Rubato:
Noisy Ciphers for Approximate Homomorphic Encryption

Jincheol Ha¹, Seongkwang Kim²,
Byeonghak Lee¹, Jooyoung Lee¹,
and Mincheol Son¹

¹KAIST, Daejeon, Korea
²Samsung SDS, Seoul, Korea

Eurocrypt 2022
Homomorphic Encryption

• Homomorphic encryption (HE) is an encryption scheme that enables addition and multiplication over encrypted data without decryption key*
 • $a \times b = \text{Dec}(\text{Enc}(a) \times \text{Enc}(b))(\pm \epsilon)$
 • E.g., FV (\mathbb{Z}_t, $+$, \times), CKKS(\mathbb{C}, $+$, \times)

• HE can protect data even when it is being used
 • E.g., ML inference, statistics of sensitive data on a cloud server

* We do not take into account partially homomorphic encryption (PHE) in this talk.
Demerit of HE

• Slow encryption speed
 • Slower than usual public key encryption
 • Inadequate to bulk encryption

• Large ciphertext expansion
 • 10x – 1,000,000x according to the choice of parameters
 • Disadvantage for encryption of small messages
 • Large memory & network bandwidth overhead
Transciphering Framework

Client

![Client Diagram]

Server

![Server Diagram]

Transciphering Framework

Client

Fast encryption speed
Small ciphertext expansion

* K. Lauter et al., "Can Homomorphic Encryption Be Practical?", ACM CCSW 2011
RtF Transciphertexting Framework

• In Asiacrypt 2021, RtF framework was proposed for approximate numbers*

RtF Transciphering Framework

• In Asiacrypt 2021, RtF framework was proposed for approximate numbers*

• Client-side symmetric encryption over \mathbb{Z}_t
 • Message in \mathbb{R}
 • Ciphertext in \mathbb{Z}_t^*

• FV \rightarrow CKKS Conversion by CKKS bootstrapping
 • FV-evaluation of the cipher
 • CKKS bootstrapping w/o last SlotToCoeff
 • Result: CKKS-ciphertext

HE-friendly Ciphers

- HE-friendly cipher is a cipher which is efficiently evaluated using HE
- New design strategy is required
 - So far, AND gates and XOR gates are roughly the same in most hardware
 - However, cost of XOR gate (addition) is way cheaper than AND gate (multiplication) in HE setting
 - Low multiplicative depth/complexity required
HE-friendly Ciphers

• HE-friendly cipher is a cipher which is efficiently evaluated using HE

• New design strategy is required
 • So far, AND gates and XOR gates are roughly the same in most hardware
 • However, cost of XOR gate (addition) is way cheaper than AND gate (multiplication) in HE setting
 • Low multiplicative depth/complexity required

• Domain-critical cipher
 • Computation on that domain after transciphering
 • Binary: LowMC, Kreyvium, FLIP, Rasta, Dasta
 • Modulo: Masta, Pasta, HERA
 • Approximate: HERA, Rubato
Main Question

Is there any way to reduce the multiplicative depth drastically?
Observation

• Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 • (FLIP) 1394 bit key size → Mult. depth = 4
 • (Rasta) 351 bit key size → Mult. depth = 6
Observation

• Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 • (FLIP) 1394 bit key size → Mult. depth = 4
 • (Rasta) 351 bit key size → Mult. depth = 6

• LWE encryption does not require non-scalar multiplication (and is secure!)
 • But it requires large key size and lots of random bits
 • Client-side encryption speed is too slow
Observation

- Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 - (FLIP) 1394 bit key size \(\rightarrow \) Mult. depth = 4
 - (Rasta) 351 bit key size \(\rightarrow \) Mult. depth = 6

- LWE encryption does not require non-scalar multiplication (and is secure!)
 - But it requires large key size and lots of random bits
 - Client-side encryption speed is too slow

<table>
<thead>
<tr>
<th>Cipher</th>
<th>LowMC</th>
<th>FLIP</th>
<th>Rasta</th>
<th>Masta</th>
<th>HERA</th>
<th>Pasta</th>
<th>LWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(t \approx 2^{25})</td>
</tr>
<tr>
<td>#(Key words)</td>
<td>256</td>
<td>1394</td>
<td>351</td>
<td>16</td>
<td>16</td>
<td>64</td>
<td>1024</td>
</tr>
<tr>
<td>Mult. Depth</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>#Mult / word</td>
<td>10.34</td>
<td>1072</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>9.81</td>
<td>0</td>
</tr>
<tr>
<td>Random bits / word</td>
<td>0</td>
<td>13287</td>
<td>2464</td>
<td>400</td>
<td>150</td>
<td>250</td>
<td>25600</td>
</tr>
</tbody>
</table>
Idea: Mix Together!

