MANCHESTER
1824

The University of Manchester

Universally Composable
Subversion-Resilient Cryptography

Suvradip Chakraborty Bernardo Magri Jesper Buus Nielsen Daniele Venturi
ETH Zurich The University of Manchester Aarhus University Sapienza University of Rome

EuroCrypt'22

» Adversary tamper with implementation/spec of crypto

 Started in 80’s and 90’s — Subliminal channels [Sim84],
kleptography [YY97]

* Picked up steam after Snowden'’s revelations in 2013

EuroCrypt'22 .

Current state of affairs

 Standalone security — no guarantees in larger context

» Every protocol needs to re-prove security from scratch

» Many different models: Reverse Firewall, watchdog,
self-guarding, etc...

EuroCrypt'22 .

e Extension of UC framework to deal with subversions
e Sanitize UC commitments and UC coin toss

» Sanitize GMW compiler to achieve malicious MPC

EuroCrypt'22

(very) Quick UC Recap

* Define an "ideal functionality” F for a task

* Design a protocol Il that “implements” F

EuroCrypt'22

(very) Quick UC Recap

[T UC-implement F if:

IS VE:EXECh 4¢ ~ EXECr s ¢

4)
ENS— /ENST
A Py =P |+ 1B, ~~ S Pi| |P] ... |P,
~ 7 7 J
iz
Real world |deal world

_ J

Our Model

Every UC party P; is split into 2 parties C; and F; :

— The core C; is responsible for computing protocol’s
messages

— The firewall F; is responsible for sanitizing C;'s
communication

EuroCrypt'22

» Core and firewall can be independently corrupted

* We allow for “specious” corruptions of the core

— Specious core is indistinguishable from an honest core, but
may leak information via subliminal channel or trigger

Sanitizable Ideal Functionality

* Dedicated sanitation interface for firewalls (S)

EuroCrypt'22

[

105

Functionality F

2

* Implementing a sanitizable ideal functionality

Ci
0]

F
ST

10Y

10§

Cy
(04

F]—"
Sy

Sanitizable protocol IT implementing F in G-hybrid model

Sanitizing a regular UC functionality

Functionality F

— > v > —=
C1 |01 IQQ C2
- | : | —
~ g
Fl Sl SQ F2
L oooooooooo0o0000000000000 i

Protocol IT implementing F in G-hybrid model

EuroCrypt'22

Sanitizing a regular UC functionality

10, 10, C 10, [oN C,
o g
£1 < [| £2 ~~
' F S S F
51 52 ! —h-___%________--------------.2)_> .
——b
Wrap(F) Protocol IT implementing F in G-hybrid model

EuroCrypt'22

Sanitizing a regular UC functionality

* Transparency

P 7 P * Honest core alone is indistinguishable
from honest core + firewall

EuroCrypt'22

Our Model

* Many more cases to analyze!

_____ CoreC_____ | FirewallF

Homnest Homnest
Honest Semi-honest
Homnest Malicious
Specious Semi-honest
Specious Honest
Specious Malicious
Malicious Homnest
Malicious Semi-honest

Malicious Malicious

Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | _ Behaviourin? __

Homnest Homnest Honest
Honest Semi-honest Honest
Honest Malicious Isolated
Specious Semi-honest Malicious
Specious Homnest Specious
Specious Malicious Malicious
Malicious Homnest Malicious
Malicious Semi-honest Malicious

Malicious Malicious Malicious

Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | Behaviourinf __

Homnest Homnest Honest
Honest Semi-honest Honest
Honest Malicious Isolated
Specious Semi-honest Malicious
Specious Homnest Specious
Specious Malicious Malicious
Malicious Homnest Malicious
Malicious Semi-honest Malicious

Malicious Malicious Malicious

Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | Behaviourinf __

Honest Semi-honest Honest
Honest Malicious Isolated
Specious Homnest Specious

Malicious Malicious Malicious

Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | Behaviourinf __ S

Homnest Semi-honest Homnest @
Honest Malicious Isolated St rong

sanitation
Specious Honest Honest

Indistinguishability
argument!

