Highly Efficient OT-Based
Multiplication Protocols

Nikolaos Makriyannis (Fireblocks)

Joint work w/ Iftach Haitnher, Samuel Ranellucci & Eliad Tsfadia

Problem Statement (Two-Party Multiplication)

Mult(x, y) = (51,5, =x -y = 57)

Problem Statement (Two-Party Multiplication)

Mult(x, y) = (51,5, =x -y = 57)

Problem Statement (Two-Party Multiplication)

Mult(x, y) = (51,5, =x -y = 57)

Problem Statement (Two-Party Multiplication)

Mult(x, y) = (51,5, =x -y = 57)

Problem Statement (Two-Party Multiplication)

Mult(x, y) = (51,5, =x -y = 57)

> ¢ Is a large prime

Problem Statement (Two-Party Multiplication)
Mult(x, y) = (5,8 =x-y—5)

> ¢ Is a large prime

> Any field of odd characteristic

Ask me later
for even char.

Motivation
Why Multiplication Protocols?

Motivation
Why Multiplication Protocols?

© Building block in arithmetic MPC

Motivation
Why Multiplication Protocols?

© Building block in arithmetic MPC

Analogous to OT
in Boolean MPC

Motivation
Why Multiplication Protocols?

Analogous to OT
in Boolean MPC /&,
S/

© Building block in arithmetic MPC -

o E.g., for generating tuples in preprocessing model

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

- - |
Motivation t
Why Multiplication Protocols? | %

Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC —

These triplets

: : : facilitate *fast* info-
© E.g., for generating tuples in preprocessing model theoretic MPC

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

- . |
Motivation t
Why Multiplication Protocols? | % s

Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC — —~

These triplets
facilitate *fast* info-

© E.g., for generating tuples in preprocessing model theoretic MPC

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)
© Realizing threshold-ECDSA
> Applications to distributed EC cryptography (e.g. SNARKS)

- . |
Motivation t
Why Multiplication Protocols? | % s

Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC — —

© E.g., for generating tuples in preprocessing model theoretic MPC

These triplets
facilitate *fast* info-

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

o Realizing threshold-ECDSA @
> Applications to distributed EC cryptography (e.g. SNARKS)

- . |
Motivation t
Why Multiplication Protocols? | % s

Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC — —

© E.g., for generating tuples in preprocessing model theoretic MPC

These triplets
facilitate *fast* info-

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

O Realizing threshold-FCDSA = Shallow arithmetic circuit over Zq @
> Applications to distributed EC cryptography (e.g. SNARKS)

- . |
Motivation t
Why Multiplication Protocols? | % s

Analogous to OT

in Boolean MPC /&,
o Building block in arithmetic MPC — —

© E.g., for generating tuples in preprocessing model theoretic MPC

These triplets
facilitate *fast* info-

> Beaver triplets: 2-out-of-2 shares of (a,b,c = a - b)

> Authenticated triplets (SPDZ)

6 Realizing threshold-ECDSA = Shallow arithmetic circuit over Z @
> Applications to distributed EC cryptography (e.g. SNARKS)

O Mult is “almost” the same functionality as OLE (Oblivious Linear Evaluation)

OLE(x,(yv,0)—» (x-y+o0, 1)

Background

Background

Known Constructions/Paradigms

Background

Known Constructions/Paradigms

© Homomorphic Encryption, e.qg., Palillier
Light Communication
® Heavy Computation

® Stronger Assumptions

Background

Known Constructions/Paradigms

© Homomorphic Encryption, e.qg., Palillier
Light Communication
® Heavy Computation

® Stronger Assumptions

o OT-Based
¥ Heavy Communication

Light Computation

Minimal Assumptions

Background

Known Constructions/Paradigms

© Homomorphic Encryption, e.qg., Palillier
Light Communication

® Heavy Computation

—
———

® Stronger Assumptions
Tens to hundreds of KiB
o OT-Based for multiplying 32B values!
® Heavy Communication —

Light Computation

Minimal Assumptions

Background

Known Constructions/Paradigms

© Homomorphic Encryption, e.qg., Palillier
Light Communication

® Heavy Computation

® Stronger Assumptions
Tens to hundreds of KiB
o OT-Based for multiplying 32B values!
® Heavy Communication —

Light Computation

Minimal Assumptions

e e ——— e ———— S e ———— e ———— S R

This work: New OT-Based Multiplication protocol!

