
COA-Secure Obfuscation and Applications

EUROCRYPT 2022, Trondheim, Norway, May 31, 2022

Ran Canetti
Boston University

Suvradip Chakraborty
ETH Zurich

Dakshita Khurana
UIUC

Manoj Prabhakaran
IIT Bombay

Oxana Poburinnaya
Boston University

Nishant Kumar*
UIUC

This paper in a nutshell

We provide a framework for endowing software obfuscation with
“verifiability” and “non-malleability” guarantees and show generic

constructions satisfying the above guarantees.

Roadmap
• Motivation

• New Definitions- COA Obfuscation

• New Applications

• Complete CCA Encryption

• Stronger (keyless) software watermarking

Roadmap
• Motivation

• New Definitions- COA Obfuscation

• New Applications

 Complete CCA Encryption

• Stronger (keyless) software watermarking

Roadmap
• Motivation

• New Definitions- COA Obfuscation

• New Applications

 Complete CCA Encryption

• Stronger (keyless) software watermarking

• Construction of COA Obfuscation

Program Obfuscation— Boon or Bane for Software Users?

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program.

The obfuscated program comes from an untrusted source.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program.

The obfuscated program comes from an untrusted source.

Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program.

The obfuscated program comes from an untrusted source.

Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

 Obfuscation might facilitate software plagiarism — might hide that program A uses a potentially mauled
version of a (proprietary) program B as sub-routine and A’s behaviour may depend on B.

Program Obfuscation— Boon or Bane for Software Users?

• General purpose program obfuscation allows distribution and execution of software without fear of revealing
sensitive design secrets/ keys hidden in code.

Issues:

Verifiability: Verification of properties (structure/functionality) of the underlying program much harder.

Reduced to only black-box testing the program.

The obfuscated program comes from an untrusted source.

Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

 Obfuscation might facilitate software plagiarism — might hide that program A uses a potentially mauled
version of a (proprietary) program B as sub-routine and A’s behaviour may depend on B.

 obfuscation of a (puncturable) PRF might allow an adversary to create an obfuscation of the same
function but with key
i𝒪 K

K + 1

Defining Verifiable and non-malleable obfuscation: Challenges

Defining Verifiable and non-malleable obfuscation: Challenges

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

 Attempt 2: Whenever accepts, there exists some circuit s.t. .Ver C ̂C ≡ C

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

 Attempt 2: Whenever accepts, there exists some circuit s.t. .Ver C ̂C ≡ C

 Consider a public predicate , s.t. if s.t. and .ϕ Ver(̂C , ϕ) = Acc ⟹ ∃C ̂C ≡ C ϕ(C) = 1

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

 Attempt 2: Whenever accepts, there exists some circuit s.t. .Ver C ̂C ≡ C

 Consider a public predicate , s.t. if s.t. and .ϕ Ver(̂C , ϕ) = Acc ⟹ ∃C ̂C ≡ C ϕ(C) = 1

• Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

 Attempt 2: Whenever accepts, there exists some circuit s.t. .Ver C ̂C ≡ C

 Consider a public predicate , s.t. if s.t. and .ϕ Ver(̂C , ϕ) = Acc ⟹ ∃C ̂C ≡ C ϕ(C) = 1

• Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

 Requires trusted setup assumptions (Common random/reference string (CRS))

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Defining Verifiable and non-malleable obfuscation: Challenges

 Attempt 1: Whenever accepts, a specific circuit is being obfuscatedVer C

 Attempt 2: Whenever accepts, there exists some circuit s.t. .Ver C ̂C ≡ C

 Consider a public predicate , s.t. if s.t. and .ϕ Ver(̂C , ϕ) = Acc ⟹ ∃C ̂C ≡ C ϕ(C) = 1

• Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

 Requires trusted setup assumptions (Common random/reference string (CRS))

• Goal: Construct verifiable and non-malleable obfuscation in the “plain” model

Obfuscate
 Obf

Verify
Ver

1κ, C ̂C

rand

Acc/Rej

Prior works

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.
Techniques tailer-made for .i𝒪

