Highly Efficient OT-Based Multiplication Protocols Nikolaos Makriyannis (Fireblocks)

Joint work w/ Iftach Haitner, Samuel Ranellucci & Eliad Tsfadia

X

X

• q is a large prime

• Building block in *arithmetic* MPC

• Building block in *arithmetic* MPC

- Building block in arithmetic MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)

- Building block in arithmetic MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)

- Building block in arithmetic MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)
- Realizing threshold-ECDSA
 - Applications to distributed EC cryptography (e.g. SNARKS)

- Building block in arithmetic MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)
- Realizing threshold-ECDSA
 - Applications to distributed EC cryptography (e.g. SNARKS)

- Building block in arithmetic MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)
- Realizing threshold- $ECDSA \implies$ Shallow arithmetic circuit over \mathbb{Z}_q
 - Applications to distributed EC cryptography (e.g. SNARKS)

- Building block in *arithmetic* MPC
- E.g., for generating tuples in preprocessing model
 - Beaver triplets: 2-out-of-2 shares of $(a, b, c = a \cdot b)$
 - Authenticated triplets (SPDZ)
- Realizing threshold- $ECDSA \implies$ Shallow arithmetic circuit over \mathbb{Z}_q
 - Applications to distributed EC cryptography (e.g. SNARKS)
- 0 $OLE(x, (y, \sigma)) \mapsto (x \cdot y + \sigma, \bot)$

Background

- Homomorphic Encryption, e.g., Paillier
 - Light Communication
 - Heavy Computation
 - **F** Stronger Assumptions

- Homomorphic Encryption, e.g., Paillier
 - Light Communication
 - **Heavy Computation**
 - **F** Stronger Assumptions
- **OT-Based** 0
 - Heavy Communication
 - Light Computation
 - Minimal Assumptions

- Homomorphic Encryption, e.g., Paillier
 - Light Communication
 - Heavy Computation
 - **F** Stronger Assumptions
- OT-Based
 - Heavy Communication
 - Light Computation
 - Minimal Assumptions

- Homomorphic Encryption, e.g., *Paillier*
 - Light Communication
 - **Heavy Computation**
 - **F** Stronger Assumptions
- OT-Based
 - Heavy Communication
 - Light Computation
 - Minimal Assumptions

This work: New OT-Based Multiplication protocol!

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])
- Costs Breakdown:

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])
- Costs Breakdown:
 - Computation/Communication & Round Complexity

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])
- Costs Breakdown:
 - Computation/Communication & Round Complexity
 - Calls to OT

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])
- o Costs Breakdown:
 - Computation/Communication & Round Complexity
 - Calls to OT
 - Sender input-length

- Augment the plain model with an oracle to $OT((z_0, z_1), \alpha) \mapsto (\bot, z_{\alpha})$
- ^o Hybrid Protocol \implies Real Protocol (via composition [Can01])

Size of the *z*'s

- Costs Breakdown: 0
 - Computation/Communication & Round Complexity
 - Calls to OT
 - Sender input-length

 \implies communication costs in standard model

Background OT-Based Constructions

Background OT-Based Constructions

o Gilboa99

Background **OT-Based** Constructions

Gilboa99 0

• Ishai, Prabhakaran and Sahai (IPS09)

o Gilboa99

 $\log(q)$ OT-calls & Communication

• Ishai, Prabhakaran and Sahai (IPS09)

Less efficient than Gilboa

- Gilboa99 0
 - log(q) OT-calls & Communication
 - Semi-Honest Security
- Ishai, Prabhakaran and Sahai (IPS09)
 - Less efficient than Gilboa
 - Semi-Honest security

- Gilboa99 0
 - $\log(q)$ OT-calls & Communication
 - Semi-Honest Security
 - 3 compilers (MASCOT, DKLs19) for Malicious Security w/ overhead
- Ishai, Prabhakaran and Sahai (IPS09)
 - Less efficient than Gilboa
 - Semi-Honest security

