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Our Result in a Nutshell

We construct a communication-efficient
constant-round 2PC protocol with full adaptive

security under minimal assumptions.

Only depends on the RAM 
complexity of a function



Secure Multiparty Computation 
𝑥𝑥1

𝑥𝑥5
𝑥𝑥2

𝑓𝑓

Parties learn nothing more than  𝑧𝑧 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance 
before the protocol begins

• Adaptive security
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Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance 
before the protocol begins

• Adaptive security
The adversary can choose whom to corrupt 
during the execution of the protocol.
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Fully Adaptive MPC

𝑓𝑓

Fully adaptive MPC
• All parties can be corrupted eventually
• Important protocol is used within larger protocol
• Trivial in the static case
• Hard for the adaptive case

𝑥𝑥1

𝑥𝑥5
𝑥𝑥2

Parties learn nothing more than  𝑧𝑧 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance 
before the protocol begins

• Adaptive security
The adversary can choose whom to corrupt 
during the execution of the protocol.



Adaptive MPC (Definition)

𝑥𝑥5

𝑥𝑥3

𝑥𝑥2

𝑓𝑓

Adaptive Security: The adversary can choose 
whom to corrupt during the execution of the 
protocol.

Simulator:
• Simulate the communication (without 

knowing the inputs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
• Simulate the randomness of corrupted parties 

consistent with the communication and its 
inputs (Equivocation)

𝑥𝑥4

𝑥𝑥1



• Standard Boolean circuits

• Well suited for highly-structured 
computation (such as FFT)

• Circuit complexity is expressed in 
terms of the #gates (say s) in the 
circuit.

• Circuits augmented with memory 
accesses.

• High-level languages are easily 
reduced to RAM programs.

• RAM complexity is expressed in 
terms of the running time (say 𝑇𝑇) of 
the RAM program.

Circuits RAM

Function 𝑓𝑓 can be encoded as either a Circuit 
or RAM Program



RAM Model

CPU Step 1 CPU Step 2

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑

state1 CPU Step 3
state2 state3Input 𝑥𝑥

Read
𝑣𝑣0

𝛼𝛼1 Read
𝑣𝑣2

Read
𝑣𝑣1

Memory

𝛼𝛼2 𝛼𝛼3

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3

• A memory access is made at every CPU step.



Prior Work: Adaptive MPC (for Circuits)

• [CLOS02] established the feasibility of fully adaptive protocols (in O(d) rounds)
• Next, we focus on constant round protocols.
• Known for specific assumptions:

• Reliable erasures Garg and Sahai [GS12]
• CRS model + iO [CPP15, DKR15, GP15] where CRS size is O(|C|)

• [CPV17] Constant-round protocol under minimal assumptions
• [BLPV18] (Precise rounds) 2-round MPC

Feasibility

𝑑𝑑 is the depth of the circuit.



Prior Work: Adaptive MPC (for Circuits)

• [CGP15, DKR15, GP15] (Optimal) Comm. independent of the size of the circuit, 
but CRS as large as circuit size.

• Bound on the size of the circuit was required at the time of CRS generation

• [CsW12] Improved both comm. and CRS size is O(d) and assumes CRS + iO
• Minimal assumptions: [CPV17, BLPV18] Communication grows quadratically in 

circuit size.

Communication

𝑑𝑑 is the depth of the circuit.



Can we improve the communication of a constant-
round fully adaptive secure computation under 

minimal assumptions?

Communication is proportional to 
square of the RAM complexity of 

the function

YES!



Prior Work: Static/Adaptive MPC (for RAM)

• [LO13, GHORW14, GLOS14, GLO15] Communication prop. to RAM complexity*

• [CPV16, CP16] Communication is dependent to RAM complexity, but required 
strong assumptions.

• [CPV17] Communication prop. to the square of the Boolean complexity but with 
minimal assumptions.

• [CGP15, CPV16, CsW19, DKR15] Strong assumptions and huge CRS but better 
communication.

Static MPC

Adaptive MPC

The current state of affairs

*ignoring  polylog factors.



Main Theorem

Theorem: There exists a fully adaptively-secure constant-round garbled RAM with 
communication proportional to the square of the RAM complexity of the function 
under minimal assumptions, which is constructed from

• Equivocal garbed RAM + Equivocal ORAM
• Adaptively secure OT
• non-committing encryption

Focus on 2 PC, Semi-honest setting



Main Ideas: 
Challenges Towards Constructing Adaptive 

Garbled RAM
and How To Overcome Them



Naïve Attempt: RAM to Circuit Conversion

https://codegolf.stackexchange.com/questions/24834/building-circuit-for-divisibility-by-3

Deterministic
transformation

Adaptively 
Garble this 

circuit

Applying CPV17: 
communication = �𝑂𝑂 𝑇𝑇6 !



Smarter Attempt: Garble each step circuit…

https://codegolf.stackexchange.com/questions/24834/building-circuit-for-divisibility-by-3

Deterministic
transformation

Adaptively Garble these 
“small” circuits

Applying CPV17: 
communication = �𝑂𝑂 𝑇𝑇6 !