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.
Techniques tailer-made for .i𝒪
Limited form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.
Techniques tailer-made for .i𝒪
Limited form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.
No guarantees against general mauling attacks

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.
Techniques tailer-made for .i𝒪
Limited form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.
No guarantees against general mauling attacks

Non-malleability for VBB
obfuscation

• Canetti, Varia
 Non-malleable Obfuscation, TCC’09

Prior works

Verifiability compiler for
Functional Encryption
and Indistinguishability

Obfuscation

• Badrinarayanan, Goyal, Jain, Sahai
 Verifiable Functional Encryption, Asiacrypt’16

Does not require any trusted setup assumptions.
Techniques tailer-made for .i𝒪
Limited form of Hiding: Requires a “short proof/witness” of
equivalence for the functionally equivalent circuits.
No guarantees against general mauling attacks

Non-malleability for VBB
obfuscation

• Canetti, Varia
 Non-malleable Obfuscation, TCC’09

Considers obfuscation of point functions and related
functionalities

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ

rand

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ

rand rand

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , is functionally equivalent to . C ϕ(C) = 1 C̃ C

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , is functionally equivalent to . C ϕ(C) = 1 C̃ C

 Soundness: For any string , if Verify outputs some , i.e., s.t => there exists
an underlying circuit such that and .

̂C C̃ C̃ ← Ver(̂C , ϕ) C̃ ≠ ⊥
C ∈ 𝒞 C̃ ≡ C ϕ(C) = 1

Our notion: Security against Chosen Obfuscation Attacks (COA Obfuscation): Defn. 1

Consider a class of circuits and let be a predicate. Let . 𝒞 ϕ C ∈ 𝒞

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , is functionally equivalent to . C ϕ(C) = 1 C̃ C

 Soundness: For any string , if Verify outputs some , i.e., s.t => there exists
an underlying circuit such that and .

̂C C̃ C̃ ← Ver(̂C , ϕ) C̃ ≠ ⊥
C ∈ 𝒞 C̃ ≡ C ϕ(C) = 1

COA security: For “sufficiently similar” circuits and , , even given access to
a “de-obfuscation oracle” .

C0 C1 Obf(C0, ϕ) ≈c Obf(C1, ϕ)
𝕆(⋅ , ϕ)

Defining COA Security: Defn. 1

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z)
(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z)

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C

̂C

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such that
 for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

The De-obfuscation
oracle 𝕆(⋅ , ϕ)

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such that
 for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

C

The De-obfuscation
oracle 𝕆(⋅ , ϕ)

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such that
 for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

CDe-obfuscation queries can be made
adaptively and in arbitrary order

The De-obfuscation
oracle 𝕆(⋅ , ϕ)

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

Defining COA Security: Defn. 1
 Consider a class of circuits and let be a predicate.𝒞 ϕ

Adversary Challenger

(C0, C1, z) b $ {0,1}

̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such that
 for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

C

b′

De-obfuscation queries can be made
adaptively and in arbitrary order

The De-obfuscation
oracle 𝕆(⋅ , ϕ)

 must be “admissible -satisfying
“sampler:

 and

2. for any black-box PPT
distinguisher

𝖲𝖺𝗆𝗉 ϕ

C0, C1 ∈ 𝒞 ϕ(C0) = ϕ(C1) = 1

C0 ≈c C1

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)

COA Fortification for Obfuscation: Defn. 2

COA Fortification for Obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

COA Fortification for Obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

COA Fortification for Obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , . C ϕ(C) = 1 C̃ = 𝒪(C; r)

COA Fortification for Obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , . C ϕ(C) = 1 C̃ = 𝒪(C; r)

 Soundness: For any string , if Verify outputs some , i.e., s.t => there exists
an underlying circuit such that and .

̂C C̃ C̃ ← Ver(̂C , ϕ) C̃ ≠ ⊥
C ∈ 𝒞 ϕ(C) = 1 C̃ = 𝒪(C; r)

COA Fortification for Obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Obfuscate
 Obf

Verify
Ver

1κ, C, ϕ ̂C , ϕ
C̃ ∪ { ⊥ }

rand rand

 Correctness: For a legitimate , i.e., , . C ϕ(C) = 1 C̃ = 𝒪(C; r)

 Soundness: For any string , if Verify outputs some , i.e., s.t => there exists
an underlying circuit such that and .

