

Universally Composable Subversion-Resilient Cryptography

Suvradip Chakraborty ETH Zurich Bernardo Magri The University of Manchester Jesper Buus Nielsen Aarhus University Daniele Venturi Sapienza University of Rome

Background on subversion

Adversary tamper with implementation/spec of crypto

- Started in 80's and 90's Subliminal channels [Sim84], kleptography [YY97]
- Picked up steam after Snowden's revelations in 2013

Current state of affairs

• Standalone security – no guarantees in larger context

• Every protocol needs to re-prove security from scratch

• Many different models: **Reverse Firewall**, watchdog, self-guarding, etc...

Our Contributions

• Extension of UC framework to deal with subversions

• Sanitize UC commitments and UC coin toss

• Sanitize GMW compiler to achieve malicious MPC

(very) Quick UC Recap

• Define an "ideal functionality" ${\mathcal F}$ for a task

• Design a protocol Π that "implements" ${\mathcal F}$

(very) Quick UC Recap

 Π UC-implement \mathcal{F} if:

 $\exists \mathcal{S} \forall \mathcal{E}: EXEC_{\Pi, \mathcal{A}, \mathcal{E}} \approx EXEC_{\mathcal{F}, \mathcal{S}, \mathcal{E}}$

- Every UC party P_i is split into 2 parties C_i and F_i:
 - The core C_i is responsible for computing protocol's messages
 - The firewall F_i is responsible for sanitizing C_i 's communication

• Core and firewall can be independently corrupted

- We allow for "specious" corruptions of the core
 - Specious core is indistinguishable from an honest core, but may leak information via subliminal channel or trigger

$$C \approx \tilde{C}$$

Sanitizable Ideal Functionality

• Dedicated sanitation interface for firewalls (S)

• Implementing a sanitizable ideal functionality

Functionality \mathcal{F}

Sanitizable protocol Π implementing \mathcal{F} in \mathcal{G} -hybrid model

Sanitizing a regular UC functionality

Functionality \mathcal{F}

Protocol Π implementing \mathcal{F} in \mathcal{G} -hybrid model

Sanitizing a regular UC functionality

 $Wrap(\mathcal{F})$

Protocol Π implementing ${\mathcal F}$ in ${\mathcal G}\text{-hybrid}$ model

Sanitizing a regular UC functionality

• Transparency

• Honest core alone is **indistinguishable** from honest core + firewall

Core C	Firewall F
Honest	Honest
Honest	Semi-honest
Honest	Malicious
Specious	Semi-honest
Specious	Honest
Specious	Malicious
Malicious	Honest
Malicious	Semi-honest
Malicious	Malicious

Core C	Firewall F	Behaviour in ${\mathcal F}$
Honest	Honest	Honest
Honest	Semi-honest	Honest
Honest	Malicious	Isolated
Specious	Semi-honest	Malicious
Specious	Honest	Specious
Specious	Malicious	Malicious
Malicious	Honest	Malicious
Malicious	Semi-honest	Malicious
Malicious	Malicious	Malicious

Core C	Firewall F	Behaviour in ${\mathcal F}$
Honest	Honest	Honest
Honest	Semi-honest	Honest
Honest	Malicious	Isolated
Specious	Semi-honest	Malicious
Specious	Honest	Specious
Specious	Malicious	Malicious
Malicious	Honest	Malicious
Malicious	Semi-honest	Malicious
Malicious	Malicious	Malicious

Core C	Firewall F	Behaviour in ${\mathcal F}$
Honest	Semi-honest	Honest
Honest	Malicious	Isolated
Specious	Honest	Specious
Malicious	Malicious	Malicious

• Many more cases to analyze!

Core C	Firewall F	Behaviour in ${\mathcal F}$	
Honest	Semi-honest	Honest	
Honest	Malicious	Isolated	
			Sa
Specious	Honest	Honest	
			Indi
Malicious	Malicious	Malicious	

Indistinguishability argument!

Core C	Firewall F	Behaviour in ${\mathcal F}$
Honest	Semi-honest	Honest
Honest	Malicious	Isolated Malicious
Malicious	Malicious	Malicious

• Much better!

