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Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

s1 s2

s2 = x ⋅ y − s1
s1 ← ℤq

‣  is a large primeq
‣Any field of odd characteristic

Ask me later  
for even char.  
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Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model


‣ Beaver triplets:  -out-of-  shares of  


‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

Realizing threshold-ECDSA 
‣ Applications to distributed EC cryptography (e.g. SNARKS)

 is “almost” the same functionality as OLE (Oblivious Linear Evaluation)𝖬𝗎𝗅𝗍

Use MPC to 
“thresholdize”

  Shallow arithmetic circuit over ⟹ ℤq

𝖮𝖫𝖤(x, (y, σ)) ↦ (x ⋅ y + σ, ⊥ )
3

Analogous to OT 
in Boolean MPC

These triplets 
facilitate *fast* info-

theoretic MPC
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Background
Known Constructions/Paradigms

Homomorphic Encryption, e.g., Paillier 

 Light Communication

 Heavy Computation

 Stronger Assumptions

OT-Based

 Heavy Communication

 Light Computation

 Minimal Assumptions

Tens to hundreds of KiB 
for multiplying 32B values!

This work: New OT-Based Multiplication protocol!
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Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ ( ⊥ , zα )

Hybrid Protocol   Real Protocol (via composition [Can01])⟹

Costs Breakdown:

‣ Computation/Communication & Round Complexity

‣ Calls to OT

‣ Sender input-length

  communication costs in standard model ⟹

Size of the ’sz
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7

  OT-calls & Communicationlog(q)

 Semi-Honest Security

‣  compilers (MASCOT, DKLs19) for Malicious Security w/ overhead∃

Less efficient than Gilboa

 Semi-Honest security

‣  malicious variant under non-standard assumption∃
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2. Admits a batching variant 
𝖡𝖺𝗍𝖼𝗁𝖬𝗎𝗅𝗍(x, (y1, …, yβ)) ↦ ((…, si, …), (…, x ⋅ yi − si, …))

3. Can be compiled cheaply into a fully secure protocol

4. x2 improvement in communication compared to SoA

 Vector-OLE≈
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Our Results (Cont’d)
New OT-Based Multiplication Protocol

Output is highly unpredictable under attack, even given the input.
Formal definition of “unpredictability” via functionality 𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Theorem (Informal)
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‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party  simply checks that  q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

‣ Above generalizes to arbitrary settings. (ask me later)

Achieving  is good enough for certain applications.𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Batching variant is useful for generating triplets in preprocessing model.

Assuming 
 

and  is public
(B, R2) = (gy, gs2)

B

11

e.g. t-ECDSA [LN18] 
(new version soon)
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# of OT-Calls

Communication 
per OT-Call

Batching 
Overhead 

log(q) n n n

2 ⋅ log(q) log(q)log(q)log(q)
Batch 

Size = β
β ⋅ log(q) β ⋅ n β ⋅ n β ⋅ log(q)

n = log(q) + κ
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1. Boldface  denote vectors with  u, v, z, … u = (u1, …, un), …

2. Write  for the inner product of  and .⟨ u, v⟩ =
n

∑
i=1

ui ⋅ vi u v

3. Write  for pointwise (Hadamard) product.u * v = (u1 ⋅ v1, …, un ⋅ vn)

14
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2. Open Questions


‣ Push efficiency further (go beyond Gilboa’s  barrier)


‣ Does IPS09 realize ?


‣ Lower Bounds? Is OT-mult. inherently wasteful communication-wise? 

log(q) × log(q)
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