̂C C̃ C̃ ← Ver(̂C , ϕ) C̃ ≠ ⊥
C ∈ 𝒞 ϕ(C) = 1 C̃ = 𝒪(C; r)

 COA security: For “sufficiently similar” circuits and , and given access to “de-obfuscation oracle”
:

C0 C1
𝒪−1(⋅)

Obf(C0, ϕ) ≈c Obf(C1, ϕ) ⟹ 𝒪(C0) ≈c 𝒪(C1)

COA Fortification for obfuscation: Defn. 2

COA Fortification for obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

COA Fortification for obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}
̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such
that for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

C

b′

De-obfuscation
queries can be

made adaptively
and in arbitrary

order The De-obfuscation
oracle 𝕆(⋅ , ϕ)

 must be an
admissible

-satisfying sampler

𝖲𝖺𝗆𝗉
ϕ

COA Fortification for obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}
̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such
that for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

C

b′

De-obfuscation
queries can be

made adaptively
and in arbitrary

order The De-obfuscation
oracle 𝕆(⋅ , ϕ)

Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}

C ← 𝒪(1κ, Cb)
C

b′

 must be an
admissible

-satisfying sampler

𝖲𝖺𝗆𝗉
ϕ must be an

admissible sampler
𝖲𝖺𝗆𝗉

COA Fortification for obfuscation: Defn. 2
Consider a class of circuits and let be a predicate. Let be an injective obfuscation scheme. 𝒞 ϕ 𝒪

Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}
̂C ← Obf(Cb, ϕ)̂C

̂C 1. If , output

2. Run

3. If , return such
that for some

̂C = ̂C ⊥ .

C̃ ← Ver(̂C , ϕ)

C̃ ≠ ⊥ C
C̃ = 𝒪(C; r) r

C

b′

De-obfuscation
queries can be

made adaptively
and in arbitrary

order The De-obfuscation
oracle 𝕆(⋅ , ϕ)

COA Fortification for injective PiO => Def. 1
Adversary Challenger

(C0, C1, z) ← 𝖲𝖺𝗆𝗉(1κ)
(C0, C1, z)

b $ {0,1}

C ← 𝒪(1κ, Cb)
C

b′

 must be an
admissible

-satisfying sampler

𝖲𝖺𝗆𝗉
ϕ must be an

admissible sampler
𝖲𝖺𝗆𝗉

Applications of COA Obfuscation

Complete CCA (CCCA)-secure Public Key Encryption

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

• [F’05] showed that completely non-malleable PKE is impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsifiable hardness assumption.

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

• [F’05] showed that completely non-malleable PKE is impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsifiable hardness assumption.

• We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness
assumptions.

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

• [F’05] showed that completely non-malleable PKE is impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsifiable hardness assumption.

• We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness
assumptions.

• Unique Decryptability:

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

• [F’05] showed that completely non-malleable PKE is impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsifiable hardness assumption.

• We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness
assumptions.

• Unique Decryptability:

A string is “useless” if , for any message pk ∈ {0,1}poly(κ) 𝖯𝗋[𝖤𝗇𝖼(pk, m) ≠ ⊥] ≤ μ(κ) m ∈ ℳ

Complete CCA (CCCA)-secure Public Key Encryption
• Enhance CCA-secure PKE with the ability of the adversary to submit to the decryption oracle,

where can be arbitrarily related to the challenge public key .
(pki, ci)

pki pk*

• Strengthening of the notion of completely non-malleable encryption [F’05, VV’08] (when defined
appropriately)

• [F’05] showed that completely non-malleable PKE is impossible to construct in the “plain” model using any
black-box reduction to a poly-time falsifiable hardness assumption.

• We bypass this impossibility result by constructing CCCA secure PKE using sub-exponential hardness
assumptions.