Core C	Firewall F	Behaviour in ${\mathcal F}$
Honest	Semi-honest	Honest
Malicious	Malicious	Malicious

Sanitizable commitment functionality

- Gives the firewall the <u>option</u> to blind the input: $\hat{s}_i = s_i \oplus r_i$
- Upon opening, the receiver gets \hat{s}_i

Sanitizable commitment protocol

- Inspired on the UC commitment of [Canetti, Sarkar and Wang'20]
- Based on the hardness of DDH
- Allows the firewall to sanitize the input and randomness
- Details on our paper!

<u>Thm</u>: Protocol $\widehat{\Pi}$ srUC-realizes the $\widehat{\mathcal{F}}_{sCOM}$ functionality in the $\widehat{\mathcal{F}}_{SAT}$ -hybrid model in the presence of up to n-1 malicious static corruptions.

Sanitizing Coin toss (in the $\widehat{\mathcal{F}}_{\textit{sCOM}}\text{-}\text{hybrid model})$

- Each core commits to a random s_i with $\hat{\mathcal{F}}_{sCOM}$
- Each firewall samples a random r_i and sends it to $\hat{\mathcal{F}}_{sCOM}$
- Each core output $s = s_i \oplus r_i \oplus (\bigoplus_{j \neq i} \widehat{s_j})$

<u>Thm</u>: Protocol $\widehat{\Pi}$ wsrUC-realizes the \mathcal{F}_{TOSS} functionality in the $\widehat{\mathcal{F}}_{sCOM}$ -hybrid model in the presence of up to n - 1 malicious corruptions.

Protocol $\widehat{\Pi}_{TOSS}$

 $\widehat{\Pi}_{TOSS}$

GMW Compiler

- Turn semi-honest MPC into malicious MPC [GMW87]
 - Each P_i runs (augmented) coin toss with other parties to get its random tape
 - Each P_i commit to its input and proves in ZK that next message is correct w.r.t its input, current transcript, and random tape

GMW Compiler

- Turn semi-honest MPC into malicious MPC [GMW87]
 - Each P_i runs (augmented) coin toss with other parties to get its random tape
 - Each P_i commit to its input and proves in ZK that next message is correct w.r.t its input, current transcript, and random tape
- Can't prove things about UC commitments!

Sanitizable Commit-and-Prove functionality

• As in [CLOS02] we need a commit-and-prove functionality

• Allows parties to commit to value and prove statements about the committed values

• The firewall has the option to blind the committed values and to verify the proven statements

Sanitizable Commit-and-Prove functionality

• We srUC-realize $\hat{\mathcal{F}}_{C\&P}$ combining the sanitizable commitment construction + re-randomizable NIZKs

• $\widehat{\Pi}_{GMW}$ is described in $(\widehat{\mathcal{F}}_{C\&P}, \mathcal{F}_{TOSS})$ -hybrid model

- Random tape generation:
 - Core C_i commits to s_i with $\hat{\mathcal{F}}_{C\&P}$
 - Firewall F_i samples random r_i and sends it to $\hat{\mathcal{F}}_{C\&P}$
 - All cores interact with \mathcal{F}_{TOSS} to generate s_i^* for core C_i
 - Core C_i set its random tape to be $\hat{r}_i = s_i^* \oplus (s_i \oplus r_i)$

- Input commitment:
 - The core sends input x_i to $\hat{\mathcal{F}}_{C\&P}$ that stores it in a list \bar{x}_i
 - The firewall choose to **not blind** x_i (the input does not change)

- Protocol execution
 - The core C_i runs the code of Π on its list $\overline{x}_i,$ transcript $\tau,$ and random tape \widehat{r}_i
 - For each message μ sent by P_i in Π , core C_i proves (by asking $\widehat{\mathcal{F}}_{C\&P}$) that μ is the correct next message w.r.t list \overline{x}_i , transcript τ , and random tape \widehat{r}_i
 - The firewall now checks that the statement is good, i.e., that s^*_i is the output of \mathcal{F}_{TOSS} and τ is the correct transcript up to now
 - Upon receiving OK from $\hat{\mathcal{F}}_{C\&P},$ core and firewall just append μ to transcript and start over

Conclusions and future work

• New model for handling subversions under composition

• Design firewalls for other functionalities (e.g. OT, ZK, etc)

• MPC with adaptive corruptions?