COA-SECURE OBFUSCATION AND APPLICATIONS

Ran Canetti Manoj Prabhakaran

Boston University [IT Bombay
BOSTON Suvradip Chakraborty SEQ

Dakshita Khurana Nishant Kumar* Oxana Poburinnaya

UIUC UIUC Boston University

IIIIIIIIIIII

ILLINOIS

AAAAAA -CHAMPAIGN

ILLINOIS BOSTON
UNIVERSITY

EUROCRYPT 2022, Trondheim, Norway, May 31, 2022
|‘|== International Association

| (o | J i
gy for Cryptologic Research

This paper in a nutshell

@

We provide a framework for endowing software obfuscation with
“verifiability” and “non-malleability” guarantees and show generic
constructions satisfying the above guarantees.

Roadmap

® Motivation

® New Dehinitions- COA Obftuscation

® New Applications
e Complete CCA Encryption

® Stronger (keyless) software watermarking

Roadmap

® Motivation

® New Dehinitions- COA Obftuscation

® New Applications
M Complete CCA Encryption

® Stronger (keyless) software watermarking

Roadmap

Motivation

New Detinitions- COA Obftuscation

New Applications
M Complete CCA Encryption

® Stronger (keyless) software watermarking

Construction of COA Obfuscation

Program Obtuscation — Boon or Bane for Software Users?

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:

& Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:
(Verihiability: Verification of properties (structure/functionality) of the underlying program much harder.

¢ Reduced to only black-box testing the program.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:
(Verihiability: Verification of properties (structure/functionality) of the underlying program much harder.
¢ Reduced to only black-box testing the program.

¢ The obfuscated program comes from an untrusted source.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:

& Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.
¢ Reduced to only black-box testing the program.
¢ The obfuscated program comes from an untrusted source.

© Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:

& Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.
¢ Reduced to only black-box testing the program.
¢ The obfuscated program comes from an untrusted source.

& Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

€ Obfuscation might facilitate voftware plagiarism — might hide that program A uses a potentially mauled
version of a (proprietary) program B as sub-routine and A’'s behaviour may depend on B.

Program Obtuscation — Boon or Bane for Software Users?

® General purpose program obfuscation allows distribution and execution of software without fear of revealing

sensitive design secrets/ keys hidden 1n code.

Issues:

& Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.
¢ Reduced to only black-box testing the program.
¢ The obfuscated program comes from an untrusted source.

& Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

€ Obfuscation might facilitate voftware plagiarism — might hide that program A uses a potentially mauled
version of a (proprietary) program B as sub-routine and A’'s behaviour may depend on B.

€ i0 obfuscation of a (puncturable) PRF K might allow an adversary to create an obfuscation of the same
function but with key K + 1

Defining Verifiable and non-malleable obfuscation: Challenges

Defining Verifiable and non-malleable obfuscation: Challenges

rand

|

_nc o N G —— Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

rand

|

_nc o N G —— Acc/Rej

Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

Defining Verifiable and non-malleable obfuscation: Challenges

rand

|

1%, C : C__ —> Acc/Re;j

Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

8 Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

Defining Verifiable and non-malleable obfuscation: Challenges

rand

|

—)1 -C —C — ACC/Re]

® Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

® Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

N

% Consider a public predicate ¢, s.t. if Ver(C,p)=Acc = 3ICs.t. C =Cand H(C) = 1.

Defining Verifiable and non-malleable obfuscation: Challenges

rand

|

—)1 -C —C — ACC/Re]

® Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

® Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

N

% Consider a public predicate ¢, s.t. if Ver(C,p)=Acc = 3ICs.t. C =Cand H(C) = 1.

* Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

Defining Verifiable and non-malleable obfuscation: Challenges

rand
'
1%, C

—_— —_—— —> Acc/Re]

® Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

® Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

N

% Consider a public predicate ¢, s.t. if Ver(C,p)=Acc = 3ICs.t. C =Cand H(C) = 1.

* Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

B Requires trusted setup assumptions (Common random/reference string (CRS))

Defining Verifiable and non-malleable obfuscation: Challenges

rand
'
1%, C

—_— —_—— —> Acc/Re]

® Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

® Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

N

% Consider a public predicate ¢, s.t. if Ver(C,p)=Acc = 3ICs.t. C =Cand H(C) = 1.

* Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

B Requires trusted setup assumptions (Common random/reference string (CRS))

® Goal: Construct verihable and non-malleable obfuscation in the “plain” model

Prior works

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16

« Does not require any trusted setup assumptions.