• Unique Decryptability:

A string is “useless” if , for any message pk ∈ {0,1}poly(κ) 𝖯𝗋[𝖤𝗇𝖼(pk, m) ≠ ⊥] ≤ μ(κ) m ∈ ℳ

 “non-useless” keys , “opening” s.t. w.h.p. Further, s.t.
.

∀ pk ∃ sk 𝖣𝖾𝖼(sk, 𝖤𝗇𝖼(pk, m)) = m ∃ pk′

(pk′ , sk) ← KeyGen(1κ; r)

Complete CCA-secure Public Key Encryption

Complete CCA-secure Public Key Encryption
Adversary Challenger

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
mi

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
mi

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
m0, m1

mi

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
m0, m1

c* ← 𝖤𝗇𝖼(pk*, mb)c*

mi

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
m0, m1

c* ← 𝖤𝗇𝖼(pk*, mb)c*

mi

(pkj, cj) 1. Check if is “useless”
2. If “not useless” and , find

opening and return

pkj

(pkj, cj) ≠ (pk*, c*)
sk mi := 𝖣𝖾𝖼(sk, ci)

mj

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
m0, m1

c* ← 𝖤𝗇𝖼(pk*, mb)c*

mi

(pkj, cj) 1. Check if is “useless”
2. If “not useless” and , find

opening and return

pkj

(pkj, cj) ≠ (pk*, c*)
sk mi := 𝖣𝖾𝖼(sk, ci)

mj

Complete CCA-secure Public Key Encryption
Adversary Challenger

(pk*, sk*) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1κ)pk*

(pki, ci) 1. Check if is “useless”
2. If “not useless” find opening and return

pki
sk

mi := 𝖣𝖾𝖼(sk, ci)
m0, m1

c* ← 𝖤𝗇𝖼(pk*, mb)c*

mi

(pkj, cj) 1. Check if is “useless”
2. If “not useless” and , find

opening and return

pkj

(pkj, cj) ≠ (pk*, c*)
sk mi := 𝖣𝖾𝖼(sk, ci)

mj

b′

Constructing CCCA-secure PKE

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

 : Run ; sample random and output .𝖤𝗇𝖼(pk, m) P̃ ← Ver(̂P , ϕ) r P̃ (m, r) 1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

 : Run ; sample random and output .𝖤𝗇𝖼(pk, m) P̃ ← Ver(̂P , ϕ) r P̃ (m, r)

 : Verify authenticity of and recover .𝖣𝖾𝖼(sk = (K1, K2), c = (c1, c2, c3)) c3 m

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

 : Run ; sample random and output .𝖤𝗇𝖼(pk, m) P̃ ← Ver(̂P , ϕ) r P̃ (m, r)

 : Verify authenticity of and recover .𝖣𝖾𝖼(sk = (K1, K2), c = (c1, c2, c3)) c3 m

Unique Decryptability: Follows from soundness of + (perfect)injectivity of c𝒪 i𝒪

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Constructing CCCA-secure PKE
1. Let be COA-fortification of injective w.r.t predicate : attest that is of the form of .c𝒪 = (Obf, Ver) i𝒪 ϕ ϕ(C) C P

2. Let be a PRG, and and be two puncturable PRFs.G : {0,1}κ → {0,1}2κ F1 : {0,1}2κ → {0,1} F2 : {0,1}2κ+1 → {0,1}κ

 : Sample keys and for and resp., output , and .𝖪𝖾𝗒𝖦𝖾𝗇(1κ) K1 K2 F1 F2 pk = ̂P ← Obf(P, ϕ) sk = (K1, K2)

 : Run ; sample random and output .𝖤𝗇𝖼(pk, m) P̃ ← Ver(̂P , ϕ) r P̃ (m, r)

 : Verify authenticity of and recover .𝖣𝖾𝖼(sk = (K1, K2), c = (c1, c2, c3)) c3 m

Unique Decryptability: Follows from soundness of + (perfect)injectivity of c𝒪 i𝒪

If s.t. and hence can recover using . Use to decrypt.P̃ ≠ ⊥ ⟹ ∃P′ = P′ K′ 1,K′ 2
P̃ = i𝒪(P′ ; r) P′ i𝒪−1(P̃) (K′ 1, K′ 2)

