
Joint work w/ Iftach Haitner, Samuel Ranellucci & Eliad Tsfadia

Highly Efficient OT-Based
Multiplication Protocols
Nikolaos Makriyannis (Fireblocks)

1

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

𝒫1 𝒫2

2

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

𝒫1 𝒫2

2

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

s2 = x ⋅ y − s1
s1 ← ℤq

𝒫1 𝒫2

2

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

s1 s2

s2 = x ⋅ y − s1
s1 ← ℤq

𝒫1 𝒫2

2

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

s1 s2

s2 = x ⋅ y − s1
s1 ← ℤq

‣ is a large primeq

𝒫1 𝒫2

2

Problem Statement (Two-Party Multiplication)
𝖬𝗎𝗅𝗍(x, y) ↦ (s1, s2 = x ⋅ y − s1)

MULT

x ∈ ℤq y ∈ ℤq

x y

s1 s2

s2 = x ⋅ y − s1
s1 ← ℤq

‣ is a large primeq
‣Any field of odd characteristic

Ask me later
for even char.

𝒫1 𝒫2

2

Motivation
Why Multiplication Protocols?

3

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC

3

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC

3

Analogous to OT
in Boolean MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

3

Analogous to OT
in Boolean MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

3

Analogous to OT
in Boolean MPC

These triplets
facilitate *fast* info-

theoretic MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

Realizing threshold-ECDSA
‣ Applications to distributed EC cryptography (e.g. SNARKS)

3

Analogous to OT
in Boolean MPC

These triplets
facilitate *fast* info-

theoretic MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

Realizing threshold-ECDSA
‣ Applications to distributed EC cryptography (e.g. SNARKS)

Use MPC to
“thresholdize”

3

Analogous to OT
in Boolean MPC

These triplets
facilitate *fast* info-

theoretic MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

Realizing threshold-ECDSA
‣ Applications to distributed EC cryptography (e.g. SNARKS)

Use MPC to
“thresholdize”

 Shallow arithmetic circuit over ⟹ ℤq

3

Analogous to OT
in Boolean MPC

These triplets
facilitate *fast* info-

theoretic MPC

Motivation
Why Multiplication Protocols?

Building block in arithmetic MPC
E.g., for generating tuples in preprocessing model

‣ Beaver triplets: -out-of- shares of

‣ Authenticated triplets (SPDZ)

2 2 (a, b, c = a ⋅ b)

Realizing threshold-ECDSA
‣ Applications to distributed EC cryptography (e.g. SNARKS)

 is “almost” the same functionality as OLE (Oblivious Linear Evaluation)𝖬𝗎𝗅𝗍

Use MPC to
“thresholdize”

 Shallow arithmetic circuit over ⟹ ℤq

𝖮𝖫𝖤(x, (y, σ)) ↦ (x ⋅ y + σ, ⊥)
3

Analogous to OT
in Boolean MPC

These triplets
facilitate *fast* info-

theoretic MPC

Background

4

Background
Known Constructions/Paradigms

5

Background
Known Constructions/Paradigms

Homomorphic Encryption, e.g., Paillier

 Light Communication

 Heavy Computation

 Stronger Assumptions

5

Background
Known Constructions/Paradigms

Homomorphic Encryption, e.g., Paillier

 Light Communication

 Heavy Computation

 Stronger Assumptions

OT-Based

 Heavy Communication

 Light Computation

 Minimal Assumptions

5

Background
Known Constructions/Paradigms

Homomorphic Encryption, e.g., Paillier

 Light Communication

 Heavy Computation

 Stronger Assumptions

OT-Based

 Heavy Communication

 Light Computation

 Minimal Assumptions

Tens to hundreds of KiB
for multiplying 32B values!

5

Background
Known Constructions/Paradigms

Homomorphic Encryption, e.g., Paillier

 Light Communication

 Heavy Computation

 Stronger Assumptions

OT-Based

 Heavy Communication

 Light Computation

 Minimal Assumptions

Tens to hundreds of KiB
for multiplying 32B values!

This work: New OT-Based Multiplication protocol!