R — e —— R e — I R —

5

Background
OT-Hybrid Model

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])

o Costs Breakdown:

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])
© Costs Breakdown:

» Computation/Communication & Round Complexity

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])
© Costs Breakdown:

» Computation/Communication & Round Complexity

> Calls to OT

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])
© Costs Breakdown:

» Computation/Communication & Round Complexity

» Calls to OT j
E Size of the 7’s

>~ Sender input-length —

Background
OT-Hybrid Model

© Augment the plain model with an oracle to O T((zy,z;),a) — (L ,z,)

© Hybrid Protocol = Real Protocol (via composition [Can01])
© Costs Breakdown:

» Computation/Communication & Round Complexity

» Calls to OT j
E Size of the 7’s

>~ Sender input-length —

——> communication costs In standard model

6

Background

OT-Based Constructions

Background

OT-Based Constructions

o Gilboa99

Background

OT-Based Constructions

o Gilboa99

o |shai, Prabhakaran and Sahai (IPS09)

Background

OT-Based Constructions

o Gilboa99

log(g) OT-calls & Communication

o |shai, Prabhakaran and Sahai (IPS09)

' |ess efficient than Gilboa

Background

OT-Based Constructions

o Gilboa99

log(g) OT-calls & Communication

¥ Semi-Honest Security

o |shai, Prabhakaran and Sahai (IPS09)

' |ess efficient than Gilboa

® Semi-Honest security

Background

OT-Based Constructions

o Gilboa99

log(g) OT-calls & Communication

¥ Semi-Honest Security

> 4 compilers (MASCOT, DKLs19) for Malicious Security w/ overhead
o |shai, Prabhakaran and Sahai (IPS09)

' |ess efficient than Gilboa

® Semi-Honest security

Background

OT-Based Constructions

o Gilboa99

log(g) OT-calls & Communication

¥ Semi-Honest Security

> 4 compilers (MASCOT, DKLs19) for Malicious Security w/ overhead
o |shai, Prabhakaran and Sahai (IPS09)

' |ess efficient than Gilboa
® Semi-Honest security

> 4 malicious variant under non-standard assumption

Our Results

Our Results
New OT-Based Multiplication Protocol

Our Results
New OT-Based Multiplication Protocol

© We present a new OT-based multiplication protocol 11

Our Results
New OT-Based Multiplication Protocol

© We present a new OT-based multiplication protocol 11

1. Almost maliciously secure “out of the box”

Our Results
New OT-Based Multiplication Protocol

© We present a new OT-based multiplication protocol 11

1. Almost maliciously secure “out of the box”

2. Admits a batching variant @

BatchMult(x, (y;, ...,yﬂ)) = ((hees Sy o)y ey X s Y — 85, .00))

Our Results
New OT-Based Multiplication Protocol

© We present a new OT-based multiplication protocol 11

1. Almost maliciously secure “out of the box”

2. Admits a batching variant @

BatchMult(x, (y;, ...,yﬂ)) = (e S5)y ey X2y, — 855 .00))

3. Can be compiled cheaply into a fully secure protocol

Our Results
New OT-Based Multiplication Protocol

© We present a new OT-based multiplication protocol 11

1. Almost maliciously secure “out of the box”

2. Admits a batching variant @

BatchMult(x, (y;, ...,yﬂ)) = (e S5)y ey X2y, — 855 .00))

3. Can be compiled cheaply into a fully secure protocol

4. X2 improvement in communication compared to SoA

Our Results (Cont’d)
New OT-Based Multiplication Protocol

Our Results (Cont’d)
New OT-Based Multiplication Protocol

e e e e e e e e R t;ﬁ

rTheorem (Informal)
|

R

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

e e e e e e e e

rTheorem (Informal)

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

e e e e e e e e

rTheorem (Informal)

|Stat param «, honest input z, exactly one of the following holds true.