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16

« Does not require any trusted setup assumptions.
« Techniques tailer-made for iO.

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16

« Does not require any trusted setup assumptions.

« Techniques tailer-made for iO.

<« Lamuted form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obtuscation

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16

« Does not require any trusted setup assumptions.

« Techniques tailer-made for iO.

<« Lamuted form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.

« No guarantees against general mauling attacks

Prior works

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16
Verifiability compiler for

Functional Encryption

and Indistinguishability

« Does not require any trusted setup assumptions.
« Techniques tailer-made for iO.

Obfuscation <« Lamuted form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.
- S « No guarantees against general mauling attacks
® (Canetti, Varia
Non-malleability for VBB Non-malleable Obfuscation, TCC'09

obfuscation

Prior works

® Badrinarayanan, Goyal, Jain, Sahai

Verihable Functional Encryption, Asiacrypt’'16
Verifiability compiler for

Functional Encryption

and Indistinguishability

« Does not require any trusted setup assumptions.
« Techniques tailer-made for iO.

Obtuscation <« Lamuted form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.
— « No guarantees against general mauling attacks
® (Canetti, Varia
Non-malleability for VBB Non-malleable Obtuscation, TCC'09
obfuscation

« Considers obfuscation of point functions and related
functionalities

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.

rand

l

1K9C9¢ C,¢

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.
rand rand

l l

1K9C9¢ C,¢

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.
rand rand

l l

15,C, ¢ C,p =
— —— —_—>CuU{l)}

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.
rand rand

l l

15,C, ¢ C,p =
— —— —_—>CuU{l)}

M Correctness: For a legitimate C, i.e., ¢(C) = 1, C is functionally equivalent to C.

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.

mlad ml”ld
1%,C, ¢ C,o ~
_— — —>Cu{l)

M Correctness: For a legitimate C, i.e., ¢(C) = 1, C is functionally equivalent to C.

M Soundness: For any string C,if Verity outputs some C,ie., C « Ver(C, $)s.t C # L => there exists
an underlying circuit C € € such that C = C and ¢(C) = 1.

Our notion: Security against Chosen Obtuscation Attacks (COA Obfuscation): Dein. 1

Consider a class of circuits € and let ¢ be a predicate. Let C € 6.

mlad ml”ld
1%,C, ¢ C,o ~
_— — —>Cu{l)

M Correctness: For a legitimate C, i.e., ¢(C) = 1, C is functionally equivalent to C.

M Soundness: For any string C,if Verity outputs some C,ie., C « Ver(C, $)s.t C # L => there exists
an underlying circuit C € € such that C = C and ¢(C) = 1.

M COA security: For “sufficiently similar” circuits C, and C,, Obf(Cy, ¢) =, Obf(C,, $), even given access to
a “de-obfuscation oracle” O(-, ¢).

Defining COA Security: Dein. 1

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

B : (C()a Cl? Z)
(Co» €15 2) < Samp(1*) —_—

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

(C()a Cl ’ Z)

(Cy, Ci,2) < Samp(1¥)

Samp must be “admissible ¢-satisfying
“sampler:

Co, € € G and)(C) = Pp(C)) = 1

2. Cy =~_ C, for any black-box PPT
distinguisher

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

Samp must be “admissible ¢-satisfying C «~ Obf(Cy, @)
“sampler:

Co, € € G and)(C) = Pp(C)) = 1

2. Cy =~_ C, for any black-box PPT
distinguisher

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

Samp must be “admissible ¢-satisfying C «~ Obf(Cy, @)
“sampler:

Co, € € G and)(C) = Pp(C)) = 1

2. Cy =~_ C, for any black-box PPT
distinguisher

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

Samp must be “admissible ¢-satisfying
“sampler:

Co» C; € € and ¢(Cy) = H(C)) = 1 1.f C = ,output L .

2. Cy =~ C, for any black-box PPT
distinguisher

2. Run C « Ver(C, ¢)

3. If C %= 1 , return C such that
C = O(C;r) forsome r

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

Samp must be “admissible ¢-satisfying
“sampler:

Co, € € G and)(C) = Pp(C)) = 1

1.f C = ,output L .

