
Adaptively Secure Computation
For RAM Programs

Laasya Bangalore, Rafail Ostrovsky, Oxana Poburinnaya, and

Muthuramkrishnan Venkitasubramaniam

Our Result in a Nutshell

We construct a communication-efficient
constant-round 2PC protocol with full adaptive

security under minimal assumptions.

Only depends on the RAM
complexity of a function

Secure Multiparty Computation
𝑥𝑥1

𝑥𝑥5
𝑥𝑥2

𝑓𝑓

Parties learn nothing more than 𝑧𝑧 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance
before the protocol begins

• Adaptive security

𝑥𝑥4 𝑥𝑥3

Secure Multiparty Computation
𝑥𝑥1

𝑥𝑥5

𝑥𝑥4 𝑥𝑥3

𝑥𝑥2

𝑓𝑓

Parties learn nothing more than 𝑧𝑧 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance
before the protocol begins

• Adaptive security
The adversary can choose whom to corrupt
during the execution of the protocol.

𝑥𝑥4 𝑥𝑥3

Fully Adaptive MPC

𝑓𝑓

Fully adaptive MPC
• All parties can be corrupted eventually
• Important protocol is used within larger protocol
• Trivial in the static case
• Hard for the adaptive case

𝑥𝑥1

𝑥𝑥5
𝑥𝑥2

Parties learn nothing more than 𝑧𝑧 = 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

Adversarial Corruption Strategies
• Static security

The set of adversarial parties is fixed in advance
before the protocol begins

• Adaptive security
The adversary can choose whom to corrupt
during the execution of the protocol.

Adaptive MPC (Definition)

𝑥𝑥5

𝑥𝑥3

𝑥𝑥2

𝑓𝑓

Adaptive Security: The adversary can choose
whom to corrupt during the execution of the
protocol.

Simulator:
• Simulate the communication (without

knowing the inputs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)
• Simulate the randomness of corrupted parties

consistent with the communication and its
inputs (Equivocation)

𝑥𝑥4

𝑥𝑥1

• Standard Boolean circuits

• Well suited for highly-structured
computation (such as FFT)

• Circuit complexity is expressed in
terms of the #gates (say s) in the
circuit.

• Circuits augmented with memory
accesses.

• High-level languages are easily
reduced to RAM programs.

• RAM complexity is expressed in
terms of the running time (say 𝑇𝑇) of
the RAM program.

Circuits RAM

Function 𝑓𝑓 can be encoded as either a Circuit
or RAM Program

RAM Model

CPU Step 1 CPU Step 2

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑

state1 CPU Step 3
state2 state3Input 𝑥𝑥

Read
𝑣𝑣0

𝛼𝛼1 Read
𝑣𝑣2

Read
𝑣𝑣1

Memory

𝛼𝛼2 𝛼𝛼3

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3

• A memory access is made at every CPU step.

Prior Work: Adaptive MPC (for Circuits)

• [CLOS02] established the feasibility of fully adaptive protocols (in O(d) rounds)
• Next, we focus on constant round protocols.
• Known for specific assumptions:

• Reliable erasures Garg and Sahai [GS12]
• CRS model + iO [CPP15, DKR15, GP15] where CRS size is O(|C|)

• [CPV17] Constant-round protocol under minimal assumptions
• [BLPV18] (Precise rounds) 2-round MPC

Feasibility

𝑑𝑑 is the depth of the circuit.

Prior Work: Adaptive MPC (for Circuits)

• [CGP15, DKR15, GP15] (Optimal) Comm. independent of the size of the circuit,
but CRS as large as circuit size.

• Bound on the size of the circuit was required at the time of CRS generation

• [CsW12] Improved both comm. and CRS size is O(d) and assumes CRS + iO
• Minimal assumptions: [CPV17, BLPV18] Communication grows quadratically in

circuit size.

Communication

𝑑𝑑 is the depth of the circuit.

Can we improve the communication of a constant-
round fully adaptive secure computation under

minimal assumptions?

Communication is proportional to
square of the RAM complexity of

the function

YES!