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

e e e e e e e e

rTheorem (Informal)

|Stat param «, honest input z, exactly one of the following holds true.

|

i. I1 realizes the ideal (perfect) multiplication functionality with

~: e e R e R R — R e e e e e e ‘_?:J

2—K/4

|
l
statistical closeness. H
H

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

N =
(_Theorem (Informal) |
|Stat param k, honest input z, exactly one of the following holds true. |
ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo)

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

N =
(_Theorem (Informal) |
|Stat param k, honest input z, exactly one of the following holds true. |
ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo)

MinEntropy of honest output given
9/’s view and honest input

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

N =
(_Theorem (Informal) |
|Stat param k, honest input z, exactly one of the following holds true. |
ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo)

MinEntropy of honest output given
9/’s view and honest input

o Qutput is highly unpredictable under attack, even given the input.

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

N =
(_Theorem (Informal) |
|Stat param k, honest input z, exactly one of the following holds true. |
ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo)

MinEntropy of honest output given —

9/’s view and honest input Batching: each output is
unpredictable, even given all the inputs

o Qutput is highly unpredictable under attack, even given the input.

10

Our Results (Cont’d)
New OT-Based Multiplication Protocol

I1is secure or
output is utterly unpredictable

N =
(_Theorem (Informal) |
|Stat param k, honest input z, exactly one of the following holds true. |
ﬁ- I1 realizes the ideal (perfect) multiplication functionality with DK% statistical closeness. |
|e H(outf(2) | view(2),2) = «/4.

oo)

MinEntropy of honest output given —

9/’s view and honest input Batching: each output is
unpredictable, even given all the inputs

o Qutput is highly unpredictable under attack, even given the input.

O Formal definition of “unpredictability” via functionality WeakMult

10

Applications
New OT-Based Multiplication Protocol

Applications
New OT-Based Multiplication Protocol

o Achieving Full Security

Applications
New OT-Based Multiplication Protocol

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

11

Applications
New OT-Based Multiplication Protocol

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

11

Applications
New OT-Based Multiplication Protocol

Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

11

Applications
New OT-Based Multiplication Protocol

Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

~ Above generalizes to arbitrary settings. ()

11

Applications
New OT-Based Multiplication Protocol

Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,
~ Above generalizes to arbitrary settings. ()

O Achieving WeakMult is good enough for certain applications.

11

Applications
New OT-Based Multiplication Protocol

Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

e.g. t-ECDSA [LN18]
(new version soon)

~ Above generalizes to arbitrary settings. ()

O Achieving WeakMult is good enough for certain applications.

11

Applications
New OT-Based Multiplication Protocol

Assuming

(B,Ry) = (g7, 87)
and B is public

o Achieving Full Security

> Simple a posteriori check on the shares suffices.

- In a g-order group G = (g), party &, simply checks that B* - g7 = R,

e.g. t-ECDSA [LN18]
(new version soon)

o Batching variant is useful for generating triplets in preprocessing model.

~ Above generalizes to arbitrary settings. ()

O Achieving WeakMult is good enough for certain applications.

11

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Semi-Honest Semi-Honest Malicious Malicious

Comparison (in ROM)

Gilboa, IPS, MASCOT, DKLs

Semi-Honest

Semi-Honest

Malicious

Malicious

log(g)

n

n

n

n =log(g) + «

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Semi-Honest Semi-Honest Malicious Malicious

log(q) n n n

log(g) log(g) | 2-log(q) log(g)

Comparison (in ROM)
Gilboa, IPS, MASCOT, DKLs

Semi-Honest Semi-Honest Malicious Malicious

log(q) n n &
log(g) log(lg) = 2-log(g) log(g) @
Size =

p - log(g) p-n p-n p - log(g)

Technical Overview

Technical Overview
Notation

Technical Overview
Notation

1. Boldface u, v, z, ... denote vectors withu = (1, ..., u,), ...

Technical Overview
Notation

1. Boldface u, v, z, ... denote vectors withu = (1, ..., u,), ...

n

2. Write (u,v) = Z u; - v for the inner product of # and v.
i=1

14

Technical Overview
Notation

1. Boldface u, v, z, ... denote vectors withu = (1, ..., u,), ...

n

2. Write (u,v) = Z u; - v for the inner product of # and v.
i=1

3. Writeu *v = (u; - v, ..., u, - v,) for pointwise (Hadamard) product.

14

Our Protocol

S and &, hold inputs xand y € Z , respectively

Our Protocol

S and &, hold inputs xand y € Z , respectively

e R . e

—_—
| OTl D E—
i —_—

L____\

Our Protocol

S and &, hold inputs xand y € Z , respectively

n=1og(qg) +«
calls to OT (in parallel)