- Gilboa99 0
 - $\log(q)$ OT-calls & Communication
 - Semi-Honest Security
 - 3 compilers (MASCOT, DKLs19) for Malicious Security w/ overhead
- Ishai, Prabhakaran and Sahai (IPS09)
 - Less efficient than Gilboa
 - Semi-Honest security
 - Image: Image: Base of the assumption of the a

Our Results

 $^{\rm o}$ We present a new OT-based multiplication protocol Π

• We present a new OT-based multiplication protocol I 1. Almost maliciously secure "out of the box"

• We present a new OT-based multiplication protocol 1. Almost maliciously secure "out of the box" 2. Admits a batching variant

- $^{\rm o}$ We present a new OT-based multiplication protocol Π
 - 1. Almost maliciously secure "out of the box"
 - 2. Admits a batching variant $BatchMult(x, (y_1, ..., y_\beta)) \mapsto$
 - 3. Can be compiled cheaply into a fully secure protocol

 \approx Vector-OLE

- o We present a new OT-based multiplication protocol Π
 - 1. Almost maliciously secure "out of the box"
 - 2. Admits a batching variant BatchMult($x, (y_1, ..., y_\beta)$) \mapsto
 - 3. Can be compiled cheaply into a fully secure protocol
 - 4. x2 improvement in communication compared to SoA

 \approx Vector-OLE

Theorem (Informal)

Theorem (Informal)

Theorem (Informal)

Stat param κ , honest input z, exactly one of the following holds true.

Theorem (Informal)

Stat param κ , honest input z, exactly one of the following holds true.

• Π realizes the ideal (perfect) multiplication functionality with $2^{-\kappa/4}$ statistical closeness.

Theorem (Informal)

Stat param κ , honest input z, exactly one of the following holds true.

- Π realizes the ideal (perfect) multiplication functionality with $2^{-\kappa/4}$ statistical closeness.
- $H_{\infty}(\operatorname{out}_{\Pi}^{\mathscr{A}}(z) \mid \operatorname{view}_{\Pi}^{\mathscr{A}}(z), z) \geq \kappa/4.$

Theorem (Informal)

Stat param κ , honest input z, exactly one of the following holds true.

- Π realizes the ideal (perfect) multiplication functionality with $2^{-\kappa/4}$ statistical closeness.
- $H_{\infty}(\operatorname{out}_{\Pi}^{\mathscr{A}}(z) \mid \operatorname{view}_{\Pi}^{\mathscr{A}}(z), z) \geq \kappa/4.$

Theorem (Informal)

Stat param κ , honest input z, exactly one of the following holds true.

- Π realizes the ideal (perfect) multiplication functionality with $2^{-\kappa/4}$ statistical closeness.
- $H_{\infty}(\operatorname{out}_{\Pi}^{\mathscr{A}}(z) \mid \operatorname{view}_{\Pi}^{\mathscr{A}}(z), z) \geq \kappa/4.$

• Output is highly unpredictable under attack, even given the input.

Theorem (Informal)

- $H_{\infty}(\operatorname{out}_{\Pi}^{\mathscr{A}}(z) \mid \operatorname{view}_{\Pi}^{\mathscr{A}}(z), z) \geq \kappa/4.$

Theorem (Informal)

- $H_{\infty}(\operatorname{out}_{\Pi}^{\mathscr{A}}(z) \mid \operatorname{view}_{\Pi}^{\mathscr{A}}(z), z) \geq \kappa/4.$

• Achieving Full Security

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

• In a *q*-order group $G = \langle g \rangle$, party \mathscr{P}_1 simply checks that $B^x \cdot g^{-s_1} = R_2$

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.
 - In a *q*-order group $\mathbb{G} = \langle g \rangle$, party \mathscr{P}_1 simply checks that $\mathbb{B}^x \cdot g^{-s_1} = \mathbb{R}_2$

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

 - Above generalizes to arbitrary settings. (ask me later)

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

 - Above generalizes to arbitrary settings. (ask me later)
- Achieving WeakMult is good enough for certain applications.