- Stream cipher + Gaussian noise
Idea: Mix Together!

- Stream cipher + Gaussian noise
- Security against algebraic attacks
 - Gröbner basis attack
 - $\text{Gröbner}(n, m, d) \rightarrow \text{Gröbner}(n, m', d') \cdot \text{Guess}(e \leftarrow \chi)$
 - Guessing error takes more time \rightarrow lower degree
- Arora-Ge attack
 - $\prod_{e=-t}^{t}(b_i - (a_i, s) - e) = 0 \rightarrow \prod_{e=-t}^{t}(b_i - F(a_i, s) - e) = 0$
 - Equations gets larger degree with the same success probability
Idea: Mix Together!

- Stream cipher + Gaussian noise
- Security against algebraic attacks
 - Gröbner basis attack
 - Gröbner\((n, m, d) \rightarrow Gröbner(n, m, d') \cdot \text{Guess}(e \leftarrow \chi)\)
 - Guessing error takes more time \(\rightarrow\) lower degree
 - Arora-Ge attack
 - \(\sum_{e=-\tau q}^{\tau q} (b_i - (a_i, s) - e) = 0 \rightarrow \sum_{e=-\tau q}^{\tau q} (b_i - F(a_i, s) - e) = 0\)
 - Equations gets larger degree with the same success probability

- LWE decryption needs round-off function
 - Originally, round-off function denoise the LWE noise
 - For approximate computation, LWE noise can be regarded as error
 - No need to round off
Noisy Cipher Rubato*

- Stream cipher + Gaussian noise
- SPN with randomized key schedule
- HERA-like linear layer + Pasta-like S-box layer
- Fixed constant input

* Tempo rubato: (musical term) expressive and rhythmic freedom
Noisy Cipher Rubato*

- Stream cipher + Gaussian noise
- SPN with randomized key schedule
- HERA-like linear layer + Pasta-like S-box layer
- Fixed constant input

* Tempo rubato: (musical term) expressive and rhythmic freedom

\[\text{nonce} \rightarrow \text{XOF} \]

\[k \]

\[1 \rightarrow Rnd \rightarrow \cdots \rightarrow Rnd \rightarrow \text{Trunc} \]

\[t \]

\[e \leftarrow D_{\alpha q} \]

* Fig. Rubato
Design Aspects of Rubato

• Various block size (S:16, M:36, L:64)
 • When block size is larger, the required number of rounds decreases
 • Trade-off between throughput and latency

• HERA-like linear layers
 • Invertible MDS circulant matrix
 • Small component size
 • MixRows \circ MixColumns
Design Aspects of Rubato

• Various block size (S:16, M:36, L:64)
 • When block size is larger, the required number of rounds decreases
 • Trade-off between throughput and latency

• HERA-like linear layers
 • Invertible MDS circulant matrix
 • Small component size
 • MixRows \circ MixColumns

\[\begin{array}{cccc}
 x_{1,1} & x_{1,2} & \cdots & x_{1,v} \\
 x_{2,1} & x_{2,2} & \cdots & x_{2,v} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{v,1} & x_{v,2} & \cdots & x_{v,v} \\
\end{array} \quad \begin{array}{cccc}
 y_{1,1} & y_{1,2} & \cdots & y_{1,v} \\
 y_{2,1} & y_{2,2} & \cdots & y_{2,v} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{v,1} & y_{v,2} & \cdots & y_{v,v} \\
\end{array} \]

\[\text{Fig 1. Change of states} \]
Design Aspects of Rubato

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows \circ MixColumns

\[
\begin{bmatrix}
 x_{1,1} & x_{1,2} & \cdots & x_{1,v} \\
 x_{2,1} & x_{2,2} & \cdots & x_{2,v} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{v,1} & x_{v,2} & \cdots & x_{v,v}
\end{bmatrix} \quad \begin{bmatrix}
 y_{1,1} & y_{1,2} & \cdots & y_{1,v} \\
 y_{2,1} & y_{2,2} & \cdots & y_{2,v} \\
 \vdots & \vdots & \ddots & \vdots \\
 y_{v,1} & y_{v,2} & \cdots & y_{v,v}
\end{bmatrix}
\]

