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» Adversary tamper with implementation/spec of crypto

 Started in 80’s and 90’s — Subliminal channels [Sim84],
kleptography [YY97]

* Picked up steam after Snowden'’s revelations in 2013
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Current state of affairs

 Standalone security — no guarantees in larger context

» Every protocol needs to re-prove security from scratch

» Many different models: Reverse Firewall, watchdog,
self-guarding, etc...
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e Extension of UC framework to deal with subversions
e Sanitize UC commitments and UC coin toss

» Sanitize GMW compiler to achieve malicious MPC
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(very) Quick UC Recap

* Define an "ideal functionality” F for a task

* Design a protocol Il that “implements” F

EuroCrypt'22




(very) Quick UC Recap
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Our Model

Every UC party P; is split into 2 parties C; and F; :

— The core C; is responsible for computing protocol’s
messages

— The firewall F; is responsible for sanitizing C;'s
communication
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» Core and firewall can be independently corrupted

* We allow for “specious” corruptions of the core

— Specious core is indistinguishable from an honest core, but
may leak information via subliminal channel or trigger




Sanitizable Ideal Functionality

* Dedicated sanitation interface for firewalls (S)
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Sanitizing a regular UC functionality

Functionality F
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Sanitizing a regular UC functionality
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Sanitizing a regular UC functionality

* Transparency

P 7 P * Honest core alone is indistinguishable
from honest core + firewall
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Our Model

* Many more cases to analyze!

_____ CoreC_____ | FirewallF

Homnest Homnest
Honest Semi-honest
Homnest Malicious
Specious Semi-honest
Specious Honest
Specious Malicious
Malicious Homnest
Malicious Semi-honest

Malicious Malicious
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Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | Behaviourinf __

Honest Semi-honest Honest
Honest Malicious Isolated
Specious Homnest Specious

Malicious Malicious Malicious




Our Model

* Many more cases to analyze!

_____CoreC____ | FirewallF | Behaviourinf __ S

Homnest Semi-honest Homnest @
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Our Model

* Many more cases to analyze! @
__ CoreC_____ | _ FirewallF | Behaviourin¥

Honest Semi-honest Honest
Honest Malicious Iselated Malicious

Malicious Malicious Malicious




Our Model

e Much better!
| CoreC_ |  FirewallF |  Behaviourin¥

Honest Semi-honest Honest

Malicious Malicious Malicious




Sanitizable commitment functionality

* Gives the firewall the option to blind the input: §; =s; @ r;

* Upon opening, the receiver gets §;




Sanitizable commitment protocol

Inspired on the UC commitment of [Canetti, Sarkar and Wang'20]
Based on the hardness of DDH

Allows the firewall to sanitize the input and randomness
Details on our paper!
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Sanitizing Coin toss (in the F,;,y-hybrid model)

* Each core commits to a random s; with Fqroun

» Each firewall samples a random 7; and sends it to Fecom

* Each core outputs =5, @71 @ (B4 5))

Fross

Thm: Protocol IT wsrUC-realizes the Fross functionality in the
Fscom-hybrid model in the presence of up to n — 1 malicious
corruptions.
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e Turn semi-honest MPC into malicious MPC [GMW87]

— Each P; runs (augmented) coin toss with other parties to get its random
tape

— Each P; commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape
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e Turn semi-honest MPC into malicious MPC [GMW87]

— Each P; runs (augmented) coin toss with other parties to get its random
tape

— Each P; commit to its input and proves in ZK that next message is
correct w.r.t its input, current transcript, and random tape

» Can't prove things about UC commitments!
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Sanitizable
Commit-and-Prove functionality

* As in [CLOS02] we need a commit-and-prove functionality

* Allows parties to commit to value and prove statements
about the committed values

* The firewall has the option to blind the committed values and
to verify the proven statements
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Sanitizable
Commit-and-Prove functionality

» We srUC-realize F,gp combining the sanitizable commitment
construction + re-randomizable NIZKs
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Putting it all together:
Completeness Theorem

o [ is described in (Frep, Fross)-hybrid model
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Putting it all together:
Completeness Theorem

» Random tape generation:
— Core C; commits to s; with Fegp
— Firewall F; samples random r; and sends it to Fcgp
— All cores interact with Fross to generate s for core C;
— Core (; set its random tape to be t; =s; @ (s; @ ry)
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Putting it all together:
Completeness Theorem

* Input commitment:

— The core sends input x; to Fegp that stores it in a list X;

— The firewall choose to not blind x; (the input does not
change)




Protocol execution

— The core Cj runs the code of I on its list X;, transcript t, and
random tape fj

— For each message p sent by P, in II, core C; proves (by asking
Fcgp) that pis the correct next message w. rt list X;, transcript T,
and random tape fj

— The firewall now checks that the statement is good, i.e., that s;
is the output of Frgss and T is the correct transcript up to now

— Upon receiving OK from Fcgp, core and firewall just append p
to transcript and start over



Conclusions and future work

* New model for handling subversions under
composition

* Design tirewalls for other functionalities
(e.g. OT, ZK, etc)

» MPC with adaptive corruptions?
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