e R E—— e

e
| OTl D E—
i —_—

L____\

Our Protocol

S and &, hold inputs xand y € Z , respectively

n=1og(qg) +«
calls to OT (in parallel)

e R E—— e

e
| OTl D E—
i —_—

L____\

1. Sample t < {—1,1}".

Our Protocol

S and &, hold inputs xand y € Z , respectively

n=1og(qg) +«
calls to OT (in parallel)

e R E—— e

—_—
i —_—

L____\

1. Sample t < {—1,1}".

Our Protocol

S and &, hold inputs xand y € Z , respectively

n=1og(qg) +«
calls to OT (in parallel)

e R . e

—_—
-

1. Sample 0 <« Z’; and set {5i l 1. Sample t < {—1,1}".

Our Protocol

S and &, hold inputs xand y € Z , respectively

n=1og(qg) +«
calls to OT (in parallel)

1. Sample 0 <« Z’; and set {5l l 1. Sample t < {—1,1}".

Our Protocol

S and &, hold inputs xand y € Z , respectively

e ————— . e
6
[]
L]

i >

n=1og(qg) +«
calls to OT (in parallel)

H
5 —
“l

. N

1. Sample 0 <« Z’; and set {5i l 1. Sample t < {—1,1}".

Our Protocol

S and &, hold inputs xand y € Z , respectively

e ————— . e
6

| A
afl —
| o5 —

| \Zi

n=1og(qg) +«
calls to OT (in parallel)

1. Sample 0 <« Z, and set { l 1.Sample t < {—1,1}".

n —
2.Sample v « Z st.(t,v) =y.

Our Protocol

S and &, hold inputs xand y € Z , respectively

e ————— . e
6

l. ,
afl —

n=1og(qg) +«
calls to OT (in parallel)

H
5 —
“l

. N

1. Sample 0 <« Z, and set { l 1.Sample t < {—1,1}".

n —
2.Sample v « Z st.(t,v) =y.

Our Protocol

S and &, hold inputs xand y € Z , respectively

e ————— . e
6

l. ,
afl —

n=1og(qg) +«
calls to OT (in parallel)

H
5 —
“l

. N

1. Sample 0 <« Z, and set { l 1.Sample t < {—1,1}".
— n —_
Output (—0, V). 2.Sample v « Z st. (1,v) = y.

Output (Z,v).

Our Protocol

S and &, hold inputs xand y € Z , respectively

e ————— . e
6
[]
L]

n=1og(qg) +«
calls to OT (in parallel)

i >

H
5 —
“l

. N

p = (Vl, ...,Vn)

Output (—0, V). 2.Sample v « Z st. (1,v) = y.

1. Sample 0 <« Z, and set { 1.Sample t < {—1,1}".

e e

g—5+z,v)=(x-t,v)zx-(t,v)zxg Output (z,Vv).

R e ————— — A ————————— R ————————— ———————————

. T
SeCurlty 5.. o «— [|

P

S and &, hold inputs xand y € Z , respectively

16

Security

S and &, hold inputs xand y € Z , respectively

O Protocol is fully secure against 932‘%

16

A e ————— e ———— E—— e —— R
—
[]
[]
L]

Security

S and &, hold inputs xand y € Z , respectively

O Protocol is fully secure against 932‘%

O @ff can use inconsistent inputs in OT

16

A e ————— e ———— E—— e —— R
—
[]
[]
L]

O Protocol is fully secure against 932‘%

O @ff can use inconsistent inputs in OT

16

(o)
. | —
)

¥

O Protocol is fully secure against 9’3’7

O @*f[can use inconsistent inputs in OT

> QOutput is offset by (V *f d) for d smallest vec in
{y-1-(07-067)/2 st.yeZ,}

16

(& h
. | — |
J

¥

O Protocol is fully secure against 9’3’7

O @*f[can use inconsistent inputs in OT

Weight(d)
. | P
- Output is offset by (v * £, d) ford smallest vecin N guvinten.

