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This paper in a nutshell

We provide a framework for endowing software obfuscation with 
“verifiability” and “non-malleability” guarantees and show generic 

constructions satisfying the above guarantees.
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•  General purpose program obfuscation allows distribution and execution of software without fear of revealing 
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program. 

The obfuscated program comes from an untrusted source.

Malleability: A program might depend on other (related) program(s) in “illegitimate” ways. 

 Obfuscation might facilitate software plagiarism — might hide that program A uses a potentially mauled 
version of a (proprietary) program B as sub-routine and A’s behaviour may depend on B.

  obfuscation of a (puncturable) PRF  might allow an adversary to create an obfuscation of the same 
function but with key 
i𝒪 K

K + 1
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 Attempt 1: Whenever  accepts, a specific circuit  is being obfuscatedVer C

 Attempt 2: Whenever  accepts, there exists some circuit  s.t. .Ver C ̂C ≡ C

 Consider a public predicate , s.t. if  s.t.  and .ϕ Ver( ̂C , ϕ) = Acc ⟹ ∃C ̂C ≡ C ϕ(C) = 1

• Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext 
program.

 Requires trusted setup assumptions (Common random/reference string (CRS))

• Goal: Construct verifiable and non-malleable obfuscation in the “plain” model

Obfuscate  
 Obf

Verify  
Ver

1κ, C ̂C

rand

Acc/Rej
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and in arbitrary 
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oracle  𝕆( ⋅ , ϕ)

COA Fortification for injective PiO => Def. 1
Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}

C ← 𝒪(1κ, Cb)
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 must be an 
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-satisfying sampler 

𝖲𝖺𝗆𝗉
ϕ  must be an 

admissible sampler 
𝖲𝖺𝗆𝗉
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• More applications of COA-secure Obfuscation?