5

Background
OT-Hybrid Model

6

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

6

𝖮𝖳

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

6

z0

z1
𝖮𝖳

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

6

z0

z1
α𝖮𝖳

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

Costs Breakdown:

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

Costs Breakdown:

‣ Computation/Communication & Round Complexity

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

Costs Breakdown:

‣ Computation/Communication & Round Complexity

‣ Calls to OT

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

Costs Breakdown:

‣ Computation/Communication & Round Complexity

‣ Calls to OT

‣ Sender input-length
Size of the ’sz

6

z0

z1
α𝖮𝖳

zα

Background
OT-Hybrid Model

Augment the plain model with an oracle to 𝖮𝖳((z0, z1), α) ↦ (⊥ , zα)

Hybrid Protocol Real Protocol (via composition [Can01])⟹

Costs Breakdown:

‣ Computation/Communication & Round Complexity

‣ Calls to OT

‣ Sender input-length

 communication costs in standard model ⟹

Size of the ’sz

6

z0

z1
α𝖮𝖳

zα

Background
OT-Based Constructions

7

Background
OT-Based Constructions

Gilboa99

7

Background
OT-Based Constructions

Gilboa99

Ishai, Prabhakaran and Sahai (IPS09)

7

Background
OT-Based Constructions

Gilboa99

Ishai, Prabhakaran and Sahai (IPS09)

7

 OT-calls & Communicationlog(q)

Less efficient than Gilboa

Background
OT-Based Constructions

Gilboa99

Ishai, Prabhakaran and Sahai (IPS09)

7

 OT-calls & Communicationlog(q)

 Semi-Honest Security

Less efficient than Gilboa

 Semi-Honest security

Background
OT-Based Constructions

Gilboa99

Ishai, Prabhakaran and Sahai (IPS09)

7

 OT-calls & Communicationlog(q)

 Semi-Honest Security

‣ compilers (MASCOT, DKLs19) for Malicious Security w/ overhead∃

Less efficient than Gilboa

 Semi-Honest security

Background
OT-Based Constructions

Gilboa99

Ishai, Prabhakaran and Sahai (IPS09)

7

 OT-calls & Communicationlog(q)

 Semi-Honest Security

‣ compilers (MASCOT, DKLs19) for Malicious Security w/ overhead∃

Less efficient than Gilboa

 Semi-Honest security

‣ malicious variant under non-standard assumption∃

Our Results

8

Our Results
New OT-Based Multiplication Protocol

9

Our Results
New OT-Based Multiplication Protocol

We present a new OT-based multiplication protocol Π

9

Our Results
New OT-Based Multiplication Protocol

We present a new OT-based multiplication protocol Π

1. Almost maliciously secure “out of the box”

9

Our Results
New OT-Based Multiplication Protocol

We present a new OT-based multiplication protocol Π

1. Almost maliciously secure “out of the box”

2. Admits a batching variant
𝖡𝖺𝗍𝖼𝗁𝖬𝗎𝗅𝗍(x, (y1, …, yβ)) ↦ ((…, si, …), (…, x ⋅ yi − si, …))

 Vector-OLE≈

9

Our Results
New OT-Based Multiplication Protocol

We present a new OT-based multiplication protocol Π

1. Almost maliciously secure “out of the box”

2. Admits a batching variant
𝖡𝖺𝗍𝖼𝗁𝖬𝗎𝗅𝗍(x, (y1, …, yβ)) ↦ ((…, si, …), (…, x ⋅ yi − si, …))

3. Can be compiled cheaply into a fully secure protocol

 Vector-OLE≈

9

Our Results
New OT-Based Multiplication Protocol

We present a new OT-based multiplication protocol Π

1. Almost maliciously secure “out of the box”

2. Admits a batching variant
𝖡𝖺𝗍𝖼𝗁𝖬𝗎𝗅𝗍(x, (y1, …, yβ)) ↦ ((…, si, …), (…, x ⋅ yi − si, …))

3. Can be compiled cheaply into a fully secure protocol

4. x2 improvement in communication compared to SoA

 Vector-OLE≈

9

Our Results (Cont’d)
New OT-Based Multiplication Protocol

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

• .H∞(𝗈𝗎𝗍𝒜
Π(z) ∣ 𝗏𝗂𝖾𝗐𝒜

Π(z), z) ≥ κ/4

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

• .H∞(𝗈𝗎𝗍𝒜
Π(z) ∣ 𝗏𝗂𝖾𝗐𝒜

Π(z), z) ≥ κ/4

MinEntropy of honest output given
’s view and honest input𝒜

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Output is highly unpredictable under attack, even given the input.

