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Attempt 1 (for p < 1
2)

1. Alice outputs X
2. Bob outputs Y w.p. 1

2(1−p) ; otherwise ⊥

Correct but not secure

Attempt 2 (for p = 1− 1√
2

)

Use 2 copies (X1, Y1), (X2, Y2) ∼ BEC(p)

1. Alice outputs X1 ⊕X2

2. Bob outputs Y1 ⊕ Y2 if Y1, Y2 ∈ {0, 1};
otherwise ⊥
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Alice Bob

(X,Y ) ∼ C
X Y

(R,S) ∼ DR = A(X) S = B(Y )

(A,B) is an SNIR of D to C if

(R,S) ∼ D
R indep. of Y conditioned on S

S indep. of X conditioned on R

Fundamental question:

When can D have an SNIR to C?

In this work

A spectral analysis toolkit for
(statistical) SNIR

Exact characterizations for inter-
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Why Study SNIR?

Correlations are fundamental in information-theoretic cryptography

SNIR is the most basic cryptographic question about correlations

Non-interactive variant of secure computation

Lowerbounds for secure computation is a deep complexity theoretic question
SNIR captures all the security aspects of secure computation of correlations.
The latter has the form

Interaction phase (no security requirements)
SNIR phase

Secure variant of (non-secure) non-interactive correlation simulation (NIS)

Information theoretic variant of pseudo-random correlation generators
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Our Results

Toolkit

When does D have a statistical SNIR (A,B) to C?

Enough to consider correlations without redundant symbols

SNIR must be essentially deterministic

Spectrum of D ⊆ spectrum of C

In the spectral domain A and B mirror each other

Common information in C is only trivially useful

Applications

Exact characterizations of statistical SNIR for interesting classes of correlations

BEC/BSC results also
obtained by [KMN22]
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Alice Bob

(X,Y ) ∼ C
X Y

A(X) B(Y )

(A,B) ε-SNIR of D to C iff, for (R,S) ∼ D,

Correctness:

(A(X),B(Y ))
ε
≈ (R,S)

Security against Alice: ∃ simulator SimA:

(X,B(Y ))
ε
≈ (SimA(R), S)

Security against Bob: ∃ simulator SimB:

(A(X), Y )
ε
≈ (R,SimB(S))

A[x, r] = PrA[R = r|X = x] B[y, s] = PrB[S = s|Y = y]

U [r, x] = PrSimA
[X = x|R = r] V [y, s] = PrSimB

[Y = y|S = s]
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An ε-SNIR of a non-redundant D to C can be converted into a deterministic
OD(
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Spectral analysis simple case: perfect security, square matrices, uniform marginals

Suppose ∆C = ∆Cᵀ = 1
mIm×m and ∆D = ∆Dᵀ = 1

nIn×n

AᵀCCᵀ = DV Cᵀ ∵ AᵀC = DV

=
n

m
DBᵀCᵀ where V = ∆−1D Bᵀ∆C =

n

m
Bᵀ

=
n

m
DDᵀU ∵ UᵀD = CB

= DDᵀAᵀ where U = ∆−1DᵀA
ᵀ∆Cᵀ =

n

m
Aᵀ

If vᵀ is an eigenvector corresponding to eigenvalue λ of DDᵀ; i.e., vᵀDDᵀ = λvᵀ,

vᵀAᵀCCᵀ = vᵀDDᵀAᵀ = λvᵀAᵀ,

we get theorem

{ eigenvalues of DᵀD } ⊆ { eigenvalues of CᵀC }
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Spectrum Containment (simple case)

∆C = ∆Cᵀ = 1
mIm×m, ∆D = ∆Dᵀ = 1

nIn×n =⇒ D has a SNIR to C only if

{ eigenvalues of DᵀD } ⊆ { eigenvalues of CᵀC }

For D = BSC(p), eigenvalues of DᵀD are {1, 1− 2p}
For C = BSC(q)⊗`, eigenvalues of CᵀC are {(1− 2q)k : 0 ≤ k ≤ `}

Application

BSC(p) has a SNIR to BSC(q)⊗` if and only if, ∃k ≤ `, 1− 2p = (1− 2q)k, or
equivalently, p = q ∗ . . . ∗ q (k times), where q ∗ q′ = q(1− q′) + q′(1− q).

Construction:

When (Xk, Y k) ∼ C⊗k: Alice outputs
k⊕
i=1

Xi and Bob outputs
k⊕
i=1

Yi



.

.

.

.