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Zooming into the proof of CCCA-secure PKE

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

2. and : In this case, letting :(pk, c) ≠ (pk*, c*) pk ≠ pk* pk = ̂P

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

2. and : In this case, letting :(pk, c) ≠ (pk*, c*) pk ≠ pk* pk = ̂P

 Let , P̃ ← Ver(̂P , ϕ)

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

2. and : In this case, letting :(pk, c) ≠ (pk*, c*) pk ≠ pk* pk = ̂P

 Let , P̃ ← Ver(̂P , ϕ)

 If such that .P̃ ≠ ⊥ ⟹ ∃P′ = P′ K′ 1,K′ 2
P̃ ← i𝒪(1κ, P′)

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

2. and : In this case, letting :(pk, c) ≠ (pk*, c*) pk ≠ pk* pk = ̂P

 Let , P̃ ← Ver(̂P , ϕ)

 If such that .P̃ ≠ ⊥ ⟹ ∃P′ = P′ K′ 1,K′ 2
P̃ ← i𝒪(1κ, P′)

 Recover using , use to decrypt . (follows
from the COA fortification of injective w.r.t. predicate).

P′ i𝒪−1(P̃) sk′ = (K′ 1, K′ 2) c
i𝒪 ϕ

Zooming into the proof of CCCA-secure PKE

1. Constants:
2. Input:

a.
b.
c. Output

K1, K2
m, r

c1 = G(r); c2 = F1(K1, c1) ⊕ m
c3 = F2(K2, c1 | |c2)

c = (c1, c2, c3)

Program PK1,K2

Either of the following two cases may arise (for each decryption
query):

1. and : In this case this can be reduced to
the CCA-security of the [SW’14] construction.
(pk, c) ≠ (pk*, c*) pki = pk*

2. and : In this case, letting :(pk, c) ≠ (pk*, c*) pk ≠ pk* pk = ̂P

 Let , P̃ ← Ver(̂P , ϕ)

 If such that .P̃ ≠ ⊥ ⟹ ∃P′ = P′ K′ 1,K′ 2
P̃ ← i𝒪(1κ, P′)

 Recover using , use to decrypt . (follows
from the COA fortification of injective w.r.t. predicate).

P′ i𝒪−1(P̃) sk′ = (K′ 1, K′ 2) c
i𝒪 ϕ

Construction of COA Obfuscation

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

Prover P Verifier V

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

• Completeness: is in d Supp(𝒟) |x

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

• Privacy: For all s.t. , we have D1, D2 D1 |x ≈c D2 |x C𝒟1
≈c C𝒟2

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Non-Interactive Distributional Indistinguishable (NIDI) argument [K’21]

• A NIDI argument system for an NP language with relation consists of two algorithms such
that:

ℒ ℛℒ (P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

• Privacy: For all s.t. , we have D1, D2 D1 |x ≈c D2 |x C𝒟1
≈c C𝒟2

Theorem: Assuming sub-exp and sub-exp secure OWF, there exists NIDI arguments for NP.i𝒪

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

Prover P Verifier V

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

• Completeness: is in d Supp(𝒟) |x

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

• Robustness: For all s.t. , we have , even if the distinguishers get access to the
oracle .

D1, D2 D1 |x ≈c D2 |x C𝒟1
≈c C𝒟2

𝕆

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Robust Non-Interactive Distributional Indistinguishable (r-NIDI) argument

• A r-NIDI argument system for an NP language with relation w.r.t. a “finite" oracle consists of two
algorithms such that:

ℒ ℛℒ 𝕆
(P, V)

• Completeness: is in d Supp(𝒟) |x

• Soundness: If , then d ≠ ⊥ d ∈ ℒ

• Robustness: For all s.t. , we have , even if the distinguishers get access to the
oracle .