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

 - Above generalizes to arbitrary settings. (ask me later)
- O Achieving WeakMult is good enough for certain applications.

Assuming $(B, R_2) = (g^y, g^{s_2})$ and B is public • In a *q*-order group $G = \langle g \rangle$, party \mathscr{P}_1 simply checks that $B^x \cdot g^{-s_1} = R_2$ e.g. t-ECDSA [LN18] (new version soon)

- Achieving Full Security
 - Simple a posteriori check on the shares suffices.

 - Above generalizes to arbitrary settings. (ask me later)
- ^o Achieving WeakMult is good enough for certain applications.
- 0

Assuming $(B, R_2) = (g^y, g^{s_2})$ and B is public In a q-order group $G = \langle g \rangle$, party \mathscr{P}_1 simply checks that $B^x \cdot g^{-s_1} = R_2$ e.g. t-ECDSA [LN18] (new version soon)

Batching variant is useful for generating triplets in preprocessing model.

	Gilboa99	IPS09	MASCOT/ DKLs19	Our Work
Security	Semi-Honest	Semi-Honest	Malicious	Malicious
# of OT-Calls				
Communication per OT-Call				
Batching Overhead				

	Gilboa99	IPS09	MASCOT/ DKLs19	Our Work
Security	Semi-Honest	Semi-Honest	Malicious	Malicious
# of OT-Calls	$\log(q)$	N	n	N
Communication per OT-Call				
Batching Overhead				

	Gilboa99	IPS09	MASCOT/ DKLs19	Our Work	
Security	Semi-Honest	Semi-Honest	Malicious	Malicious	
# of OT-Calls	log(q)	п	n	n	
Communication per OT-Call	$\log(q)$	$\log(q)$	$2 \cdot \log(q)$	log(q)	
Batching Overhead					

	Gilboa99	IPS09	MASCOT/ DKLs19	Our Work	
Security	Semi-Honest	Semi-Honest	Malicious	Malicious	
# of OT-Calls	log(q)	п	n	n	$\sum_{n=\log(q)+\kappa}$
Communication per OT-Call	log(q)	log(q)	$2 \cdot \log(q)$	log(q)	Batch
Batching Overhead	$\beta \cdot \log(q)$	$eta \cdot n$	$eta \cdot n$	$\beta \cdot \log(q)$	Size = β

Technical Overview

Technical Overview *Notation*
Technical Overview *Notation*

1. Boldface u, v, z, ... denote vectors with $u = (u_1, ..., u_n), ...$

Technical Overview Notation

1. Boldface u, v, z, ... denote vectors with $u = (u_1, ..., u_n), ...$ 2. Write $\langle u, v \rangle = \sum_{i=1}^{n} u_i \cdot v_i$ for the inner product of u and v. i=1

Technical Overview Notation

1. Boldface u, v, z, \dots denote vectors with $u = (u_1, \dots, u_n), \dots$ 2. Write $\langle u, v \rangle = \sum_{i=1}^{n} u_i \cdot v_i$ for the inner product of u and v. i=1

3. Write $u^* v = (u_1 \cdot v_1, \dots, u_n \cdot v_n)$ for pointwise (Hadamard) product.

 \mathscr{P}_1 and \mathscr{P}_2 hold inputs x and $y \in \mathbb{Z}_q$ respectively

 \mathscr{P}_1 and \mathscr{P}_2 hold inputs x and $y \in \mathbb{Z}_q$ respectively

 $\mathbf{H}_{1}=\mathbf{H}_{2}$

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

2. Sample $\mathbf{v} \leftarrow \mathbb{Z}_q^n$ s.t. $\langle \mathbf{t}, \mathbf{v} \rangle = y$.

. . .

. . .

. . .

Output $\langle z, v \rangle$.

. . .

. . .