Fig 1. Change of states

\[
\begin{bmatrix}
 y_{1,c} \\
 y_{2,c} \\
 \vdots \\
 y_{v,c}
\end{bmatrix} = M_v \cdot \begin{bmatrix}
 x_{1,c} \\
 x_{2,c} \\
 \vdots \\
 x_{v,c}
\end{bmatrix} \quad \begin{bmatrix}
 y_{c,1} \\
 y_{c,2} \\
 \vdots \\
 y_{c,v}
\end{bmatrix} = M_v \cdot \begin{bmatrix}
 x_{c,1} \\
 x_{c,2} \\
 \vdots \\
 x_{c,v}
\end{bmatrix}
\]

Fig 2a. MixColumns **Fig 2b.** MixRows
Design Aspects of Rubato

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows ◦ MixColumns

\[
\begin{align*}
\mathbf{u}_4 &= [2, 3, 1, 1] \\
\mathbf{u}_6 &= [4, 2, 4, 3, 1, 1] \\
\mathbf{u}_8 &= [5, 3, 4, 3, 6, 2, 1, 1] \\
\mathbf{M}_v &= \begin{bmatrix} \text{ROT}^1(\mathbf{u}_v) \\ \vdots \\ \text{ROT}^{v-1}(\mathbf{u}_v) \end{bmatrix}
\end{align*}
\]

Fig 1. Change of states

\[
\begin{bmatrix}
x_{1,1} & x_{1,2} & \cdots & x_{1,v} \\
x_{2,1} & x_{2,2} & \cdots & x_{2,v} \\
\vdots & \vdots & \ddots & \vdots \\
x_{v,1} & x_{v,2} & \cdots & x_{v,v}
\end{bmatrix}
\begin{bmatrix}
y_{1,1} & y_{1,2} & \cdots & y_{1,v} \\
y_{2,1} & y_{2,2} & \cdots & y_{2,v} \\
\vdots & \vdots & \ddots & \vdots \\
y_{v,1} & y_{v,2} & \cdots & y_{v,v}
\end{bmatrix} = \mathbf{M}_v \cdot
\begin{bmatrix}
x_{1,c} \\
x_{2,c} \\
\vdots \\
x_{v,c}
\end{bmatrix}
\]

Fig 2a. MixColumns

\[
\begin{bmatrix}
Y_{1,c} \\
Y_{2,c} \\
\vdots \\
Y_{v,c}
\end{bmatrix} = \mathbf{M}_v \cdot
\begin{bmatrix}
X_{1,c} \\
X_{2,c} \\
\vdots \\
X_{v,c}
\end{bmatrix}
\]

Fig 2b. MixRows

Fig 3. MDS matrices
Design Aspects of Rubato

- Feistel network in a row
 - \(\text{Feistel}(x) = (x_1, x_2 + x_1^2, \ldots, x_n + x_{n-1}^2) \)
 - Quadratic function

- Truncation
 - \(\text{Trunc}_{n, \ell}(x) = (x_1, \ldots, x_{\ell}) \)
 - It prevents algebraic meet-in-the-middle attack

- Adding Gaussian noise
 - \(\text{AGN}(x) = (x_1 + e_1, \ldots, x_n + e_n) \)
 - \(e_i \)'s are sampled from a discrete Gaussian distribution
• Feistel network in a row
 • Feistel(x) = (x₁, x₂ + x₁², ..., xₙ + xₙ⁻¹²)
 • Quadratic function

• Truncation
 • Truncₙ,ℓ(x) = (x₁, ..., xₖ)
 • It prevents algebraic meet-in-the-middle attack

