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This paper in a nutshell

@

We provide a framework for endowing software obfuscation with
“verifiability” and “non-malleability” guarantees and show generic
constructions satisfying the above guarantees.
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¢ Reduced to only black-box testing the program.
¢ The obfuscated program comes from an untrusted source.

& Malleability: A program might depend on other (related) program(s) in “illegitimate” ways.

€ Obfuscation might facilitate voftware plagiarism — might hide that program A uses a potentially mauled
version of a (proprietary) program B as sub-routine and A’'s behaviour may depend on B.

€ i0 obfuscation of a (puncturable) PRF K might allow an adversary to create an obfuscation of the same
function but with key K + 1
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® Attempt 1: Whenever Ver accepts, a specific circuit C 1s being obfuscated

N

® Attempt 2: Whenever Ver accepts, there exists some circuit Cs.t. C = C.

N

% Consider a public predicate ¢, s.t. if Ver( C,p)=Acc = 3ICs.t. C =Cand H(C) = 1.

* Trivial solution: Use NIZK proofs to attest to the structure and functionality of the underlying plaintext
program.

B Requires trusted setup assumptions (Common random/reference string (CRS))

® Goal: Construct verihable and non-malleable obfuscation in the “plain” model
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® Unique Decryptability:

O A string pk € {0,1}7°Y® s “useless” if Pr[Enc(pk,m) # L ] < u(x), for any message m € M

O V “non-useless” keys pk, 3 “opening” sk s.t. Dec(sk, Enc(pk, m)) = m w.h.p. Further, 3 pk’s.t.
(pk’, sk) « KeyGen(1; 7).
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Enc(pk,m): Run P « Ver( P, ¢); sample random r and output P (m, r).

Dec(sk = (K|, K,), ¢ = (¢, ¢y, ¢3)): Verity authenticity of ¢; and recover m.

Program Py

O Unique Decryptability: Follows from soundness of ¢0 + (perfect)injectivity of i®

—~—

+ If P * 1 = dP'= P;{i,Ké s.t. P =i0O(P’;r) and hence can recover P’ using i@_l(F). Use (K7, K3) to decrypt.
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e A NIDI argument system for an NP language & with relation &%, consists of two algorithms (P, V) such
that:

Prover P Veritier V
Inputs:

Language &Z,
Distribution 9 that
samples (x,w) € R,

® Completeness: d1s 1n Supp(D)|

® Soundness: [fd# 1 ,thende &
® Privacy: Forall D, D, s.t. D|| =.D,| , we have Cy, =.Cg,

Theorem: Assuming sub-exp i0® and sub-exp secure OWE there exists NIDI arguments for NP.
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® A r-NIDI argument system for an NP language & with relation #Z, w.r.t. a “finite" oracle O consists of two
algorithms (P, V) such that:

Prover P Verihier V

Inputs:

Language &,
Distribution 9 that
samples (x,w) € R,

¢ Completeness: d 1s in Supp(D)|,

® Soundness: Ifd+#1,thende &

® Robustness: For all D, D, s.t. D|| =, D,| , we have Cy, =, Cg , even it the distinguishers get access to the

oracle O.

We construct r-NIDI arguments by moditying the [K’'21] construction by making the underlying primitives to
be secure in the presence of O (using complexity leveraging).
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® Sample randomness r, r, and define the distribution
@C( * ) asS:
D(r||r) =1{0 = 0O(C;r),c = Comm(C;r,)}
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® Hybrid 12: Obfuscate C, and commit to C,. De-obfuscation oracle is implemented using Decomm.

- - 9C03C1(r1 [17) = {0 = O(Cy; 1), ¢ = Comm(Cy;ry)

O*=0(Cy) c*=Comm(C,)

Claim: Hybrid 1 ~, Hybrid 12 => CCA-security of CCACom.

Claim: Hybrid 12 ~,. Hybrid 2 => Follows from the (T, ¢)-security of 6.



Open Problems



Open Problems



Open Problems

® Construct COA-secure obfuscation for the more traditional definition (where the

verifier 1s deterministic)?



Open Problems

® Construct COA-secure obfuscation for the more traditional definition (where the

verifier 1s deterministic)?

® More applications of COA-secure Obfuscation?






