
Universally Composable
Subversion-Resilient Cryptography

Suvradip Chakraborty
ETH Zurich

Bernardo Magri
The University of Manchester

Jesper Buus Nielsen
Aarhus University

Daniele Venturi
Sapienza University of Rome

EuroCrypt'22

Background on subversion

• Adversary tamper with implementation/spec of crypto

• Started in 80’s and 90’s – Subliminal channels [Sim84],
kleptography [YY97]

• Picked up steam after Snowden’s revelations in 2013

EuroCrypt'22

Current state of affairs

• Standalone security – no guarantees in larger context

• Every protocol needs to re-prove security from scratch

• Many different models: Reverse Firewall, watchdog,
self-guarding, etc…

EuroCrypt'22

Our Contributions

• Extension of UC framework to deal with subversions

• Sanitize UC commitments and UC coin toss

• Sanitize GMW compiler to achieve malicious MPC

EuroCrypt'22

(very) Quick UC Recap

• Define an “ideal functionality” ℱ for a task

• Design a protocol Π that “implements” ℱ

EuroCrypt'22

(very) Quick UC Recap

𝒜

ℰ

𝑃! 𝑃" 𝑃#… 𝒮

ℰ

𝑃! 𝑃" 𝑃#…

ℱ

Real world Ideal world

Π UC-implement ℱ if:

∃𝒮 ∀ℰ: 𝐸𝑋𝐸𝐶!,𝒜,ℰ ≈ 𝐸𝑋𝐸𝐶ℱ,𝒮,ℰ

≈

Our Model

• Every UC party 𝑃! is split into 2 parties 𝑪𝒊 and 𝑭𝒊 :

– The core 𝐶! is responsible for computing protocol’s
messages

– The firewall 𝐹! is responsible for sanitizing 𝐶!’s
communication

EuroCrypt'22

Our Model

• Core and firewall can be independently corrupted

• We allow for “specious” corruptions of the core

– Specious core is indistinguishable from an honest core, but
may leak information via subliminal channel or trigger

𝐶 #𝐶≈

Sanitizable Ideal Functionality

• Dedicated sanitation interface for firewalls (S)

EuroCrypt'22

Our Model

• Implementing a sanitizable ideal functionality

Functionality ℱ Sanitizable protocol Π implementing ℱ in 𝒢-hybrid model

≈

Sanitizing a regular UC functionality

EuroCrypt'22

Functionality ℱ Protocol Π implementing ℱ in 𝒢-hybrid model

≈

Sanitizing a regular UC functionality

EuroCrypt'22

Wrap(ℱ) Protocol Π implementing ℱ in 𝒢-hybrid model

≈

Sanitizing a regular UC functionality

EuroCrypt'22

• Transparency

• Honest core alone is indistinguishable
from honest core + firewall

Our Model

• Many more cases to analyze!

Core C Firewall F
Honest Honest
Honest Semi-honest
Honest Malicious
Specious Semi-honest
Specious Honest
Specious Malicious
Malicious Honest
Malicious Semi-honest
Malicious Malicious

Our Model

• Many more cases to analyze!

Core C Firewall F Behaviour in ℱ
Honest Honest Honest
Honest Semi-honest Honest
Honest Malicious Isolated
Specious Semi-honest Malicious
Specious Honest Specious
Specious Malicious Malicious
Malicious Honest Malicious
Malicious Semi-honest Malicious
Malicious Malicious Malicious

Our Model

• Many more cases to analyze!

Core C Firewall F Behaviour in ℱ
Honest Honest Honest
Honest Semi-honest Honest
Honest Malicious Isolated
Specious Semi-honest Malicious
Specious Honest Specious
Specious Malicious Malicious
Malicious Honest Malicious
Malicious Semi-honest Malicious
Malicious Malicious Malicious

Our Model

• Many more cases to analyze!

Core C Firewall F Behaviour in ℱ

Honest Semi-honest Honest
Honest Malicious Isolated

Specious Honest Specious

Malicious Malicious Malicious

Our Model

• Many more cases to analyze!

Core C Firewall F Behaviour in ℱ

Honest Semi-honest Honest
Honest Malicious Isolated

Specious Honest Honest

Malicious Malicious Malicious

Strong
sanitation
Indistinguishability

argument!

Our Model

• Many more cases to analyze!