2. Cy =~_ C, for any black-box PPT

distinguisher 2. Run C « Ver(C,)

3. If C %= 1 , return C such that
C = O(C;r) forsome r

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

b {0.1)

Samp must be “admissible ¢-satisfying C «~ Obf(Cy, @)
“sampler:

NN

Co, €1 € 6 and (Cp) = H(C) = 1 € — & oulput |

2. Cy =~_ C, for any black-box PPT

distinguisher 2. Run C « Ver(C,)

3. If C %= 1 , return C such that
C = O(C;r) forsome r

De-obfuscation queries can be made

adaptively and in arbitrary order

Defining COA Security: Dein. 1

Consider a class of circuits € and let ¢ be a predicate.

Adversary Challenger

b {0.1)

Samp must be “admissible ¢-satisfying C «~ Obf(Cy, @)
“sampler:

Co, € € G and)(C) = Pp(C)) = 1

NN

i C = & oulput | .

2. Cy =~_ C, for any black-box PPT

distinguisher 2. Run C « Ver(C,)

3. If C %= 1 , return C such that
C = O(C;r) forsome r

De-obfuscation queries can be made

adaptively and in arbitrary order

COA Fortification for Obfuscation: Dein. 2

COA Fortification for Obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an injective obtuscation scheme.

COA Fortification for Obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. et 0 be an wjective obfuscation scheme.

rand rand

v v

1%,C, ¢ C,¢ _
—_— e —>Cu{l}

COA Fortification for Obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an injective obtuscation scheme.

rand rand

v v

1%,C, ¢ C,¢ _
—_— e —>Cu{l}

] Correctness: For a legitimate C, 1.e., ¢(C) =1, C = O(C:7).

COA Fortification for Obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an injective obtuscation scheme.

rand rand

v v

1%,C, ¢ C,¢ _
—_— e —>Cu{l}

] Correctness: For a legitimate C, 1.e., ¢(C) =1, C = O(C:7).

M Soundness: For any string C,if Verity outputs some C,i.e., C « Ver(C,p)s.t C + 1 => there exists
an underlying circuit C € & such that ¢(C) = 1 and C = O(C:p).

COA Fortification for Obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an injective obtuscation scheme.

rand rand

v v

1%,C, ¢ C,¢ _
—_— e —>Cu{l}

] Correctness: For a legitimate C, 1.e., ¢(C) =1, C = O(C:7).

M Soundness: For any string C,if Verity outputs some C,i.e., C « Ver(C,p)s.t C + 1 => there exists
an underlying circuit C € & such that ¢(C) = 1 and C = O(C:p).

M COA security: For “sufficiently similar” circuits C, and C,, and given access to “de-obfuscation oracle”

O~1(-):
Obf(Cy, @) =, Obf(Cy,) = 0O(C,y) =, O(C,)

COA Fortification for obfuscation: Dein. 2

COA Fortification for obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an injective obfuscation scheme.

COA Fortification for obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an wyective obfuscation scheme.

Adversary Challenger

(C()a Cla Z)

(Co> C1,2) < Samp(1*)

Samp must be an (C— C < Obf(Cy, p)

admissible ¢ /C\
-satisfying sampler .
De-obfuscation O
queries can be C
made adaptively —
and in arbitrary b
-

order

COA Fortification for obfuscation: Dein. 2

Consider a class of circuits € and let ¢ be a predicate. Let 6 be an wyective obfuscation scheme.

Adversary Challenger

(Co> C1,2) < Samp(1*)

Samp must be an C « Obf(C, @)

admissible ¢
-satisfying sampler

De-obfuscation
queries can be
made adaptively
and in arbitrary
order

Challenger

Adversary

(C()a C19 Z)
(Cy, Ci,2) < Samp(1%) — b <_ 10,1}
C « 0% C
Samp must be an o < O 2
admissible sampler ———
b/
—

COA Fortification for obfuscation: Defn. 2

Consider a class of cira

Adversary Challenger

(Cy, Ci, 2) < Samp(1%)

Samp must be an C « Obf(C, @)

admissible ¢
-satisfying sampler

De-obfuscation
queries can be
made adaptively
and in arbitrary
order

COA Fortification for |nject|ve PlO => Def. 1 bfuscation scheme.

Challenger

Adversary

(C09 C19 Z)
(Cp> €y, 2) < Samp(1”) — b <— 10,1}
C « 0(1%,C
Samp must be an _ < O b)
C
————
b/
—

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
d admissible sampler
i
i
i
i
i
i
i
i
|
i
i
i
i
i

Applications of COA Obfuscation

Complete CCA (CCCA)-secure Public Key Encryption

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

® ['05] showed that completely non-malleable PKE 1s impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsihhiable hardness assumption.