X∼Ber( 1
2
)

Y=X

Y=1−X

1−p

p

Spectrum Containment (simple case)

∆C = ∆Cᵀ = 1
mIm×m, ∆D = ∆Dᵀ = 1

nIn×n =⇒ D has a SNIR to C only if

{ eigenvalues of DᵀD } ⊆ { eigenvalues of CᵀC }

For D = BSC(p), eigenvalues of DᵀD are {1, 1− 2p}

For C = BSC(q)⊗`, eigenvalues of CᵀC are {(1− 2q)k : 0 ≤ k ≤ `}

Application

BSC(p) has a SNIR to BSC(q)⊗` if and only if, ∃k ≤ `, 1− 2p = (1− 2q)k, or
equivalently, p = q ∗ . . . ∗ q (k times), where q ∗ q′ = q(1− q′) + q′(1− q).

Construction:

When (Xk, Y k) ∼ C⊗k: Alice outputs
k⊕
i=1

Xi and Bob outputs
k⊕
i=1

Yi



.

.

.

.

X∼Ber( 1
2
)

Y=X

Y=1−X

1−p

p

Spectrum Containment (simple case)

∆C = ∆Cᵀ = 1
mIm×m, ∆D = ∆Dᵀ = 1

nIn×n =⇒ D has a SNIR to C only if

{ eigenvalues of DᵀD } ⊆ { eigenvalues of CᵀC }

For D = BSC(p), eigenvalues of DᵀD are {1, 1− 2p}
For C = BSC(q)⊗`, eigenvalues of CᵀC are {(1− 2q)k : 0 ≤ k ≤ `}

Application

BSC(p) has a SNIR to BSC(q)⊗` if and only if, ∃k ≤ `, 1− 2p = (1− 2q)k, or
equivalently, p = q ∗ . . . ∗ q (k times), where q ∗ q′ = q(1− q′) + q′(1− q).

Construction:

When (Xk, Y k) ∼ C⊗k: Alice outputs
k⊕
i=1

Xi and Bob outputs
k⊕
i=1

Yi



.

.

.

.

X∼Ber( 1
2
)

Y=X

Y=1−X

1−p

p

Spectrum Containment (simple case)

∆C = ∆Cᵀ = 1
mIm×m, ∆D = ∆Dᵀ = 1

nIn×n =⇒ D has a SNIR to C only if

{ eigenvalues of DᵀD } ⊆ { eigenvalues of CᵀC }

For D = BSC(p), eigenvalues of DᵀD are {1, 1− 2p}
For C = BSC(q)⊗`, eigenvalues of CᵀC are {(1− 2q)k : 0 ≤ k ≤ `}

Application

BSC(p) has a SNIR to BSC(q)⊗` if and only if, ∃k ≤ `, 1− 2p = (1− 2q)k, or
equivalently, p = q ∗ . . . ∗ q (k times), where q ∗ q′ = q(1− q′) + q′(1− q).

Construction:

When (Xk, Y k) ∼ C⊗k: Alice outputs
k⊕
i=1

Xi and Bob outputs
k⊕
i=1

Yi



Correlation Operator

A linear operator that transforms the distribution for one party (appropriately
normalized) to that for the other party, conditioned on the former.

C̃ = ∆
−1/2
Cᵀ C∆

1/2
C .

Can use Singular Value Decomposition (SVD) to analyze a linear operator.

SVD views a linear operator as a sequence of 3 operations:

Rotation/reflection → Scaling along the axis → Rotation/reflection

The scaling factors, called the singular values, capture several properties of a linear
transform.

Spectrum of a Correlation

We define ΛC , the spectrum of C as the (non-zero) singular values of C̃.
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Spectrum of a Correlation

We define ΛC , the spectrum of C as the (non-zero) singular values of C̃.

Can relate ΛC to spectral graph theoretic quantities associated with a bipartite
graph representing C

All entries in the spectrum fall in (0, 1].
(Log) Multiplicity of 1 gives the common information (measured as
max-entropy) in C
The second largest value in the spectrum is the maximal correlation of C
[Wit75]

Taking multiple copies of a correlation results in multiplication of the singular
values, i.e.,

ΛC⊗` = (ΛC)` :=

{∏̀
i=1

λi|λi ∈ ΛC

}
.