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

• .H∞(𝗈𝗎𝗍𝒜
Π(z) ∣ 𝗏𝗂𝖾𝗐𝒜

Π(z), z) ≥ κ/4

MinEntropy of honest output given
’s view and honest input𝒜

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Output is highly unpredictable under attack, even given the input.

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

• .H∞(𝗈𝗎𝗍𝒜
Π(z) ∣ 𝗏𝗂𝖾𝗐𝒜

Π(z), z) ≥ κ/4

MinEntropy of honest output given
’s view and honest input𝒜 Batching: each output is

unpredictable, even given all the inputs

10

 is secure or
 output is utterly unpredictable

Π

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Output is highly unpredictable under attack, even given the input.
Formal definition of “unpredictability” via functionality 𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Theorem (Informal)
Stat param , honest input , exactly one of the following holds true.κ z
• realizes the ideal (perfect) multiplication functionality with statistical closeness.Π 2−κ/4

• .H∞(𝗈𝗎𝗍𝒜
Π(z) ∣ 𝗏𝗂𝖾𝗐𝒜

Π(z), z) ≥ κ/4

MinEntropy of honest output given
’s view and honest input𝒜 Batching: each output is

unpredictable, even given all the inputs

10

 is secure or
 output is utterly unpredictable

Π

Applications
New OT-Based Multiplication Protocol

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

Assuming

and is public
(B, R2) = (gy, gs2)

B

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

‣ Above generalizes to arbitrary settings. (ask me later)

Assuming

and is public
(B, R2) = (gy, gs2)

B

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

‣ Above generalizes to arbitrary settings. (ask me later)

Achieving is good enough for certain applications.𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Assuming

and is public
(B, R2) = (gy, gs2)

B

11

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

‣ Above generalizes to arbitrary settings. (ask me later)

Achieving is good enough for certain applications.𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Assuming

and is public
(B, R2) = (gy, gs2)

B

11

e.g. t-ECDSA [LN18]
(new version soon)

Applications
New OT-Based Multiplication Protocol

Achieving Full Security

‣ Simple a posteriori check on the shares suffices.

‣ In a -order group , party simply checks that q 𝔾 = ⟨g⟩ 𝒫1 Bx ⋅ g−s1 = R2

‣ Above generalizes to arbitrary settings. (ask me later)

Achieving is good enough for certain applications.𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

Batching variant is useful for generating triplets in preprocessing model.

Assuming

and is public
(B, R2) = (gy, gs2)

B

11

e.g. t-ECDSA [LN18]
(new version soon)

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Gilboa99 IPS09 MASCOT/
DKLs19 Our Work

Security Semi-Honest Semi-Honest Malicious Malicious

of OT-Calls

Communication
per OT-Call

Batching
Overhead

12

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Gilboa99 IPS09 MASCOT/
DKLs19 Our Work

Security Semi-Honest Semi-Honest Malicious Malicious

of OT-Calls

Communication
per OT-Call

Batching
Overhead

log(q) n n n
n = log(q) + κ

12

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Gilboa99 IPS09 MASCOT/
DKLs19 Our Work

Security Semi-Honest Semi-Honest Malicious Malicious

of OT-Calls

Communication
per OT-Call

Batching
Overhead

log(q) n n n

2 ⋅ log(q) log(q)log(q)log(q)

n = log(q) + κ

12

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Gilboa99 IPS09 MASCOT/
DKLs19 Our Work

