Rubato: Noisy Ciphers for Approximate Homomorphic Encryption

Jincheol Ha¹, **Seongkwang Kim**², Byeonghak Lee¹, Jooyoung Lee¹, and Mincheol Son¹

> ¹KAIST, Daejeon, Korea ²Samsung SDS, Seoul, Korea

Eurocrypt 2022

Homomorphic Encryption

- Homomorphic encryption (HE) is an encryption scheme that enables addition and multiplication over encrypted data without decryption key*
 - $a * b = Dec(Enc(a) * Enc(b))(+\epsilon)$
 - E.g., FV (\mathbb{Z}_t , +, ×), CKKS(\mathbb{C} , +, ×)
- HE can protect data even when it is being used
 - E.g., ML inference, statistics of sensitive data on a cloud server

* We do not take into account partially homomorphic encryption (PHE) in this talk.

Demerit of HE

- Slow encryption speed
 - Slower than usual public key encryption
 - Inadequate to bulk encryption
- Large ciphertext expansion
 - 10x 1,000,000x according to the choice of parameters
 - Disadvantage for encryption of small messages
 - Large memory & network bandwidth overhead

Transciphering Framework

* K. Lauter et al., "Can Homomorphic Encryption Be Practical?", ACM CCSW 2011

Transciphering Framework

* K. Lauter et al., "Can Homomorphic Encryption Be Practical?", ACM CCSW 2011

RtF Transciphering Framework

• In Asiacrypt 2021, RtF framework was proposed for approximate numbers*

* J. Cho et al., "Transciphering Framework for Approximate Homomorphic Encryption", Asiacrypt 2021

RtF Transciphering Framework

- In Asiacrypt 2021, RtF framework was proposed for approximate numbers*
- Client-side symmetric encryption over \mathbb{Z}_t
 - Message in \mathbb{R}
 - Ciphertext in \mathbb{Z}_t^*
- FV → CKKS Conversion by CKKS bootstrapping
 - FV-evaluation of the cipher
 - CKKS bootstrapping w/o last SlotToCoeff
 - Result: CKKS-ciphertext

* J. Cho et al., "Transciphering Framework for Approximate Homomorphic Encryption", Asiacrypt 2021

HE-friendly Ciphers

- HE-friendly cipher is a cipher which is efficiently evaluated using HE
- New design strategy is required
 - So far, AND gates and XOR gates are roughly the same in most hardware
 - However, cost of XOR gate (addition) is way cheaper than AND gate (multiplication) in HE setting
 - Low multiplicative depth/complexity required

HE-friendly Ciphers

- HE-friendly cipher is a cipher which is efficiently evaluated using HE
- New design strategy is required
 - So far, AND gates and XOR gates are roughly the same in most hardware
 - However, cost of XOR gate (addition) is way cheaper than AND gate (multiplication) in HE setting
 - Low multiplicative depth/complexity required
- Domain-critical cipher
 - Computation on that domain after transciphering
 - Binary: LowMC, Kreyvium, FLIP, Rasta, Dasta
 - Modulo: Masta, Pasta, HERA
 - Approximate: HERA, Rubato

Main Question

Is there any way to reduce the multiplicative depth drastically?

Observation

- Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 - (FLIP) 1394 bit key size \rightarrow Mult. depth = 4
 - (Rasta) 351 bit key size \rightarrow Mult. depth = 6

Observation

- Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 - (FLIP) 1394 bit key size \rightarrow Mult. depth = 4
 - (Rasta) 351 bit key size \rightarrow Mult. depth = 6
- LWE encryption does not require non-scalar multiplication (and is secure!)
 - But it requires large key size and lots of random bits
 - Client-side encryption speed is too slow

Observation

- Deterministic cipher requires a certain amount of multiplicative depth with reasonable key size
 - (FLIP) 1394 bit key size \rightarrow Mult. depth = 4
 - (Rasta) 351 bit key size \rightarrow Mult. depth = 6
- LWE encryption does not require non-scalar multiplication (and is secure!)
 - But it requires large key size and lots of random bits
 - Client-side encryption speed is too slow

Cipher	LowMC	FLIP	Rasta	Masta	HERA	Pasta	LWE
Modulus	2	2	2	$t \approx 2^{25}$	$t \approx 2^{25}$	$t\approx 2^{25}$	$t \approx 2^{25}$
#(Key words)	256	1394	351	16	16	64	1024
Mult. Depth	14	4	6	7	10	5	0
#Mult / word	10.34	1072	6	7	10	9.81	0
Random bits / word	0	13287	2464	400	150	250	25600

Idea: Mix Together!

• Stream cipher + Gaussian noise

Idea: Mix Together!

