'(1-q).

Construction:

When
$$(X^k, Y^k) \sim C^{\otimes k}$$
: Alice outputs $\bigoplus_{i=1}^k X_i$ and Bob outputs $\bigoplus_{i=1}^k Y_i$

A linear operator that transforms the distribution for one party (appropriately normalized) to that for the other party, conditioned on the former.

$$\widetilde{C} = \Delta_{C^{\mathsf{T}}}^{-1/2} C \Delta_{C}^{1/2}.$$

A linear operator that transforms the distribution for one party (appropriately normalized) to that for the other party, conditioned on the former.

$$\widetilde{C} = \Delta_{C^{\mathsf{T}}}^{-1/2} C \Delta_{C}^{1/2}.$$

Can use Singular Value Decomposition (SVD) to analyze a linear operator.

A linear operator that transforms the distribution for one party (appropriately normalized) to that for the other party, conditioned on the former.

$$\widetilde{C} = \Delta_{C^{\mathsf{T}}}^{-1/2} C \Delta_{C}^{1/2}.$$

Can use Singular Value Decomposition (SVD) to analyze a linear operator.

The scaling factors, called the **singular values**, capture several properties of a linear transform.

A linear operator that transforms the distribution for one party (appropriately normalized) to that for the other party, conditioned on the former.

$$\widetilde{C} = \Delta_{C^{\mathsf{T}}}^{-1/2} C \Delta_{C}^{1/2}.$$

Can use Singular Value Decomposition (SVD) to analyze a linear operator.

The scaling factors, called the **singular values**, capture several properties of a linear transform.

Spectrum of a Correlation

We define Λ_C , the **spectrum** of C as the (non-zero) singular values of \widetilde{C} .

Spectrum of a Correlation

We define Λ_C , the **spectrum** of C as the (non-zero) singular values of \widetilde{C} .

- Can relate Λ_C to spectral graph theoretic quantities associated with a bipartite graph representing C
 - All entries in the spectrum fall in (0, 1].
 - (Log) Multiplicity of 1 gives the **common information** (measured as max-entropy) in C
 - The second largest value in the spectrum is the **maximal correlation** of C [Wit75]
- Taking multiple copies of a correlation results in multiplication of the singular values, i.e.,

$$\Lambda_{C^{\otimes \ell}} = (\Lambda_C)^{\ell} := \left\{ \prod_{i=1}^{\ell} \lambda_i | \lambda_i \in \Lambda_C \right\}.$$

Spectral Protocol (for perfect SNIR)

If (A, B) is an SNIR from D to C, then there are spectral protocols \widehat{A}, \widehat{B} such that

A, B determinsitic	\implies	$\widehat{A}^{T}\widehat{A} = I, \ \widehat{B}^{T}\widehat{B} = I$
$A^{\intercal}CB=D$	\implies	$\widehat{A}^{\intercal} \Sigma_C \widehat{B} = \Sigma_D$
$\exists V: A^{\intercal}C = DV$	\implies	$\widehat{A}^{\intercal} \Sigma_C = \Sigma_D \widehat{B}^{\intercal}$
$\exists U: CC = U^{\intercal}D$	\implies	$\Sigma_C \widehat{B} = \widehat{A} \Sigma_D$

Spectral Protocol (for perfect SNIR)

If (A, B) is an SNIR from D to C, then there are spectral protocols \widehat{A}, \widehat{B} such that

A, B determinsitic	\implies	$\widehat{A}^{T}\widehat{A} = I, \ \widehat{B}^{T}\widehat{B} = I$
$A^{\intercal}CB=D$	\implies	$\widehat{A}^{\intercal} \Sigma_C \widehat{B} = \Sigma_D$
$\exists V: A^{\intercal}C = DV$	\implies	$\widehat{A}^{\intercal} \Sigma_C = \Sigma_D \widehat{B}^{\intercal}$
$\exists U: CC = U^{\intercal}D$	\implies	$\Sigma_C \widehat{B} = \widehat{A} \Sigma_D$

$$\widehat{A}^{\intercal} \Sigma_C \Sigma_C^{\intercal} = \Sigma_D \widehat{B}^{\intercal} \Sigma_C^{\intercal} = \Sigma_D \Sigma_D^{\intercal} \widehat{A}^{\intercal}$$