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

® ['05] showed that completely non-malleable PKE 1s impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsihhiable hardness assumption.

® We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness

assumptions.

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

® ['05] showed that completely non-malleable PKE 1s impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsihhiable hardness assumption.

® We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness

assumptions.

® Unique Decryptability:

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

® ['05] showed that completely non-malleable PKE 1s impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsihhiable hardness assumption.

® We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness

assumptions.

® Unique Decryptability:

O A string pk € {0,1}7°Y® s “useless” if Pr[Enc(pk,m) # L] < u(x), for any message m € M

Complete CCA (CCCA)-secure Public Key Encryption

® Enhance CCA-secure PKE with the ability of the adversary to submit (pk;, ¢;) to the decryption oracle,
where pk; can be arbitrarily related to the challenge public key pk*.

® Strengthening of the notion of completely non-malleable encryption [F'05, VV'08] (when defined
appropriately)

® ['05] showed that completely non-malleable PKE 1s impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsihhiable hardness assumption.

® We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness

assumptions.

® Unique Decryptability:

O A string pk € {0,1}7°Y® s “useless” if Pr[Enc(pk,m) # L] < u(x), for any message m € M

O V “non-useless” keys pk, 3 “opening” sk s.t. Dec(sk, Enc(pk, m)) = m w.h.p. Further, 3 pk’s.t.
(pk’, sk) « KeyGen(1; 7).

Complete CCA-secure Public Key Encryption

Complete CCA-secure Public Key Encryption

Advesary Challenger
w2 >

Complete CCA-secure Public Key Encryption

Adversary Challenger
.’ <

(pk*, sk*) <« KeyGen(1")

Complete CCA-secure Public Key Encryption

Adversary Challenger
e <

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”
2. If “not useless” find opening sk and return

m, := Dec(sk, c;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
e <

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”
2. If “not useless” find opening sk and return

m, := Dec(sk, c;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
e <

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”
2. If “not useless” find opening sk and return

m, := Dec(sk, c;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
w s <

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”

2. If “not useless” find opening sk and return
m, := Dec(sk, c;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
w s <

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”

2. If “not useless” find opening sk and return
m, := Dec(sk, c;)

c* <« Enc(pk™,my)

Complete CCA-secure Public Key Encryption

Adversary Challenger

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”

2. If “not useless” find opening sk and return
m, := Dec(sk, c;)

c* <« Enc(pk™,my)

(pk;, c;) i 1. Check 1t pk; 1s “useless”
. 2. I "not useless” and (pk;, ;) # (pk*,c*), find

— opening sk and return m; := Dec(sk, ;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
e 2 >

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”

2. If “not useless” find opening sk and return
m, := Dec(sk, c;)

c* <« Enc(pk™,my)

1. Check 1t pk; 1s “useless”
2. I "not useless” and (pk;, ;) # (pk*,c*), find

opening sk and return m; := Dec(sk, ;)

Complete CCA-secure Public Key Encryption

Adversary Challenger
2 >

(pk*, sk*) <« KeyGen(1")

1. Check if pk; 1s “useless”

2. If “not useless” find opening sk and return
m, := Dec(sk, c;)

c* <« Enc(pk™,my)

1. Check 1t pk; 1s “useless”
2. I "not useless” and (pk;, ;) # (pk*,c*), find

opening sk and return m; := Dec(sk, ;)

Constructing CCCA-secure PKE

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.

2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).

Program Py

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).

Enc(pk,m): Run P « Ver(P, ¢); sample random r and output P (m, r).

Program Py

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).
Enc(pk,m): Run P « Ver(P, ¢); sample random r and output P (m, r).

Dec(sk = (K|, K,), ¢ = (¢, ¢y, ¢3)): Verity authenticity of ¢; and recover m.

Program Py

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.

KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).
Enc(pk,m): Run P « Ver(P, ¢); sample random r and output P (m, r).

Dec(sk = (K|, K,), ¢ = (¢, ¢y, ¢3)): Verity authenticity of ¢; and recover m.