D1, D2 D1 |x ≈c D2 |x C𝒟1
≈c C𝒟2

𝕆

We construct r-NIDI arguments by modifying the [K’21] construction by making the underlying primitives to
be secure in the presence of (using complexity leveraging).𝕆

Inputs:
Language ,

Distribution that
samples

ℒ
𝒟

(x, w) ∈ ℛℒ

Input ℒ

Prover P Verifier V

Sampler C𝒟
 d ← V(C𝒟; rV)

Construction of COA secure Obfuscation

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

• Let be an (injective) obfuscation scheme for our COA fortification (secure against -sized adversaries). 𝒪 T

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

• Let be an (injective) obfuscation scheme for our COA fortification (secure against -sized adversaries). 𝒪 T

• Let (P,V) be an argument system w.r.t for the following language: r-NIDI 𝕆
ℒϕ := {{(O, c)} : ∃(C, r1, r2) : O = 𝒪(C; r1) ∧ c = Comm(C; r2) ∧ ϕ(C) = 1}

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

• Let be an (injective) obfuscation scheme for our COA fortification (secure against -sized adversaries). 𝒪 T

• Let (P,V) be an argument system w.r.t for the following language: r-NIDI 𝕆
ℒϕ := {{(O, c)} : ∃(C, r1, r2) : O = 𝒪(C; r1) ∧ c = Comm(C; r2) ∧ ϕ(C) = 1}

Obfuscate
 Obf

1κ, C, ϕ

• Sample randomness and define the distribution
 as:

• Compute and set

r1, r2
𝒟C(⋅)

𝒟C(r1 | |r2) = {O = 𝒪(C; r1), c = Comm(C; r2)}

π ← 𝗋-𝖭𝖨𝖣𝖨 . P(𝒟C, ℒϕ) ̂C = π

Verify
Ver

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

• Let be an (injective) obfuscation scheme for our COA fortification (secure against -sized adversaries). 𝒪 T

• Let (P,V) be an argument system w.r.t for the following language: r-NIDI 𝕆
ℒϕ := {{(O, c)} : ∃(C, r1, r2) : O = 𝒪(C; r1) ∧ c = Comm(C; r2) ∧ ϕ(C) = 1}

Obfuscate
 Obf

1κ, C, ϕ

• Sample randomness and define the distribution
 as:

• Compute and set

r1, r2
𝒟C(⋅)

𝒟C(r1 | |r2) = {O = 𝒪(C; r1), c = Comm(C; r2)}

π ← 𝗋-𝖭𝖨𝖣𝖨 . P(𝒟C, ℒϕ) ̂C = π

Verify
Ver

π = ̂C , ϕ

Construction of COA secure Obfuscation
• Let CCACom be a (non-interactive) CCA-secure commitment scheme ; let be an (inefficient)

oracle that implements the decommitment oracle for CCACom in time .
(Com, Decomm) 𝕆

Decomm T

• Let be an (injective) obfuscation scheme for our COA fortification (secure against -sized adversaries). 𝒪 T

• Let (P,V) be an argument system w.r.t for the following language: r-NIDI 𝕆
ℒϕ := {{(O, c)} : ∃(C, r1, r2) : O = 𝒪(C; r1) ∧ c = Comm(C; r2) ∧ ϕ(C) = 1}

Obfuscate
 Obf

1κ, C, ϕ

• Sample randomness and define the distribution
 as:

• Compute and set

r1, r2
𝒟C(⋅)

𝒟C(r1 | |r2) = {O = 𝒪(C; r1), c = Comm(C; r2)}

π ← 𝗋-𝖭𝖨𝖣𝖨 . P(𝒟C, ℒϕ) ̂C = π

Verify
Ver

π = ̂C , ϕ

 Sample randomness and compute:rR
𝗋-𝖭𝖨𝖣𝖨 . V(π; rR)

Zooming into the proof of our COA construction

Zooming into the proof of our COA construction
• Hybrid 0: “Real” game: Given ckts and , obfuscate and commit to . De-obfuscation

oracle is implemented using .
CO C1 CO CO

𝒪−1(⋅)

Zooming into the proof of our COA construction
• Hybrid 0: “Real” game: Given ckts and , obfuscate and commit to . De-obfuscation

oracle is implemented using .
CO C1 CO CO

𝒪−1(⋅)