Spectral Protocol (for perfect SNIR)

If (A, B) is an SNIR from D to C, then there are spectral protocols \widehat{A}, \widehat{B} such that

A, B determinsitic	\implies	$\widehat{A}^{T}\widehat{A} = I, \ \widehat{B}^{T}\widehat{B} = I$
$A^{\intercal}CB=D$	\implies	$\widehat{A}^{\intercal} \Sigma_C \widehat{B} = \Sigma_D$
$\exists V: A^{\intercal}C = DV$	\implies	$\widehat{A}^{\intercal} \Sigma_C = \Sigma_D \widehat{B}^{\intercal}$
$\exists U: CC = U^{\intercal}D$	\implies	$\Sigma_C \widehat{B} = \widehat{A} \Sigma_D$

$$\widehat{A}^{\mathsf{T}} \Sigma_C \Sigma_C^{\mathsf{T}} = \Sigma_D \widehat{B}^{\mathsf{T}} \Sigma_C^{\mathsf{T}} = \Sigma_D \Sigma_D^{\mathsf{T}} \widehat{A}^{\mathsf{T}}$$

Necessary conditions for Perfect SNIR (non-redundant D)

Determinisim:A and B must be deterministicSpectral criterion: $\Lambda_D \subseteq \Lambda_C$ Mirroring property: $\widehat{A} = \widehat{B}$ (after zero-padding)

Results for $\epsilon\text{-}\mathsf{SNIR}$

Necessary conditions for ϵ -SNIR (non-redundant D)

- There is a **deterministic** $O_D(\sqrt{\epsilon})$ -SNIR
- \blacksquare Each element in Λ_D is close to some element in Λ_C
- $\|\widehat{A} \widehat{B}\|$ is small (after zero-padding)

D has a **statistical** SNIR to C if, $\forall \epsilon > 0 \ \exists \ell$ s.t. D has an ϵ -secure SNIR to $C^{\otimes \ell}$.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim:W.I.o.g. A and B are deterministicSpectral criterion: $\Lambda_D \subseteq \Lambda_C$ (same as for perfect SNIR!)Mirroring property: $\|\widehat{A} - \widehat{B}\| \to 0$ (after zero-padding)

D has a **statistical** SNIR to C if, $\forall \epsilon > 0 \ \exists \ell$ s.t. D has an ϵ -secure SNIR to $C^{\otimes \ell}$.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim:W.I.o.g. A and B are deterministicSpectral criterion: $\Lambda_D \subseteq \Lambda_C$ (same as for perfect SNIR!)Mirroring property: $\|\widehat{A} - \widehat{B}\| \to 0$ (after zero-padding)

C	BSC(q)		BEC(q)	
D	secure	non-secure	secure	non-secure
BSC(p)	$p = q^{*k}$	$p \ge q$	impossible [KMN22]	$p \ge q$
BEC(p)	impossible	impossible	$p = q^k$	$p \ge q$

D has a **statistical** SNIR to C if, $\forall \epsilon > 0 \ \exists \ell$ s.t. D has an ϵ -secure SNIR to $C^{\otimes \ell}$.

D has a **statistical** SNIR to C if, $\forall \epsilon > 0 \ \exists \ell$ s.t. D has an ϵ -secure SNIR to $C^{\otimes \ell}$.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim:W.I.o.g. A and B are deterministicSpectral criterion: $\Lambda_D \subseteq \Lambda_C$ (same as for perfect SNIR!)Mirroring property: $\|\widehat{A} - \widehat{B}\| \to 0$ (after zero-padding)

C	BSC(q)		BEC(q)	
D	secure	non-secure	secure	non-secure
BSC(p)	$p = q^{*k}$	$p \ge q$	impossible [KMN22]	$p \ge q$
BEC(p)	impossible	impossible	$p = q^k$	$p \ge q$

- OLE over field $\mathbb F$ has an SNIR to OLE over $\mathbb F'$ only if $\mathbb F$ and $\mathbb F'$ have the same characteristic
 - Characteristic of \mathbb{F} is a prime number p such that $|\mathbb{F}| = p^k$ for some integer k.
 - Spectrum of OLE over field \mathbb{F} has $\{1, \frac{1}{|\mathbb{F}|}\}$.
 - $\sqrt{|\mathbb{F}|} = \sqrt{|\mathbb{F}'|}^{\ell}$ only if \mathbb{F} and \mathbb{F}' have same characteristic.