Security Semi-Honest Semi-Honest Malicious Malicious

of OT-Calls

Communication
per OT-Call

Batching
Overhead

log(q) n n n

2 ⋅ log(q) log(q)log(q)log(q)
Batch

Size = β
β ⋅ log(q) β ⋅ n β ⋅ n β ⋅ log(q)

n = log(q) + κ

12

Technical Overview

13

Technical Overview
Notation

14

Technical Overview
Notation

1. Boldface denote vectors with u, v, z, … u = (u1, …, un), …

14

Technical Overview
Notation

1. Boldface denote vectors with u, v, z, … u = (u1, …, un), …

2. Write for the inner product of and .⟨ u, v⟩ =
n

∑
i=1

ui ⋅ vi u v

14

Technical Overview
Notation

1. Boldface denote vectors with u, v, z, … u = (u1, …, un), …

2. Write for the inner product of and .⟨ u, v⟩ =
n

∑
i=1

ui ⋅ vi u v

3. Write for pointwise (Hadamard) product.u * v = (u1 ⋅ v1, …, un ⋅ vn)

14

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

𝖮𝖳i−1 𝖮𝖳i+1𝖮𝖳i …
…

…
…

…

…

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

𝖮𝖳i−1 𝖮𝖳i+1𝖮𝖳i …
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i−1 𝖮𝖳i+1𝖮𝖳i …
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i−1 𝖮𝖳i+1ti𝖮𝖳i …
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

ti𝖮𝖳i …
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti𝖮𝖳i …
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti𝖮𝖳i

zi

…
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

2. Sample s.t. .v ← ℤn
q ⟨ t, v⟩ = y

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti𝖮𝖳i

zi

…
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

2. Sample s.t. .v ← ℤn
q ⟨ t, v⟩ = y

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

…
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

2. Sample s.t. .v ← ℤn
q ⟨ t, v⟩ = y

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

 v = (v1, …, vn)

Output .⟨ −δ, v⟩

Output .⟨ z, v⟩

δ−
i

δ+
i

ti𝖮𝖳i

zi

…
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 1. Sample .t ← {−1,1}n

2. Sample s.t. .v ← ℤn
q ⟨ t, v⟩ = y

𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

 v = (v1, …, vn)

Output .⟨ −δ, v⟩

Output .⟨ z, v⟩⟨−δ + z, v⟩ = ⟨x ⋅ t, v⟩ = x ⋅ ⟨t, v⟩ = x ⋅ y

δ−
i

δ+
i

ti𝖮𝖳i

zi

…
…

…
…

…

…

calls to OT (in parallel)

n = log(q) + κ

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

‣ Output is offset by for smallest vec in ⟨v * t, d⟩ d

 {γ ⋅ 1 − (δ+ − δ−)/2 s.t. γ ∈ ℤq}

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

‣ Output is offset by for smallest vec in ⟨v * t, d⟩ d

 {γ ⋅ 1 − (δ+ − δ−)/2 s.t. γ ∈ ℤq}

captures how much

deviates.

𝖶𝖾𝗂𝗀𝗁𝗍(d)
𝒜

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

‣ Output is offset by for smallest vec in ⟨v * t, d⟩ d

 {γ ⋅ 1 − (δ+ − δ−)/2 s.t. γ ∈ ℤq}

‣ If is close to zero then and are -close to ind.d ⟨v * t, d⟩ y = ⟨t, v⟩ 2−κ/4

captures how much

deviates.

𝖶𝖾𝗂𝗀𝗁𝗍(d)
𝒜

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

‣ Output is offset by for smallest vec in ⟨v * t, d⟩ d

 {γ ⋅ 1 − (δ+ − δ−)/2 s.t. γ ∈ ℤq}

‣ If is close to zero then and are -close to ind.d ⟨v * t, d⟩ y = ⟨t, v⟩ 2−κ/4

‣ If not, then has min-entropy , given and .⟨v * t, d⟩ κ/4 v y

captures how much

deviates.