• Adding Gaussian noise
 • AGN(x) = (x₁ + e₁, ..., xₙ + eₙ)
 • eᵢ’s are sampled from a discrete Gaussian distribution

Fig. Round function of Rubato
MULT-related Value Comparison

<table>
<thead>
<tr>
<th>Cipher</th>
<th>LowMC</th>
<th>FLIP</th>
<th>Rasta</th>
<th>Masta</th>
<th>HERA</th>
<th>Pasta</th>
<th>LWE</th>
<th>Rubato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>$t \approx 2^{25}$</td>
</tr>
<tr>
<td>#(Key words)</td>
<td>256</td>
<td>1394</td>
<td>351</td>
<td>16</td>
<td>16</td>
<td>64</td>
<td>1024</td>
<td>64</td>
</tr>
<tr>
<td>Mult. Depth</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>#Mult / word</td>
<td>10.34</td>
<td>1072</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>9.81</td>
<td>0</td>
<td>2.1</td>
</tr>
<tr>
<td>Random bits / word</td>
<td>0</td>
<td>13287</td>
<td>2464</td>
<td>400</td>
<td>150</td>
<td>250</td>
<td>25600</td>
<td>80</td>
</tr>
</tbody>
</table>
Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack

\[(a, F(a, s) + e) \quad \text{guess} \quad \rightarrow \quad (a, F(a, s))\]
Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack

- LWE cryptanalysis with linearization
 - Lattice attacks (e.g., SIS, BDD, uSVP strategy)
 - BKW attack

\[
\begin{align*}
(a, F(a, s) + e) & \quad \text{guess} \quad \rightarrow \quad (a, F(a, s)) \\
(s_i s_j = s_{ij}') & \quad \rightarrow \quad (a', \langle a', s' \rangle + e) \\
(a, F(a, s) + e) & \quad \rightarrow \quad (a', \langle a', s' \rangle + e)
\end{align*}
\]
Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack

- LWE cryptanalysis with linearization
 - Lattice attacks (e.g., SIS, BDD, uSVP strategy)
 - BKW attack

- Arora-Ge attack

\[
\prod_{e=-t\alpha q}^{t\alpha q} (b_i - \langle a_i, s \rangle - e) = 0 \Rightarrow \prod_{e=-t\alpha q}^{t\alpha q} (b_i - F(a_i, s) - e) = 0
\]
Selected Parameters of Rubato

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sec.</th>
<th>Block size</th>
<th>Trunc. size</th>
<th>log t</th>
<th>$\sigma/\sqrt{2\pi}$ *</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par-80S</td>
<td>80</td>
<td>16</td>
<td>12</td>
<td>26</td>
<td>11.1</td>
<td>2</td>
</tr>
<tr>
<td>Par-80M</td>
<td>36</td>
<td>32</td>
<td>25</td>
<td>4.1</td>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>Par-80L</td>
<td>64</td>
<td>60</td>
<td>25</td>
<td>4.1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Par-128S</td>
<td>128</td>
<td>16</td>
<td>12</td>
<td>26</td>
<td>10.5</td>
<td>5</td>
</tr>
<tr>
<td>Par-128M</td>
<td>36</td>
<td>32</td>
<td>25</td>
<td>4.1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Par-128L</td>
<td>64</td>
<td>60</td>
<td>25</td>
<td>4.1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* σ is the standard deviation of the discrete Gaussian distribution
Complexity of the Attacks on Rubato

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GCD</th>
<th>Gröbner</th>
<th>LC</th>
<th>Lattice</th>
<th>Arora-Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par-80S</td>
<td>393.6</td>
<td>80.04</td>
<td>155.9</td>
<td>760.5</td>
<td>80.04</td>
</tr>
<tr>
<td>Par-80M</td>
<td>878.6</td>
<td>84.55</td>
<td>249.9</td>
<td>↑</td>
<td>80.37</td>
</tr>
<tr>
<td>Par-80L</td>
<td>↑</td>
<td>82.73</td>
<td>349.8</td>
<td>↑</td>
<td>82.73</td>
</tr>
<tr>
<td>Par-128S</td>
<td>411.9</td>
<td>128.1</td>
<td>311.7</td>
<td>↑</td>
<td>128.1</td>
</tr>
<tr>
<td>Par-128M</td>
<td>880.7</td>
<td>128.1</td>
<td>249.9</td>
<td>↑</td>
<td>128.1</td>
</tr>
<tr>
<td>Par-128L</td>
<td>↑</td>
<td>169.6</td>
<td>349.8</td>
<td>↑</td>
<td>129.6</td>
</tr>
</tbody>
</table>