{y-1-(07-067)/2 st.yeZ,}

16

OTl’ — t

S and &, hold inputs xand y € Z , respectively

(o A
. h
)

O Protocol is fully secure against 9’3’7 S\ NV %

O @*f[can use inconsistent inputs in OT

Weight(d)
. | P
- Output is offset by (v * £, d) ford smallest vecin N guvinten.

{y-1-(07-067)/2 st.yeZ,}

» If d is close to zero then (v *¢,d) and y = (£, v) are 27"*-close to ind.

16

(& h
. | —
)

O Protocol is fully secure against 9’3’7

O @*f[can use inconsistent inputs in OT

Weight(d)
. | P
- Output is offset by (v * £, d) ford smallest vecin N guvinten.

{y-1-(07-067)/2 st.yeZ,}

2—M4

~ If d is close to zero then (v *¢,d) and y = (t,v) are -close to ind.

» If not, then (v *¢,d) has min-entropy /4, given v and y.

16

¥

(& A
. | —
)

¥

O Protocol is fully secure against @3’7

O @ff can use inconsistent inputs in OT

Weight(d)
. | P
- Output is offset by (v * £, d) ford smallest vecin N guvinten.

{y-1-(07-067)/2 st.yeZ,}

» If d is close to zero then (v *¢,d) and y = (£, v) are 27"*-close to ind.

3rd moment
concentration
iInequality

» If not, then (v *¢,d) has min-entropy /4, given v and y.

16

Batching Variant of our Protocol

9 and P, hold inputs x and y,, ...,y € Z , respectively

e R . e
6
L]

i >

| «— T
| &7 — |
|

. N

1. Sample t < {—1,1}".

Batching Variant of our Proto

9 and P, hold inputs x and y,, ...,y € Z , respectively

e R . e
6
[]
L]

n=p-log(g) +«
calls to OT (in parallel)

i >

H
5 —
“l

. N

1. Sample t < {—1,1}".

Batching Variant of our Proto

9 and P, hold inputs x and y,, ...,y € Z , respectively

e R . e
6
[]
L]

n=p-log(g) +«
calls to OT (in parallel)

i >

H
5 —
“l

. N

1. Sample 0 <« Z’; and set {5i l 1. Sample t < {—1,1}".

2. Vj, sample v, < Z st.(L,v;) =y,

Batching Variant of our Proto

9 and P, hold inputs x and y,, ...,y € Z , respectively

e R . e
6
[]
L]

n=p-log(g) +«
calls to OT (in parallel)

i >

H
5 —
“l

. N

1. Sample 0 <« Z’; and set {5i l 1. Sample t < {—1,1}".

2. Vj, sample v, < Z st.(L,v;) =y,

Batching Variant of our Proto

9 and P, hold inputs x and y,, ...,y € Z , respectively

e R E—— e
6
[]
L]

i T

n=p-log(g) +«
calls to OT (in parallel)

H
5 —
“l

. N

1. Sample 0 « Zg and set {5l l 1.Sample t <« {—1,1}".
Output V), (—0,v;). 2. V], sample v; < Z s.t. (t, vj) =Y.
Output V), (z,v;).

Summary
New OT-based two-party mult. protocol

18

e
Summary O .

New OT-based two-party mult. protocol "

1. Our Protocol

- “Sufficiently” secure for some applications

- “Almost” as efficient as SoA semi-honest protocols

> X2 more efficient than SoA in its fully malicious variant

18

e
Summary O .

New OT-based two-party mult. protocol "

1. Our Protocol

- “Sufficiently” secure for some applications

> “Almost” as efficient as SOA semi-honest protocols
> X2 more efficient than SoA in its fully malicious variant

2. Open Questions
- Push efficiency further (go beyond Gilboa’s log(g) X log(q) barrier)

> Does IPS09 realize WeakMult?

>~ Lower Bounds? Is OT-mult. inherently wasteful communication-wise?

18

Highly Efficient OT-Based
Multiplication Protocols

Nikolaos Makriyannis (Fireblocks)

Joint work w/ Iftach Haitnher, Samuel Ranellucci & Eliad Tsfadia