. . .

$$= x \cdot \langle \boldsymbol{t}, \boldsymbol{v} \rangle = x \cdot y$$

Security

 \mathscr{P}_1 and \mathscr{P}_2 hold inputs x and $y \in \mathbb{Z}_q$ respectively

• Protocol is fully secure against $\mathscr{P}_{2}^{\mathscr{A}}$

- Protocol is fully secure against $\mathscr{P}_{2}^{\mathscr{A}}$
- $\circ \mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT

16

- Protocol is fully secure against $\mathscr{P}_2^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT

- Protocol is fully secure against $\mathscr{P}_{2}^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT
 - Output is offset by $\langle v * t, d \rangle$ for d smallest vec in
 - $\{\gamma \cdot \mathbf{1} (\delta^+ \delta^-)/2 \text{ s.t. } \gamma \in \mathbb{Z}_a\}$

- Protocol is fully secure against $\mathscr{P}_2^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT
 - Output is offset by $\langle v * t, d \rangle$ for d smallest vec in
 - $\{\gamma \cdot \mathbf{1} (\delta^+ \delta^-)/2 \text{ s.t. } \gamma \in \mathbb{Z}_q\}$

- Protocol is fully secure against $\mathscr{P}_{2}^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT
 - Output is offset by $\langle v * t, d \rangle$ for d smallest vec in $\{\gamma \cdot 1 - (\delta^+ - \delta^-)/2 \text{ s.t. } \gamma \in \mathbb{Z}_q\}$
 - If *d* is close to zero then $\langle v * t, d \rangle$ and $y = \langle t, v \rangle$ are $2^{-\kappa/4}$ -close to ind.

- Protocol is fully secure against $\mathscr{P}_{2}^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT
 - Output is offset by $\langle v * t, d \rangle$ for d smallest vec in $\{\gamma \cdot \mathbf{1} - (\delta^+ - \delta^-)/2 \text{ s.t. } \gamma \in \mathbb{Z}_a\}$

 - If not, then $\langle v^* t, d \rangle$ has min-entropy $\kappa/4$, given v and y.

- Protocol is fully secure against $\mathscr{P}_{\gamma}^{\mathscr{A}}$
- $\mathcal{P}_1^{\mathscr{A}}$ can use inconsistent inputs in OT
 - Output is offset by $\langle v * t, d \rangle$ for d smallest vec in $\{\gamma \cdot \mathbf{1} - (\delta^+ - \delta^-)/2 \text{ s.t. } \gamma \in \mathbb{Z}_a\}$

 - If not, then $\langle v * t, d \rangle$ has min-entropy $\kappa/4$, given v and y.

Batching Variant of our Protocol

 \mathscr{P}_1 and \mathscr{P}_2 hold inputs x and $y_1, \ldots, y_\beta \in \mathbb{Z}_q$ respectively

. . .

. . .

2. $\forall j$, sample $v_i \leftarrow \mathbb{Z}_q^n$ s.t. $\langle t, v_j \rangle = y_j$.

Output $\forall j, \langle z, v_j \rangle$.

Summary New OT-based two-party mult. protocol

Summary New OT-based two-party mult. protocol

- 1. Our Protocol
 - "Sufficiently" secure for some applications
 - "Almost" as efficient as SoA semi-honest protocols
 - x2 more efficient than SoA in its fully malicious variant

Summary New OT-based two-party mult. protocol

- 1. Our Protocol
 - Sufficiently secure for some applications
 - "Almost" as efficient as SoA semi-honest protocols
 - x2 more efficient than SoA in its fully malicious variant
- 2. Open Questions
 - Push efficiency further (go beyond Gilboa's $log(q) \times log(q)$ barrier)
 - Does IPS09 realize WeakMult?
 - Lower Bounds? Is OT-mult. inherently wasteful communication-wise?

Highly Efficient OT-Based Multiplication Protocols Nikolaos Makriyannis (Fireblocks)

Joint work w/ Iftach Haitner, Samuel Ranellucci & Eliad Tsfadia