Core C Firewall F Behaviour in ℱ

Honest Semi-honest Honest
Honest Malicious Isolated Malicious

Malicious Malicious Malicious

Our Model

• Much better!

Core C Firewall F Behaviour in ℱ

Honest Semi-honest Honest

Malicious Malicious Malicious

Sanitizable commitment functionality

• Gives the firewall the option to blind the input: �̂�! = 𝑠! ⊕ 𝑟!

• Upon opening, the receiver gets �̂�!

%ℱ!"#$

IOIO

SS

Sanitizable commitment protocol

• Inspired on the UC commitment of [Canetti, Sarkar and Wang’20]

• Based on the hardness of DDH
• Allows the firewall to sanitize the input and randomness
• Details on our paper!

%ℱ%&'

IOIO

SS

C

F

C

F

Thm: Protocol)Π srUC-realizes the *ℱ$%&'
functionality in the *ℱ()*-hybrid model in the
presence of up to n − 1 malicious static corruptions.

Sanitizing Coin toss (in the !ℱ./01 -hybr id model)

• Each core commits to a random 𝑠! with (ℱ&'()
• Each firewall samples a random 𝑟! and sends it to (ℱ&'()
• Each core output 𝑠 = 𝑠2⊕ 𝑟2⊕ (⨁342)𝑠3)

EuroCrypt'22

ℱ'#%%
Thm: Protocol)Π wsrUC-realizes the ℱ*&((functionality in the
*ℱ$%&'-hybrid model in the presence of up to n − 1 malicious
corruptions.

Protocol "Π!"##

EuroCrypt'22

*ℱ+,-
!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

!ℱ!"#$

ℱ%#&&

ℱ%#&&

ℱ%#&&ℱ%#&&

ℱ%#&&

ℱ%#&&

!ℱ&'%

!ℱ&'%

!ℱ&'%

!ℱ&'%

!Π5066

GMW Compiler

• Turn semi-honest MPC into malicious MPC [GMW87]

– Each 𝑃2 runs (augmented) coin toss with other parties to get its random
tape

– Each 𝑃2 commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape

EuroCrypt'22

GMW Compiler

• Turn semi-honest MPC into malicious MPC [GMW87]

– Each 𝑃2 runs (augmented) coin toss with other parties to get its random
tape

– Each 𝑃2 commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape

• Can’t prove things about UC commitments!

EuroCrypt'22

Sanitizable
Commit-and-Prove functionality

• As in [CLOS02] we need a commit-and-prove functionality

• Allows parties to commit to value and prove statements
about the committed values

• The firewall has the option to blind the committed values and
to verify the proven statements

EuroCrypt'22

Sanitizable
Commit-and-Prove functionality

• We srUC-realize (ℱ'&+ combining the sanitizable commitment
construction + re-randomizable NIZKs

EuroCrypt'22

Putting it all together:
Completeness Theorem

• *Π,)- is described in ((ℱ'&+ , ℱ./00)-hybrid model

EuroCrypt'22

Putting it all together:
Completeness Theorem

• Random tape generation:
– Core C1 commits to s1 with (ℱ2&3
– Firewall F1 samples random r1 and sends it to (ℱ2&3
– All cores interact with ℱ./00 to generate s1∗ for core C1
– Core C1 set its random tape to be 3r1 = s1∗ ⊕ (s1 ⊕ r1)

EuroCrypt'22

Putting it all together:
Completeness Theorem

• Input commitment:
– The core sends input 𝑥! to (ℱ'&+ that stores it in a list �̅�!
– The firewall choose to not blind 𝑥! (the input does not

change)

Putting it all together:
Completeness Theorem

• Protocol execution
– The core C! runs the code of Π on its list &x!, transcript τ, and

random tape)r!
– For each message µ sent by P! in Π, core C! proves (by asking
-ℱ"&$) that µ is the correct next message w.r.t list &x!, transcript τ,
and random tape)r!

– The firewall now checks that the statement is good, i.e., that s!∗
is the output of ℱ&'((and τ is the correct transcript up to now

– Upon receiving OK from -ℱ"&$, core and firewall just append µ
to transcript and start over

Conclusions and future work

• New model for handling subversions under
composition

• Design firewalls for other functionalities
(e.g. OT, ZK, etc)

• MPC with adaptive corruptions?

EuroCrypt'22