Table. The log of the complexity of the attacks on Rubato ($\omega = 2$)
Performance

- Performance is evaluated with AVX2 instruction/RtF framework
- XOF: SHAKE256
- \((N, \#\text{slots, remaining level}) = (2^{16}, 2^{16}, 7)\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Ct size (B)</th>
<th>Ct. Exp. Ratio</th>
<th>Client</th>
<th>Server</th>
<th>Prec. (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lat. (cycle)</td>
<td>Thrp. (C/B)</td>
<td>Lat. (s)</td>
</tr>
<tr>
<td>Par-80S</td>
<td>37.5</td>
<td>1.31</td>
<td>5906</td>
<td>199.1</td>
<td>41.23</td>
</tr>
<tr>
<td>Par-80M</td>
<td>100</td>
<td>1.25</td>
<td>11465</td>
<td>143.5</td>
<td>57.15</td>
</tr>
<tr>
<td>Par-80L</td>
<td>187.5</td>
<td>1.25</td>
<td>16679</td>
<td>110.9</td>
<td>115.44</td>
</tr>
<tr>
<td>Par-128S</td>
<td>37.5</td>
<td>1.31</td>
<td>10446</td>
<td>351.8</td>
<td>71.06</td>
</tr>
<tr>
<td>Par-128M</td>
<td>100</td>
<td>1.26</td>
<td>14292</td>
<td>179.7</td>
<td>88.35</td>
</tr>
<tr>
<td>Par-128L</td>
<td>187.5</td>
<td>1.26</td>
<td>16920</td>
<td>113.5</td>
<td>106.43</td>
</tr>
</tbody>
</table>
Performance Comparison

<table>
<thead>
<tr>
<th>Scheme</th>
<th>log N</th>
<th>Log of #slots</th>
<th>Ct size (KB)</th>
<th>Ct. Exp. Ratio</th>
<th>Client Lat. (μs)</th>
<th>Client Thrp. (MB/s)</th>
<th>Server Lat. (s)</th>
<th>Server Thrp. (KB/s)</th>
<th>Prec. (bits)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RtF-HERA</td>
<td>16</td>
<td>16</td>
<td>0.055</td>
<td>1.24</td>
<td>1.520</td>
<td>25.26</td>
<td>141.58</td>
<td>5.077</td>
<td>19.1</td>
<td>7</td>
</tr>
<tr>
<td>RtF-Rubato</td>
<td>16</td>
<td>16</td>
<td>0.183</td>
<td>1.26</td>
<td>4.585</td>
<td>31.04</td>
<td>106.4</td>
<td>6.712</td>
<td>18.9</td>
<td>7</td>
</tr>
<tr>
<td>LWE *</td>
<td>16</td>
<td>9</td>
<td>0.007</td>
<td>4.84</td>
<td>21.91</td>
<td>0.051</td>
<td>65.88</td>
<td>0.010</td>
<td>9.3</td>
<td>7</td>
</tr>
<tr>
<td>CKKS only</td>
<td>14</td>
<td>14</td>
<td>468</td>
<td>23.25</td>
<td>9596</td>
<td>2.035</td>
<td>none</td>
<td>none</td>
<td>19.1</td>
<td>7</td>
</tr>
</tbody>
</table>

Conclusion

• Summary
 • We present a family of noisy ciphers for approximate homomorphic encryption
 • It is a combination of stream cipher and Gaussian noise
 • We give modular cryptanalysis for noisy ciphers
 • We show that the noisy ciphers are efficient in approximate homomorphic encryption

• Further question
 • Is there any other application of noisy ciphers?
 • Is there any cryptanalysis which exploits both stream cipher structure and noise?
 • Linearized lattice problem?
Thank you!

Check out the full version at ia.cr/2022/537