Program Py

O Unique Decryptability: Follows from soundness of ¢0 + (perfect)injectivity of i®

Constructing CCCA-secure PKE

1. Let cO = (Obf, Ver) be COA-fortiication of injective i0 w.r.t predicate ¢: ¢(C) attest that C1s of the form of P.
2. Let G:{0,1}* - {0,1}*be a PRG, and F, : {0,1}** > {0,1} and F, : {0,1}**! - {0,1}* be two puncturable PRFs.
KeyGen(1%): Sample keys K, and K, for F, and F, resp., output pk = P« Obf(P, ¢), and sk = (K, K,).

Enc(pk,m): Run P « Ver(P, ¢); sample random r and output P (m, r).

Dec(sk = (K|, K,), ¢ = (¢, ¢y, ¢3)): Verity authenticity of ¢; and recover m.

Program Py

O Unique Decryptability: Follows from soundness of ¢0 + (perfect)injectivity of i®

—~—

+ If P * 1 = dP'= P;{i,Ké s.t. P =i0O(P’;r) and hence can recover P’ using i@_l(F). Use (K7, K3) to decrypt.

Zooming into the proot of CCCA-secure PKE

Zooming into the proof of CCCA-secure PKE

1. Constants: K, K,
2. Input: m, r

a. ¢, =G((r);c, =F(K,c)) ®Dm
b. C3 — F2(K2, Cl ‘ ‘Cz)

c. Output ¢ = (¢, 65, ¢3)

Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

N

2. (pk,c) # (pk*,c*) and pk # pk*: In this case, letting pk = P :

Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

N

2. (pk,c) # (pk*,c*) and pk # pk*: In this case, letting pk = P :

% Let P « Ver(P, ?),

Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

N

2. (pk,c) # (pk*,c*) and pk # pk*: In this case, letting pk = P :

% Let P « Ver(P, ?),

s [f P #* | — 4P’ = P;{j,Ké such that P « 10(1%, P").
Program Py

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

N

2. (pk,c) # (pk*,c*) and pk # pk*: In this case, letting pk = P :

% Let P « Ver(P, ?),

s [f P #* | — 4P’ = P;{j,Ké such that P « 10(1%, P").
Program Py
* Recover P’ using i@_l(?), use sk’ = (Kj, K5) to decrypt c. (follows
from the COA fortification of injective i® w.r.t. predicate ¢).

Zooming into the proot of CCCA-secure PKE

Fither of the following two cases may arise (for each decryption
query):

1. (pk,c) # (pk*,c*) and pk, = pk*: In this case this can be reduced to
the CCA-security of the [SW’14] construction.

N

2. (pk,c) # (pk*,c*) and pk # pk*: In this case, letting pk = P :

% Let P « Ver(P, ?),

s [f P #* | — 4P’ = P;{j,Ké such that P « 10(1%, P").
Program Py
* Recover P’ using i@_l(?), use sk’ = (Kj, K5) to decrypt c. (follows
from the COA fortification of injective i® w.r.t. predicate ¢).

Construction of COA Obfuscation

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Verihier V

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

® Completeness: d1s 1n Supp(D)|

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

® Completeness: d1s 1n Supp(D)|

® Soundness: [fd# 1 ,thende &

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

® Completeness: d1s 1n Supp(D)|

® Soundness: [fd# 1 ,thende &

® Privacy: Forall D, D, s.t. D|| =.D,| , we have Cy, =.Cg,

Non-Interactive Distributional Indistinguishable (NIDI) argument [K'21]

e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

® Completeness: d1s 1n Supp(D)|

® Soundness: [fd# 1 ,thende &
® Privacy: Forall D, D, s.t. D|| =.D,| , we have Cy, =.Cg,

Theorem: Assuming sub-exp i0® and sub-exp secure OWE there exists NIDI arguments for NP.

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verihier V

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verifier V
Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verifier V
Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verifier V
Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verifier V
Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

¢ Completeness: d 1s in Supp(D)|,

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verifier V
Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

¢ Completeness: d 1s in Supp(D)|,

® Soundness: Ifd+#1,thende &

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verihier V

Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

¢ Completeness: d 1s in Supp(D)|,

® Soundness: Ifd+#1,thende &

® Robustness: For all D, D, s.t. D|| =, D,| , we have Cy, =, Cg , even it the distinguishers get access to the

oracle O.

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verihier V

Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

¢ Completeness: d 1s in Supp(D)|,

® Soundness: Ifd+#1,thende &

® Robustness: For all D, D, s.t. D|| =, D,| , we have Cy, =, Cg , even it the distinguishers get access to the

oracle O.