O* = 𝒪(C0) c* = Comm(C0)

𝒟C0
(r1 | |r2) = {O = 𝒪(C0; r1), c = Comm(C0; r2)}

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = 𝒪−1(Oi) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

Zooming into the proof of our COA construction
• Hybrid 0: “Real” game: Given ckts and , obfuscate and commit to . De-obfuscation

oracle is implemented using .
CO C1 CO CO

𝒪−1(⋅)

• Hybrid 1: De-obfuscation oracle implemented using decommitment oracle .Decomm

O* = 𝒪(C0) c* = Comm(C0)

𝒟C0
(r1 | |r2) = {O = 𝒪(C0; r1), c = Comm(C0; r2)}

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = 𝒪−1(Oi) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

Zooming into the proof of our COA construction
• Hybrid 0: “Real” game: Given ckts and , obfuscate and commit to . De-obfuscation

oracle is implemented using .
CO C1 CO CO

𝒪−1(⋅)

• Hybrid 1: De-obfuscation oracle implemented using decommitment oracle .Decomm

O* = 𝒪(C0) c* = Comm(C0)

𝒟C0
(r1 | |r2) = {O = 𝒪(C0; r1), c = Comm(C0; r2)}

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = 𝒪−1(Oi) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

Zooming into the proof of our COA construction
• Hybrid 0: “Real” game: Given ckts and , obfuscate and commit to . De-obfuscation

oracle is implemented using .
CO C1 CO CO

𝒪−1(⋅)

• Hybrid 1: De-obfuscation oracle implemented using decommitment oracle .Decomm

O* = 𝒪(C0) c* = Comm(C0)

𝒟C0
(r1 | |r2) = {O = 𝒪(C0; r1), c = Comm(C0; r2)}

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = 𝒪−1(Oi) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

Claim: Hybrid 0 Hybrid 1 => Follows from the “soundness” of r-NIDI + “perfect infectivity” of
+ “non-malleability” of CCACom

≈c 𝒪

Zooming into the proof of our COA construction

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Claim: Hybrid 1 Hybrid 2≈c

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Claim: Hybrid 1 Hybrid 2≈c

• Hybrid 12: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C0 Decomm

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Claim: Hybrid 1 Hybrid 2≈c

• Hybrid 12: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C0 Decomm

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

O* = 𝒪(C1) c* = Comm(C0)

𝒟C0,C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C0; r2)}

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Claim: Hybrid 1 Hybrid 2≈c

• Hybrid 12: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C0 Decomm

Claim: Hybrid 1 Hybrid 12 => CCA-security of CCACom.≈c

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

O* = 𝒪(C1) c* = Comm(C0)

𝒟C0,C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C0; r2)}

Zooming into the proof of our COA construction
• Hybrid 2: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C1 Decomm

Claim: Hybrid 1 Hybrid 2≈c

• Hybrid 12: Obfuscate and commit to . De-obfuscation oracle is implemented using .C1 C0 Decomm

Claim: Hybrid 1 Hybrid 12 => CCA-security of CCACom.≈c

Claim: Hybrid 12 Hybrid 2 => Follows from the -security of .≈c (T, ϵ) 𝒪

O* = 𝒪(C1) c* = Comm(C1) 𝖣𝖾𝖮𝖻𝖿(̂C i) = { ⊥ if ̂C i = ̂C * = π*

Ci s.t. Ci = Decomm(ci) where C̃ i = (Oi, ci) ← Ver(̂C i, ϕ)

𝒟C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C1; r2)}

O* = 𝒪(C1) c* = Comm(C0)

𝒟C0,C1
(r1 | |r2) = {O = 𝒪(C1; r1), c = Comm(C0; r2)}

Open Problems

Open Problems

Open Problems

• Construct COA-secure obfuscation for the more traditional definition (where the

verifier is deterministic)?

Open Problems

• Construct COA-secure obfuscation for the more traditional definition (where the

verifier is deterministic)?

• More applications of COA-secure Obfuscation?