Prior Work: Static/Adaptive MPC (for RAM)

• [LO13, GHORW14, GLOS14, GLO15] Communication prop. to RAM complexity*

• [CPV16, CP16] Communication is dependent to RAM complexity, but required
strong assumptions.

• [CPV17] Communication prop. to the square of the Boolean complexity but with
minimal assumptions.

• [CGP15, CPV16, CsW19, DKR15] Strong assumptions and huge CRS but better
communication.

Static MPC

Adaptive MPC

The current state of affairs

*ignoring polylog factors.

Main Theorem

Theorem: There exists a fully adaptively-secure constant-round garbled RAM with
communication proportional to the square of the RAM complexity of the function
under minimal assumptions, which is constructed from

• Equivocal garbed RAM + Equivocal ORAM
• Adaptively secure OT
• non-committing encryption

Focus on 2 PC, Semi-honest setting

Main Ideas:
Challenges Towards Constructing Adaptive

Garbled RAM
and How To Overcome Them

Naïve Attempt: RAM to Circuit Conversion

https://codegolf.stackexchange.com/questions/24834/building-circuit-for-divisibility-by-3

Deterministic
transformation

Adaptively
Garble this

circuit

Applying CPV17:
communication = �𝑂𝑂 𝑇𝑇6 !

Smarter Attempt: Garble each step circuit…

https://codegolf.stackexchange.com/questions/24834/building-circuit-for-divisibility-by-3

Deterministic
transformation

Adaptively Garble these
“small” circuits

Applying CPV17:
communication = �𝑂𝑂 𝑇𝑇6 !

Adaptively
Garble this

circuit

Smarter Attempt: Garble each step circuit…
Challenge I
• Memory access patterns may leak

information.
• ORAM resolves this issue for static

garbled RAM.
• For adaptive security, we require ORAM

with additional properties.
Challenge II
• [CPV17] is designed for stand-alone

circuits.
• It does not handle external memory

accesses.
Other Challenges…

Adaptively Garble these
“small” circuits

Smarter Attempt: Garble each step circuit…
Adaptively

Garble these
“small” circuits

Challenge I
• Memory access patterns may leak

information.
• ORAM resolves this issue for static

garbled RAM.
• For adaptive security, we require ORAM

with additional properties.
Challenge II
• [CPV17] is designed for stand-alone

circuits.
• It does not handle external memory

accesses.
Other Challenges…

Addressing Challenge I

Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵

𝛼𝛼1

𝐷𝐷[𝛼𝛼1]

𝛼𝛼𝑚𝑚
𝐷𝐷[𝛼𝛼𝑚𝑚]

…

• The memory locations accessed by RAM are input-dependent.

• This leaks information about Bob’s input!

Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

Sim needs to first generate
“fake” oblivious memory
accesses without knowing Bob’s
inputs.

Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

Then, Sim needs to determine
the randomness to justify that
the “fake” oblivious memory
access pattern is consistent
with Bob’s inputs.

Sim needs to first generate
“fake” oblivious memory
accesses without knowing Bob’s
inputs.

Equivocal Oblivious RAM (ORAM)

𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐵𝐵
(𝑚𝑚 accesses)

…

• For statistical ORAMs, such consistent randomness exists.
• Can the randomness be extracted efficiently?

• Stronger requirement: the cost to determine consistent randomness should be proportional to
the RAM complexity of the function.
• This algorithm is incorporated within Equivocal Garbled RAM

• Next, we show how to determine randomness for a specific tree-based ORAM.

Sim needs to first generate
“fake” oblivious memory
accesses.

Then, Sim needs to determine
consistent randomness
(Equivocation)

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions

1. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions

1. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions

1. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

Move
to the
root

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions

1. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

Flush all values
along ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
• Flush all values along with ℓ𝑓𝑓3

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions

1. Read location 3

2. Read location 3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Each memory location in 𝐷𝐷 is
associated with a leaf node.