Adaptively 
Garble this 

circuit



Smarter Attempt: Garble each step circuit…
Challenge I
• Memory access patterns may leak 

information.
• ORAM resolves this issue for static 

garbled RAM.
• For adaptive security, we require ORAM 

with additional properties.
Challenge II
• [CPV17] is designed for stand-alone 

circuits.
• It does not handle external memory 

accesses.
Other Challenges…

Adaptively Garble these 
“small” circuits



Smarter Attempt: Garble each step circuit…
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Garble these 
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Challenge I
• Memory access patterns may leak 

information.
• ORAM resolves this issue for static 

garbled RAM.
• For adaptive security, we require ORAM 

with additional properties.
Challenge II
• [CPV17] is designed for stand-alone 

circuits.
• It does not handle external memory 

accesses.
Other Challenges…



Addressing Challenge I



Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵

𝛼𝛼1

𝐷𝐷[𝛼𝛼1]

𝛼𝛼𝑚𝑚
𝐷𝐷[𝛼𝛼𝑚𝑚]

…

• The memory locations accessed by RAM are input-dependent.

• This leaks information about Bob’s input!



Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

Sim needs to first generate 
“fake” oblivious memory 
accesses without knowing Bob’s 
inputs.



Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

Then, Sim needs to determine 
the randomness to justify that 
the “fake” oblivious memory 
access pattern is consistent 
with Bob’s inputs.

Sim needs to first generate 
“fake” oblivious memory 
accesses without knowing Bob’s 
inputs.



Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

• For statistical ORAMs, such consistent randomness exists.
• Can the randomness be extracted efficiently?

• Stronger requirement: the cost to determine consistent randomness should be proportional to 
the RAM complexity of the function.
• This algorithm is incorporated within Equivocal Garbled RAM

• Next, we show how to determine randomness for a specific tree-based ORAM.

Sim needs to first generate 
“fake” oblivious memory 
accesses. 

Then, Sim needs to determine 
consistent randomness 
(Equivocation)



Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3



Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is 
associated with a leaf node.

• For every read operation, two passes 
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new 

(unknown) location
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• Assign a new leaf node ℓ𝑓𝑓2 to location 3
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Move 
to the 
root
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• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
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1 2 3 4 5 6 7 8

Instructions

1. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

Flush all values 
along ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is 
associated with a leaf node.

• For every read operation, two passes 
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new 

(unknown) location

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
• Flush all values along with ℓ𝑓𝑓3
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Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions
• Each memory location in 𝐷𝐷 is 

associated with a leaf node.
• For every read operation, two passes 

are made from the root to the leaf:
• Access the location to read
• Flush to map the value to a new 

(unknown) location

1. Read location 3

2. Read location 3

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
• Flush all values along with ℓ𝑓𝑓3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Access ℓ𝑓𝑓2 (purple path)
• Repeat as above



What does it mean to show ORAM is adaptive?

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4

ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3

Simulator must 
generate the 
randomness

• SimORAM samples 2𝑚𝑚 leaf nodes 
randomly as the oblivious leaf nodes.

• Generating consistent randomness for 
each memory access corresponds to the 
new leaf node assigned to a memory 
location after it is read.

• Essentially, the randomness corresponds 
to leaf nodes ℓ𝑓𝑓2 𝑖𝑖∈ 𝑚𝑚

• Suppose 𝛼𝛼1 = 𝛼𝛼2, then ℓ𝑓𝑓2 = ℓ𝑓𝑓1

• Efficiency: 𝑚𝑚 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝(𝑚𝑚)

Oblivious Memory Accesses 𝑀𝑀2

Actual Memory Accesses 𝑀𝑀1



Addressing Challenge II

Recall that:
• [CPV17] is designed for stand-alone circuits.
• It does not handle external memory accesses.
• Quick Review of Equivocal Garbling of [CPV17]



Overview: How to Garble Circuits?

CPV17 Our Work

Yao’s 2PC Protocol Adaptive 2PC for Circuits Adaptive 2PC for RAM

Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal 
Encryption

RAM-efficient Equivocal 
Encryption (REE)



Overview: How to Adaptively Garble Circuits?

CPV17 Our Work
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Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal 
Encryption (CEE)

RAM-efficient Equivocal 
Encryption (REE)



Overview: How to Adaptively Garble RAM 
Programs?

CPV17 Our Work

Yao’s 2PC Protocol Adaptive 2PC for Circuits Adaptive 2PC for RAM

Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal 
Encryption (CEE)

RAM-efficient Equivocal 
Encryption (REE) + 
Equivocal ORAM



Yao’s Garbling Scheme
Key Generation: Pick two keys per wire.