We construct r-NIDI arguments by moditying the [K’'21] construction by making the underlying primitives to
be secure in the presence of O (using complexity leveraging).

Construction of COA secure Obfuscation

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

® [et O be an (injective) obfuscation scheme for our COA fortification (secure against T-sized adversaries).

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

® [et O be an (injective) obfuscation scheme for our COA fortification (secure against T-sized adversaries).

® [et (PV) bean r-NIDI argument system w.r.t O for the following language:
ngb = {{(0,0)} : A(C, 1, 1p) : O =0O(C;r) Ac = Comm(C;ry)) AP(C) = 1}

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

® [et O be an (injective) obfuscation scheme for our COA fortification (secure against T-sized adversaries).

® [et (PV) bean r-NIDI argument system w.r.t O for the following language:
345 = {{(0,0)} : A(C, 1, 1p) : O =0O(C;r) Ac = Comm(C;ry)) AP(C) = 1}

1K9 Ca ¢
—_—

® Sample randomness r, r, and define the distribution
@C(*) asS:
D(r||r) =1{0 = 0O(C;r),c = Comm(C;r,)}

Compute 7 < r-NIDIL. P(9D, SZ¢) andset C =z

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

® [et O be an (injective) obfuscation scheme for our COA fortification (secure against T-sized adversaries).

® [et (PV) bean r-NIDI argument system w.r.t O for the following language:
345 = {{(0,0)} : A(C, 1, 1p) : O =0O(C;r) Ac = Comm(C;ry)) AP(C) = 1}

1K9C9¢ ﬂ=6\,¢
—_— —_—

® Sample randomness r, r, and define the distribution
@C(*) asS:
D(r||r) =1{0 = 0O(C;r),c = Comm(C;r,)}

Compute 7 < r-NIDIL. P(9D, SZ¢) andset C =z

Construction of COA secure Obfuscation

® [et CCACom be a (non-interactive) CCA-secure commitment scheme (Com, Decomm); let O be an (inethficient)
oracle that implements the decommitment oracle Decomm tor CCACom 1n time T.

® [et O be an (injective) obfuscation scheme for our COA fortification (secure against T-sized adversaries).

® [et (PV) bean r-NIDI argument system w.r.t O for the following language:
345 = {{(0,0)} : A(C, 1, 1p) : O =0O(C;r) Ac = Comm(C;ry)) AP(C) = 1}

1K9C9¢ ﬂ=6\,¢
—_— —_—

® Sample randomness r, r, and define the distribution
@C(*) asS:
D(r||r) =1{0 = 0O(C;r),c = Comm(C;r,)}

Sample randomness r; and compute:

r-NIDI. V(x; rp)

Compute 7 < r-NIDIL. P(9D, SZ¢) andset C =z

Zooming into the proof of our COA construction

Zooming into the proof of our COA construction

¢ Hybrid 0: “Real” game: Given ckts C and C,, obfuscate C; and commit to C,. De-obfuscation

oracle is implemented using 67'().

Zooming into the proof of our COA construction

¢ Hybrid 0: “Real” game: Given ckts C and C,, obfuscate C; and commit to C,. De-obfuscation

oracle is implemented using 67'().

B B 2 01w = (0= 0. = Comm(Cyiry)

O*=0(Cy) c* = Comm(C)

C; st (= @_I(Oi) where C, = (0,;,c;) <« Ver(C ;, @)

l

Zooming into the proof of our COA construction

¢ Hybrid 0: “Real” game: Given ckts C and C,, obfuscate C; and commit to C,. De-obfuscation

oracle is implemented using 67'().

B B 2 01w = (0= 0. = Comm(Cyiry)

O*=0(Cy) c* = Comm(C)

C; st (= @_1(0i) where C, = (0,;,c;) <« Ver(C ;, @)

l

® Hybrid 1: De-obfuscation oracle implemented using decommitment oracle Decomm.

Zooming into the proof of our COA construction

¢ Hybrid 0: “Real” game: Given ckts C and C,, obfuscate C; and commit to C,. De-obfuscation

oracle is implemented using 67'().

B B 2 01w = (0= 0. = Comm(Cyiry)

O*=0(Cy) c* = Comm(C)

C; st (= @_1(0i) where C, = (0,;,c;) <« Ver(C ;, @)

l

® Hybrid 1: De-obfuscation oracle implemented using decommitment oracle Decomm.