- \blacksquare OLE over field $\mathbb F$ has an SNIR to OLE over $\mathbb F'$ only if $\mathbb F$ and $\mathbb F'$ have the same characteristic
 - Characteristic of \mathbb{F} is a prime number p such that $|\mathbb{F}| = p^k$ for some integer k.
 - Spectrum of OLE over field \mathbb{F} has $\{1, \frac{1}{|\mathbb{F}|}\}$.
 - $\sqrt{|\mathbb{F}|} = \sqrt{|\mathbb{F}'|}^{\ell}$ only if \mathbb{F} and \mathbb{F}' have same characteristic.
- OT has no SNIR to BSC
 - A quantitatively weaker version is implied by a (qualitatively stronger) impossibility result in the one-way secure computation model [GIKOS15]

- \blacksquare OLE over field $\mathbb F$ has an SNIR to OLE over $\mathbb F'$ only if $\mathbb F$ and $\mathbb F'$ have the same characteristic
 - Characteristic of \mathbb{F} is a prime number p such that $|\mathbb{F}| = p^k$ for some integer k.
 - Spectrum of OLE over field \mathbb{F} has $\{1, \frac{1}{|\mathbb{F}|}\}$.
 - $\sqrt{|\mathbb{F}|} = \sqrt{|\mathbb{F}'|}^{\ell}$ only if \mathbb{F} and \mathbb{F}' have same characteristic.
- OT has no SNIR to BSC
 - A quantitatively weaker version is implied by a (qualitatively stronger) impossibility result in the one-way secure computation model [GIKOS15]
- There are no SNIR-complete correlations

- \blacksquare OLE over field $\mathbb F$ has an SNIR to OLE over $\mathbb F'$ only if $\mathbb F$ and $\mathbb F'$ have the same characteristic
 - Characteristic of \mathbb{F} is a prime number p such that $|\mathbb{F}| = p^k$ for some integer k.
 - Spectrum of OLE over field \mathbb{F} has $\{1, \frac{1}{|\mathbb{F}|}\}$.
 - $\sqrt{|\mathbb{F}|} = \sqrt{|\mathbb{F}'|}^{\ell}$ only if \mathbb{F} and \mathbb{F}' have same characteristic.
- OT has no SNIR to BSC
 - A quantitatively weaker version is implied by a (qualitatively stronger) impossibility result in the one-way secure computation model [GIKOS15]
- There are **no SNIR-complete correlations**
- Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: "Not useful" unless D has common information ϵ -SNIR: Conditioned on common randomness in C, it remains an $O_D(\epsilon)$ -SNIR

Spectral analysis reveals structure in SNIR

Characterized SNIR between natural correlations

Towards decidability of SNIR

- Spectral analysis reveals structure in SNIR
- Characterized SNIR between natural correlations
- Towards decidability of SNIR (settled in upcoming follow-up work)

- Spectral analysis reveals structure in SNIR
- Characterized SNIR between natural correlations
- Towards decidability of SNIR (settled in upcoming follow-up work)
- Towards secure *interactive* reductions

- Spectral analysis reveals structure in SNIR
- Characterized SNIR between natural correlations
- Towards decidability of SNIR (settled in upcoming follow-up work)
- Towards secure *interactive* reductions
 - Decidability is long settled, with a combinatorial characterization
 - Open for one-way communication

Spectral analysis reveals structure in SNIR

- Characterized SNIR between natural correlations
- Towards decidability of SNIR (settled in upcoming follow-up work)
- Towards secure *interactive* reductions
 - Decidability is long settled, with a combinatorial characterization
 - Open for one-way communication
 - Rate (how many copies of *C* per copy of *D*) is open, but faces circuit-complexity barriers
 - Rate of SNIR?

Thank you