Garble Input 𝑥𝑥 : 101 → 𝑘𝑘𝑘,𝑘𝑘𝑘,𝑘𝑘𝑘

Garble Circuit(𝐶𝐶): Mechanism to evaluate the circuit + 
Output translation table

AND

OR

1

1

0
𝑘𝑘𝑘,𝑘𝑘𝑘

1
𝑘𝑘𝑘,𝑘𝑘𝑘𝑘𝑘𝑘,𝑘𝑘𝑘

𝑘𝑘𝑘,𝑘𝑘𝑘

𝑘𝑘𝑘,𝑘𝑘𝑘

1

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘1(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘1(𝑘𝑘𝑘)

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘1(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘1(𝑘𝑘𝑘)

𝑘𝑘𝑘,𝑘𝑘𝑘
𝑘𝑘𝑘

𝑘𝑘𝑘

𝑘𝑘𝑘



Yao’s Garbling: Static Security

AND

OR

1

1

0
𝑘𝑘,𝑘𝑘∗

1
𝑘𝑘,𝑘𝑘∗𝑘𝑘,𝑘𝑘∗

𝑘𝑘,𝑘𝑘∗

𝑘𝑘,𝑘𝑘∗

1Simulation:
• Pick an active key for each wire
• 1 ciphertext encrypts the active key
• Other 3 ciphertexts are simulated
• Set output table to match the output 𝐶𝐶(𝑥𝑥)

Given input 𝑥𝑥, show the consistent randomness generation
• Inactive keys
• Randomness for encryption

Simulated
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘(𝑘𝑘)
Simulated
Simulated

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘∗,𝑘𝑘(𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘(𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘∗(𝑘𝑘∗)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘∗,𝑘𝑘∗(𝑘𝑘)

? ? ? → 𝑘𝑘,𝑘𝑘, 𝑘𝑘

We have: We need:

Which key should be encrypted is 
determined by the wire values of 

circuit C.



Non-Committing Encryption

• Honestly generated cipertexts: standard correctness and security
• Simulated cipertexts can be “opened” to any plain text 𝑚𝑚𝑖𝑖:

• Sim can generate 𝑘𝑘𝑖𝑖 such that 𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴 𝑘𝑘𝑖𝑖:𝑚𝑚𝑖𝑖

𝑘𝑘1

𝑘𝑘2

𝑘𝑘3

Simulated c

plaintexts

too many options to open too large k Exp. Growth of keys

O

O

O



Circuit-Efficient Equivocal Encryption (Def.)

• Simulated cipertexts can be “opened” to some (but exp many) plaintexts:
• Sim can generate 𝑘𝑘𝑖𝑖 such that 𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴 𝑘𝑘𝑖𝑖 ,𝑚𝑚𝑖𝑖

• Only plaintexts in the image space of a function F can be equivocated.

x

F
O

O

O

CEE Property:
𝑘𝑘 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑣𝑣𝐵𝐵𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴(𝑥𝑥)

𝐷𝐷𝐴𝐴𝐴𝐴 𝑘𝑘; 𝐴𝐴 = 𝐹𝐹 𝑥𝑥 for simulated 𝐴𝐴

plaintexts • [CPV17] F is expressed as a circuit.
• Next, we will see how to instantiate F.



Function For Equivocal Encryption

CPU Step 

But the step circuits are dependent and take additional inputs other than 𝑥𝑥.
• Given just input 𝑥𝑥, it is not sufficient to compute wire values in any step circuit.

• Require state and memory values to evaluate the wire values in intermediate step circuits
• Solution: So, we could convert the RAM to a circuit and then use this within Enc.

Function 𝐹𝐹



Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step 

Circuit size is �𝑂𝑂 𝑇𝑇3 !



Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step 

Circuit size is �𝑂𝑂 𝑇𝑇3 !

• Each ciphertext is of size �𝑂𝑂 𝑇𝑇3
• There are 𝑇𝑇 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝 𝑇𝑇 such ciphertexts in the entire garbled RAM
• So, the communication is �𝑂𝑂 𝑇𝑇4 !



Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step 

Circuit size is �𝑂𝑂 𝑇𝑇3 !

• Each ciphertext is of size �𝑂𝑂 𝑇𝑇
• There are 𝑇𝑇 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝 𝑇𝑇 such ciphertexts in the entire garbled RAM
• So, the communication is �𝑂𝑂 𝑇𝑇2

RAM-Efficient Equivocal 
Encryption (REE)



Other Challenges…

• Most Garbled RAM works are non-black-box in PRFs
• Non-trivial to equivocate! 

• However, [GLO15] fits well into our framework
• Black-box use of underlying primitives
• Memory is expressed as a tree of circuits

• Malicious security
• Construct RAM-efficient adaptively-secure Zero-knowledge proofs
• Previously based on indistinguishability obfuscation [GP15, CPV17].
• Then apply standard transformation (GMW compiler)



Future Directions

For fully adaptive constant-round protocols, the communication is
• [CPV17] Quadratic in the circuit complexity of a function
• Our result: Quadratic in the RAM complexity of a function

Is the quadratic communication cost in the circuit/RAM 
complexity inherent in this regime?

THANK YOU!
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