DeObf(C) = _ N
C. st C.=Decomm(c) where C,=(0,c;) < Ver(C ,¢)

l

Zooming into the proof of our COA construction

¢ Hybrid 0: “Real” game: Given ckts C and C,, obfuscate C; and commit to C,. De-obfuscation

oracle is implemented using 67'().

B B 2 01w = (0= 0. = Comm(Cyiry)

O*=0(Cy) c* = Comm(C)

C; st (= @_1(0i) where C, = (0,;,c;) <« Ver(C ;, @)

l

® Hybrid 1: De-obfuscation oracle implemented using decommitment oracle Decomm.

DeObf(C) = _ N
C. st C.=Decomm(c) where C,=(0,c;) < Ver(C ,¢)

l

Claim: Hybrid 0 ~, Hybrid 1 => Follows from the “soundness” of r-NIDI + “perfect infectivity” of ©
+ “non-malleability” of CCACom

Zooming into the proof of our COA construction

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g”ch(lﬁ ||r) =10 = O(C,; ry),c = Comm(C;1,)}

e — A>I< — K
O* = @(Cl) cF = COmm(Cl) DeObf(/Cv\l) — 1 I Ci = C*=nx N
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g”ch(lﬁ ||r) =10 = O(C,; ry),c = Comm(C;1,)}

e — A>I< — K
O* = @(Cl) cF = COmm(Cl) DeObf(/Cv\l) — 1 I Ci = C*=nx N
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Claim: Hybrid 1 =, Hybrid 2

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g”ch(lﬁ ||r) =10 = O(C,; ry),c = Comm(C;1,)}

P U

O* = @(Cl) Cc* = COmm(Cl) DeObf(/Cv\l) _ L ff Ci = C*=7* .
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Claim: Hybrid 1 =, Hybrid 2

® Hybrid 12: Obfuscate C, and commit to C,. De-obfuscation oracle is implemented using Decomm.

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g’ch(lﬁ [|rp) =10 = O(Cy;r)),c = Comm(Cy;r,)}

P U

O* = @(Cl) Cc* = C0mm(C1) DeObf(/Cv\l) _ L ff Ci = C*=7* .
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Claim: Hybrid 1 =, Hybrid 2

® Hybrid 12: Obfuscate C, and commit to C,. De-obfuscation oracle is implemented using Decomm.

- - 9C03C1(r1 [17) = {0 = O(Cy; 1), ¢ = Comm(Cy;ry)

O*=0(Cy) c*=Comm(C,)

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g’ch(lﬁ [|rp) =10 = O(Cy;r)),c = Comm(Cy;r,)}

P U

O* = @(Cl) Cc* = Comm(cl) DeObf(/Cv\l) _ L ff Ci = C*=7* .
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Claim: Hybrid 1 =, Hybrid 2

® Hybrid 12: Obfuscate C, and commit to C,. De-obfuscation oracle is implemented using Decomm.

- - 9C03C1(r1 [17) = {0 = O(Cy; 1), ¢ = Comm(Cy;ry)

O*=0(Cy) c*=Comm(C,)

Claim: Hybrid 1 ~, Hybrid 12 => CCA-security of CCACom.

Zooming into the proof of our COA construction

® Hybrid 2: Obfuscate C; and commit to C,. De-obfuscation oracle 1s implemented using Decomm.

- - g”ch(lﬁ ||r) =10 = O(C,; ry),c = Comm(C;1,)}

P U

O* = @(Cl) Cc* = COmm(Cl) DeObf(/Cv\l) _ L ff Ci = C*=7* .
C; st. C,=Decomm(c;) where C;=(0;c;) « Ver(C)

Claim: Hybrid 1 =, Hybrid 2

® Hybrid 12: Obfuscate C, and commit to C,. De-obfuscation oracle is implemented using Decomm.

- - 9C03C1(r1 [17) = {0 = O(Cy; 1), ¢ = Comm(Cy;ry)

O*=0(Cy) c*=Comm(C,)

Claim: Hybrid 1 ~, Hybrid 12 => CCA-security of CCACom.

Claim: Hybrid 12 ~,. Hybrid 2 => Follows from the (T, ¢)-security of 6.

Open Problems

Open Problems

Open Problems

® Construct COA-secure obfuscation for the more traditional definition (where the

verifier 1s deterministic)?

Open Problems

® Construct COA-secure obfuscation for the more traditional definition (where the

verifier 1s deterministic)?

® More applications of COA-secure Obfuscation?

