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Problem Statement (Two-Party Multiplication)
Mult(x, y) = (5,8 =x-y—5)

> ¢ Is a large prime

> Any field of odd characteristic

Ask me later
for even char.
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Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC — —

© E.g., for generating tuples in preprocessing model theoretic MPC

These triplets
facilitate *fast* info-

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

6 Realizing threshold-ECDSA = Shallow arithmetic circuit over Z @
> Applications to distributed EC cryptography (e.g. SNARKS)

O Mult is “almost” the same functionality as OLE (Oblivious Linear Evaluation)

OLE(x,(yv,0)—» (x-y+o0, 1)
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This work: New OT-Based Multiplication protocol!
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OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])
© Costs Breakdown:

» Computation/Communication & Round Complexity

» Calls to OT j
E Size of the 7’s

>~ Sender input-length —

——> communication costs In standard model
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o Gilboa99

log(g) OT-calls & Communication

¥ Semi-Honest Security

> 4 compilers (MASCOT, DKLs19) for Malicious Security w/ overhead
o |shai, Prabhakaran and Sahai (IPS09)

' |ess efficient than Gilboa
® Semi-Honest security

> 4 malicious variant under non-standard assumption
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© We present a new OT-based multiplication protocol 11

1. Almost maliciously secure “out of the box”

2. Admits a batching variant @

BatchMult(x, (y;, ...,yﬂ)) = (e S5 )y ey X2y, — 855 .00))

3. Can be compiled cheaply into a fully secure protocol

4. X2 improvement in communication compared to SoA
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ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo )

MinEntropy of honest output given —

9/’s view and honest input Batching: each output is
unpredictable, even given all the inputs

o Qutput is highly unpredictable under attack, even given the input.

O Formal definition of “unpredictability” via functionality WeakMult
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Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

e.g. t-ECDSA [LN18]
(new version soon)

o Batching variant is useful for generating triplets in preprocessing model.

~ Above generalizes to arbitrary settings. ( )

O Achieving WeakMult is good enough for certain applications.
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1. Boldface u, v, z, ... denote vectors withu = (1, ..., u, ), ...

n

2. Write (u,v) = Z u; - v for the inner product of # and v.
i=1

3. Writeu *v = (u; - v, ..., u, - v,) for pointwise (Hadamard) product.
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9 and P, hold inputs x and y,, ...,y € Z , respectively
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H
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1. Our Protocol

- “Sufficiently” secure for some applications

> “Almost” as efficient as SOA semi-honest protocols
> X2 more efficient than SoA in its fully malicious variant

2. Open Questions
- Push efficiency further (go beyond Gilboa’s log(g) X log(q) barrier)

> Does IPS09 realize WeakMult?

>~ Lower Bounds? Is OT-mult. inherently wasteful communication-wise?
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