Spectral Protocol (for perfect SNIR)

If (A,B) is an SNIR from D to C, then there are spectral protocols Â, B̂ such that

A, B determinsitic =⇒ ÂᵀÂ = I, B̂ᵀB̂ = I

AᵀCB = D =⇒ ÂᵀΣCB̂ = ΣD

∃V : AᵀC = DV =⇒ ÂᵀΣC = ΣDB̂
ᵀ

∃U : CC = UᵀD =⇒ ΣCB̂ = ÂΣD

ÂᵀΣCΣᵀ
C = ΣDB̂

ᵀΣᵀ
C = ΣDΣᵀ

DÂ
ᵀ

Necessary conditions for Perfect SNIR (non-redundant D)

Determinisim: A and B must be deterministic
Spectral criterion: ΛD ⊆ ΛC
Mirroring property: Â = B̂ (after zero-padding)
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∃V : AᵀC = DV =⇒ ÂᵀΣC = ΣDB̂
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DÂ
ᵀ

Necessary conditions for Perfect SNIR (non-redundant D)

Determinisim: A and B must be deterministic
Spectral criterion: ΛD ⊆ ΛC
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Results for ε-SNIR

Necessary conditions for ε-SNIR (non-redundant D)

There is a deterministic OD(
√
ε)-SNIR

Each element in ΛD is close to some element in ΛC

‖Â− B̂‖ is small (after zero-padding)



Results for Statistical SNIR

D has a statistical SNIR to C if, ∀ε > 0 ∃` s.t. D has an ε-secure SNIR to C⊗`.

Necessary conditions for Statistical SNIR (non-redundant D)

Determinisim: W.l.o.g. A and B are deterministic
Spectral criterion: ΛD ⊆ ΛC (same as for perfect SNIR!)

Mirroring property: ‖Â− B̂‖ → 0 (after zero-padding)
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C BSC(q) BEC(q)

secure non-secure secure non-secure

BSC(p) p = q∗k p ≥ q impossible [KMN22] p ≥ q
BEC(p) impossible impossible p = qk p ≥ q
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Other Results in the Paper

OLE over field F has an SNIR to OLE over F′ only if F and F′ have the same
characteristic

Characteristic of F is a prime number p such that |F| = pk for some integer k.
Spectrum of OLE over field F has {1, 1

|F|}.√
|F| =

√
|F′|` only if F and F′ have same characteristic.

OT has no SNIR to BSC

A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

There are no SNIR-complete correlations

Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: “Not useful” unless D has common information
ε-SNIR: Conditioned on common randomness in C, it remains an OD(ε)-SNIR



Other Results in the Paper

OLE over field F has an SNIR to OLE over F′ only if F and F′ have the same
characteristic

Characteristic of F is a prime number p such that |F| = pk for some integer k.
Spectrum of OLE over field F has {1, 1

|F|}.√
|F| =

√
|F′|` only if F and F′ have same characteristic.

OT has no SNIR to BSC

A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

There are no SNIR-complete correlations

Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: “Not useful” unless D has common information
ε-SNIR: Conditioned on common randomness in C, it remains an OD(ε)-SNIR



Other Results in the Paper

OLE over field F has an SNIR to OLE over F′ only if F and F′ have the same
characteristic

Characteristic of F is a prime number p such that |F| = pk for some integer k.
Spectrum of OLE over field F has {1, 1

|F|}.√
|F| =

√
|F′|` only if F and F′ have same characteristic.

OT has no SNIR to BSC

A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

There are no SNIR-complete correlations

Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: “Not useful” unless D has common information
ε-SNIR: Conditioned on common randomness in C, it remains an OD(ε)-SNIR



Other Results in the Paper

OLE over field F has an SNIR to OLE over F′ only if F and F′ have the same
characteristic

Characteristic of F is a prime number p such that |F| = pk for some integer k.
Spectrum of OLE over field F has {1, 1

|F|}.√
|F| =

√
|F′|` only if F and F′ have same characteristic.

OT has no SNIR to BSC

A quantitatively weaker version is implied by a (qualitatively stronger)
impossibility result in the one-way secure computation model [GIKOS15]

There are no SNIR-complete correlations

Role of common information in SNIR from D to C:

Perfect/Statistical SNIR: “Not useful” unless D has common information
ε-SNIR: Conditioned on common randomness in C, it remains an OD(ε)-SNIR



Conclusion and Open Problems

Spectral analysis reveals structure in SNIR

Characterized SNIR between natural correlations

Towards decidability of SNIR

(settled in upcoming follow-up work)

Towards secure interactive reductions

Decidability is long settled, with a combinatorial characterization

Open for one-way communication

Rate (how many copies of C per copy of D) is open, but faces
circuit-complexity barriers

Rate of SNIR?
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