- Stream cipher + Gaussian noise
- Security against algebraic attacks
 - Gröbner basis attack
 - Gröbner $(n, m, d) \rightarrow$ Gröbner $(n, m, d') \cdot$ Guess $(e \leftarrow \chi)$
 - Guessing error takes more time \rightarrow lower degree
 - Arora-Ge attack
 - $\prod_{e=-t\alpha q}^{t\alpha q} (b_i \langle \boldsymbol{a}_i, \boldsymbol{s} \rangle e) = 0 \rightarrow \prod_{e=-t\alpha q}^{t\alpha q} (b_i F(\boldsymbol{a}_i, \boldsymbol{s}) e) = 0$
 - Equations gets larger degree with the same success probability

Idea: Mix Together!

- Stream cipher + Gaussian noise
- Security against algebraic attacks
 - Gröbner basis attack
 - Gröbner $(n, m, d) \rightarrow$ Gröbner $(n, m, d') \cdot$ Guess $(e \leftarrow \chi)$
 - Guessing error takes more time \rightarrow lower degree
 - Arora-Ge attack
 - $\prod_{e=-t\alpha q}^{t\alpha q}(b_i \langle \boldsymbol{a}_i, \boldsymbol{s} \rangle e) = 0 \rightarrow \prod_{e=-t\alpha q}^{t\alpha q}(b_i F(\boldsymbol{a}_i, \boldsymbol{s}) e) = 0$
 - Equations gets larger degree with the same success probability
- LWE decryption needs round-off function
 - Originally, round-off function denoise the LWE noise
 - For approximate computation, LWE noise can be regarded as error
 - No need to round off

Noisy Cipher Rubato*

- Stream cipher + Gaussian noise
- SPN with randomized key schedule
- HERA-like linear layer + Pasta-like S-box layer
- Fixed constant input

* Tempo rubato: (musical term) expressive and rhythmic freedom

Noisy Cipher Rubato*

- Stream cipher + Gaussian noise
- SPN with randomized key schedule
- HERA-like linear layer + Pasta-like S-box layer
- Fixed constant input

* Tempo rubato: (musical term) expressive and rhythmic freedom

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows MixColumns

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows MixColumns

Fig 1. Change of states

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows MixColumns

Fig 1. Change of states

- Various block size (S:16, M:36, L:64)
 - When block size is larger, the required number of rounds decreases
 - Trade-off between throughput and latency
- HERA-like linear layers
 - Invertible MDS circulant matrix
 - Small component size
 - MixRows MixColumns •

Fig 1. Change of states

 $\mathbf{u}_4 = [2,3,1,1]$ $\mathbf{u}_6 = [4, 2, 4, 3, 1, 1]$ $\mathbf{u}_8 = [5,3,4,3,6,2,1,1]$ \mathbf{u}_n $\operatorname{ROT}^{1}(\mathbf{u}_{v})$ $\mathbf{M}_{v} =$ $ROT^{\nu-1}(\mathbf{u}_{\nu})$

Fig 3. MDS matrices

Fig 2a. MixColumns

Fig 2b. MixRows

- Feistel network in a row
 - Feistel(**x**) = $(x_1, x_2 + x_1^2, \dots, x_n + x_{n-1}^2)$
 - Quadratic function
- Truncation
 - $\operatorname{Trunc}_{\mathbf{n},\ell}(\mathbf{x}) = (x_1, \dots, x_\ell)$
 - It prevents algebraic meet-in-the-middle attack
- Adding Gaussian noise
 - $AGN(\mathbf{x}) = (x_1 + e_1, ..., x_n + e_n)$
 - e_i 's are sampled from a discrete Gaussian distribution

- Feistel network in a row
 - Feistel(**x**) = $(x_1, x_2 + x_1^2, \dots, x_n + x_{n-1}^2)$
 - Quadratic function
- Truncation
 - Trunc_{n, ℓ}(**x**) = (x_1, \dots, x_ℓ)
 - It prevents algebraic meet-in-the-middle attack
- Adding Gaussian noise
 - $AGN(\mathbf{x}) = (x_1 + e_1, ..., x_n + e_n)$
 - e_i 's are sampled from a discrete Gaussian distribution

Fig. Round function of Rubato

MULT-related Value Comparison

Cipher	LowMC	FLIP	Rasta	Masta	HERA	Pasta	LWE	Rubato
Modulus	2	2	2	$t\approx 2^{25}$	$t\approx 2^{25}$	$t \approx 2^{25}$	$t \approx 2^{25}$	$t \approx 2^{25}$
#(Key words)	256	1394	351	16	16	64	1024	64
Mult. Depth	14	4	6	7	10	5	0	2
#Mult / word	10.34	1072	6	7	10	9.81	0	2.1
Random bits / word	0	13287	2464	400	150	250	25600	80

Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack

$$(a, F(a, s) + e)$$

guess
$$(a, F(a, s))$$

Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack
- LWE cryptanalysis with linearization
 - Lattice attacks (e.g., SIS, BDD, uSVP strategy)
 - BKW attack

 $s_i s_j = s_{ij}'$ $(a, F(a, s) + e) \qquad (a', \langle a', s' \rangle + e)$

 $\bullet (a, F(a, s))$

(a, F(a, s) + e)guess

Security Analysis of Rubato

- Symmetric cryptanalysis with guess
 - LC / DC
 - Trivial linearization / Interpolation attack
 - GCD / Gröbner basis attack
- LWE cryptanalysis with linearization
 - Lattice attacks (e.g., SIS, BDD, uSVP strategy)
 - BKW attack
- Arora-Ge attack

$$(a, F(a, s) + e)$$

guess
$$(a, F(a, s))$$

$$s_i s_j = s_{ij}'$$

$$(a, F(a, s) + e) \qquad (a', \langle a', s' \rangle + e)$$

$$\prod_{e=-t\alpha q}^{t\alpha q} (b_i - \langle \boldsymbol{a}_i, \boldsymbol{s} \rangle - e) = 0 \rightarrow \prod_{e=-t\alpha q}^{t\alpha q} (b_i - F(\boldsymbol{a}_i, \boldsymbol{s}) - e) = 0$$

Selected Parameters of Rubato

Parameter	Sec.	Block size	Trunc. size	log t	$\sigma/\sqrt{2\pi}$ *	Round
Par-80S	80	16	12	26	11.1	2
Par-80M		36	32	25	2.7	2
Par-80L		64	60	25	1.6	2
Par-128S	128	16	12	26	10.5	5
Par-128M		36	32	25	4.1	3
Par-128L		64	60	25	4.1	2

* σ is the standard deviation of the discrete Gaussian distribution

Complexity of the Attacks on Rubato

Parameter	GCD	Gröbner	LC	Lattice	Arora-Ge
Par-80S	393.6	80.04	155.9	760.5	80.04
Par-80M	878.6	84.55	249.9	1	80.37
Par-80L	1	82.73	349.8	1	82.73
Par-128S	411.9	128.1	311.7	1	128.1
Par-128M	880.7	128.1	249.9	1	128.1
Par-128L	1	169.6	349.8	1	129.6

Table. The log of the complexity of the attacks on Rubato ($\omega = 2$)

Performance

- Performance is evaluated with AVX2 instruction/RtF framework
- XOF: SHAKE256
- (*N*, #slots, remaining level) = $(2^{16}, 2^{16}, 7)$

Scheme	Ct size	Ct. Exp.	Client		Server	Prec.	
	(B)	Ratio	Lat. (cycle)	Thrp. (C/B)	Lat. (s)	Thrp. (KB/s)	(bits)
Par-80S	37.5	1.31	5906	199.1	41.23	6.676	18.8
Par-80M	100	1.25	11465	143.5	57.15	7.032	19.0
Par-80L	187.5	1.25	16679	110.9	115.44	6.520	19.1
Par-128S	37.5	1.31	10446	351.8	71.06	6.083	18.8
Par-128M	100	1.26	14292	179.7	88.35	6.666	18.9
Par-128L	187.5	1.26	16920	113.5	106.43	6.712	18.9

Performance Comparison

Scheme	log N	Log of	Ct size	Ct. Exp.	Client	Client Server			Prec.	Level
		#slots	(KB)	Ratio	Lat. (μs)	Thrp. (MB/s)	Lat. (s)	Thrp. (KB/s)	(bits)	
RtF-HERA	16	16	0.055	1.24	1.520	25.26	141.58	5.077	19.1	7
RtF-Rubato	16	16	0.183	1.26	4.585	31.04	106.4	6.712	18.9	7
LWE *	16	9	0.007	4.84	21.91	0.051	65.88	0.010	9.3	7
CKKS only	14	14	468	23.25	9596	2.035	nc	one	19.1	7

* W. Lu et al., "Pegasus: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic Encryption", IEEE S&P 2021

Conclusion

- Summary
 - We present a family of noisy ciphers for approximate homomorphic encryption
 - It is a combination of stream cipher and Gaussian noise
 - We give modular cryptanalysis for noisy ciphers
 - We show that the noisy ciphers are efficient in approximate homomorphic encryption
- Further question
 - Is there any other application of noisy ciphers?
 - Is there any cryptanalysis which exploits both stream cipher structure and noise?
 - Linearized lattice problem?

Thank you!

Check out the full version at ia.cr/2022/537