𝖶𝖾𝗂𝗀𝗁𝗍(d)
𝒜

16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Security
 and hold inputs and respectively𝒫1 𝒫2 x y ∈ ℤq

 Protocol is fully secure against 𝒫𝒜
2

 can use inconsistent inputs in OT𝒫𝒜
1

‣ Output is offset by for smallest vec in ⟨v * t, d⟩ d

 {γ ⋅ 1 − (δ+ − δ−)/2 s.t. γ ∈ ℤq}

‣ If is close to zero then and are -close to ind.d ⟨v * t, d⟩ y = ⟨t, v⟩ 2−κ/4

‣ If not, then has min-entropy , given and .⟨v * t, d⟩ κ/4 v y

captures how much

deviates.

𝖶𝖾𝗂𝗀𝗁𝗍(d)
𝒜

3rd moment
concentration

inequality
16

 v = (v1, …, vn)

δ−
i

δ+
i

ti𝖮𝖳i

zi

for

δ+
j − δ−

j ≠ δ+
k − δ−

k

j ≠ k

Batching Variant of our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y1, …, yβ ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i𝖮𝖳i−1 𝖮𝖳i+1

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti

zi

…
…

…
…

…

…

Batching Variant of our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y1, …, yβ ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i𝖮𝖳i−1 𝖮𝖳i+1

calls to OT (in parallel)

n = β ⋅ log(q) + κ

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti

zi

…
…

…
…

…

…

Batching Variant of our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y1, …, yβ ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i

2. , sample s.t. .∀j vj ← ℤn
q ⟨ t, vj⟩ = yj

𝖮𝖳i−1 𝖮𝖳i+1

calls to OT (in parallel)

n = β ⋅ log(q) + κ

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

δ−
i

δ+
i

ti

zi

…
…

…
…

…

…

Batching Variant of our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y1, …, yβ ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i

2. , sample s.t. .∀j vj ← ℤn
q ⟨ t, vj⟩ = yj

𝖮𝖳i−1 𝖮𝖳i+1

calls to OT (in parallel)

n = β ⋅ log(q) + κ

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

 v1, v2, …, vβ

δ−
i

δ+
i

ti

zi

…
…

…
…

…

…

Batching Variant of our Protocol
 and hold inputs and respectively𝒫1 𝒫2 x y1, …, yβ ∈ ℤq

 1. Sample .t ← {−1,1}n

𝖮𝖳i

2. , sample s.t. .∀j vj ← ℤn
q ⟨ t, vj⟩ = yj

𝖮𝖳i−1 𝖮𝖳i+1

calls to OT (in parallel)

n = β ⋅ log(q) + κ

1. Sample and set δ ← ℤn
q {δ+

i = δi + x
δ−

i = δi − x

 v1, v2, …, vβ

Output , .∀j ⟨ −δ, vj⟩

Output , .∀j ⟨ z, vj⟩

δ−
i

δ+
i

ti

zi

…
…

…
…

…

…

Summary
New OT-based two-party mult. protocol

18

 v1, …, vβ

δ−
i

δ+
i

ti𝖮𝖳i

zi

Summary
New OT-based two-party mult. protocol

1. Our Protocol

‣ “Sufficiently” secure for some applications

‣ “Almost” as efficient as SoA semi-honest protocols

‣ x2 more efficient than SoA in its fully malicious variant

18

 v1, …, vβ

δ−
i

δ+
i

ti𝖮𝖳i

zi

Summary
New OT-based two-party mult. protocol

1. Our Protocol

‣ “Sufficiently” secure for some applications

‣ “Almost” as efficient as SoA semi-honest protocols

‣ x2 more efficient than SoA in its fully malicious variant

2. Open Questions

‣ Push efficiency further (go beyond Gilboa’s barrier)

‣ Does IPS09 realize ?

‣ Lower Bounds? Is OT-mult. inherently wasteful communication-wise?

log(q) × log(q)

𝖶𝖾𝖺𝗄𝖬𝗎𝗅𝗍

18

 v1, …, vβ

δ−
i

δ+
i

ti𝖮𝖳i

zi

Joint work w/ Iftach Haitner, Samuel Ranellucci & Eliad Tsfadia

Highly Efficient OT-Based
Multiplication Protocols
Nikolaos Makriyannis (Fireblocks)

19