Malicious Malicious Malicious .

Our Model

* Many more cases to analyze! @
__ CoreC_____ | _ FirewallF | Behaviourin¥

Honest Semi-honest Honest
Honest Malicious Iselated Malicious

Malicious Malicious Malicious

Our Model

e Much better!
| CoreC_ | FirewallF | Behaviourin¥

Honest Semi-honest Honest

Malicious Malicious Malicious

Sanitizable commitment functionality

* Gives the firewall the option to blind the input: §; =s; @ r;

* Upon opening, the receiver gets §;

Sanitizable commitment protocol

Inspired on the UC commitment of [Canetti, Sarkar and Wang'20]
Based on the hardness of DDH

Allows the firewall to sanitize the input and randomness
Details on our paper!

—1 c k& O 0 cl— Thm: Protocol IT srUC-realizes the Fscom

functionality in the Fsar-hybrid model in the
presence of up to n — 1 malicious static corruptions.

\ 4

Sanitizing Coin toss (in the F,;,y-hybrid model)

* Each core commits to a random s; with Fqroun

» Each firewall samples a random 7; and sends it to Fecom

* Each core outputs =5, @71 @ (B4 5))

Fross

Thm: Protocol IT wsrUC-realizes the Fross functionality in the
Fscom-hybrid model in the presence of up to n — 1 malicious
corruptions.

EuroCrypt'22

Protocol I1;,qs

C Fross C:P mcom CT mcom CT TOSS
— 1 — 1 —= P = ﬂ—. 2 ™ 2 :F' —
F £ SA m
|01Toss I 1mCOM IOlsAT |02 Id; dom IOQTOSS
- - g g g -
Fsar
= = =
FT T0SS F mcom F mcom F TOSS
L | F C(%M) ﬁSAT ﬁSAT—. 2 ﬁmC M 2
SH 5 S, S,
- g g
7oss

EuroCrypt'22

e Turn semi-honest MPC into malicious MPC [GMW87]

— Each P; runs (augmented) coin toss with other parties to get its random
tape

— Each P; commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape

EuroCrypt'22

e Turn semi-honest MPC into malicious MPC [GMW87]

— Each P; runs (augmented) coin toss with other parties to get its random
tape

— Each P; commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape

» Can't prove things about UC commitments!

EuroCrypt'22

Sanitizable
Commit-and-Prove functionality

* As in [CLOS02] we need a commit-and-prove functionality

* Allows parties to commit to value and prove statements
about the committed values

* The firewall has the option to blind the committed values and
to verify the proven statements

EuroCrypt'22 .

Sanitizable
Commit-and-Prove functionality

» We srUC-realize F,gp combining the sanitizable commitment
construction + re-randomizable NIZKs

EuroCrypt'22

Putting it all together:
Completeness Theorem

o [is described in (Frep, Fross)-hybrid model

EuroCrypt'22

Putting it all together:
Completeness Theorem

» Random tape generation:
— Core C; commits to s; with Fegp
— Firewall F; samples random r; and sends it to Fcgp
— All cores interact with Fross to generate s for core C;
— Core (; set its random tape to be t; =s; @ (s; @ ry)

EuroCrypt'22

Putting it all together:
Completeness Theorem

* Input commitment:

— The core sends input x; to Fegp that stores it in a list X;

— The firewall choose to not blind x; (the input does not
change)

Protocol execution

— The core Cj runs the code of I on its list X;, transcript t, and
random tape fj

— For each message p sent by P, in II, core C; proves (by asking
Fcgp) that pis the correct next message w. rt list X;, transcript T,
and random tape fj

— The firewall now checks that the statement is good, i.e., that s;
is the output of Frgss and T is the correct transcript up to now

— Upon receiving OK from Fcgp, core and firewall just append p
to transcript and start over

Conclusions and future work

* New model for handling subversions under
composition

* Design tirewalls for other functionalities
(e.g. OT, ZK, etc)

» MPC with adaptive corruptions?

EuroCrypt'22