• For every read operation, two passes
are made from the root to the leaf:

• Access the location to read
• Flush to map the value to a new

(unknown) location

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
• Flush all values along with ℓ𝑓𝑓3

Quick Review of Tree-Based ORAM [CP13]
Database 𝐷𝐷

1 2 3 4 5 6 7 8

Instructions
• Each memory location in 𝐷𝐷 is

associated with a leaf node.
• For every read operation, two passes

are made from the root to the leaf:
• Access the location to read
• Flush to map the value to a new

(unknown) location

1. Read location 3

2. Read location 3

• Access ℓ𝑓𝑓1 (red path)
• Assign a new leaf node ℓ𝑓𝑓2 to location 3
• Move the value read into the root node
• Flush all values along with ℓ𝑓𝑓3

ℓ𝑓𝑓1ℓ𝑓𝑓2ℓ𝑓𝑓3

• Access ℓ𝑓𝑓2 (purple path)
• Repeat as above

What does it mean to show ORAM is adaptive?

𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4

ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3 ℓ𝑓𝑓1 ℓ𝑓𝑓3

Simulator must
generate the
randomness

• SimORAM samples 2𝑚𝑚 leaf nodes
randomly as the oblivious leaf nodes.

• Generating consistent randomness for
each memory access corresponds to the
new leaf node assigned to a memory
location after it is read.

• Essentially, the randomness corresponds
to leaf nodes ℓ𝑓𝑓2 𝑖𝑖∈ 𝑚𝑚

• Suppose 𝛼𝛼1 = 𝛼𝛼2, then ℓ𝑓𝑓2 = ℓ𝑓𝑓1

• Efficiency: 𝑚𝑚 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝(𝑚𝑚)

Oblivious Memory Accesses 𝑀𝑀2

Actual Memory Accesses 𝑀𝑀1

Addressing Challenge II

Recall that:
• [CPV17] is designed for stand-alone circuits.
• It does not handle external memory accesses.
• Quick Review of Equivocal Garbling of [CPV17]

Overview: How to Garble Circuits?

CPV17 Our Work

Yao’s 2PC Protocol Adaptive 2PC for Circuits Adaptive 2PC for RAM

Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal
Encryption

RAM-efficient Equivocal
Encryption (REE)

Overview: How to Adaptively Garble Circuits?

CPV17 Our Work

Yao’s 2PC Protocol Adaptive 2PC for Circuits Adaptive 2PC for RAM

Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal
Encryption (CEE)

RAM-efficient Equivocal
Encryption (REE)

Overview: How to Adaptively Garble RAM
Programs?

CPV17 Our Work

Yao’s 2PC Protocol Adaptive 2PC for Circuits Adaptive 2PC for RAM

Garbled Circuits Equivocal Garbled Circuits Equivocal Garbled RAM

CPA-secure Encryption Circuit-efficient Equivocal
Encryption (CEE)

RAM-efficient Equivocal
Encryption (REE) +
Equivocal ORAM

Yao’s Garbling Scheme
Key Generation: Pick two keys per wire.

Garble Input 𝑥𝑥 : 101 → 𝑘𝑘𝑘,𝑘𝑘𝑘,𝑘𝑘𝑘

Garble Circuit(𝐶𝐶): Mechanism to evaluate the circuit +
Output translation table

AND

OR

1

1

0
𝑘𝑘𝑘,𝑘𝑘𝑘

1
𝑘𝑘𝑘,𝑘𝑘𝑘𝑘𝑘𝑘,𝑘𝑘𝑘

𝑘𝑘𝑘,𝑘𝑘𝑘

𝑘𝑘𝑘,𝑘𝑘𝑘

1

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘1(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘1(𝑘𝑘𝑘)

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘0,𝑘𝑘1(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘0(𝑘𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘1,𝑘𝑘1(𝑘𝑘𝑘)

𝑘𝑘𝑘,𝑘𝑘𝑘
𝑘𝑘𝑘

𝑘𝑘𝑘

𝑘𝑘𝑘

Yao’s Garbling: Static Security

AND

OR

1

1

0
𝑘𝑘,𝑘𝑘∗

1
𝑘𝑘,𝑘𝑘∗𝑘𝑘,𝑘𝑘∗

𝑘𝑘,𝑘𝑘∗

𝑘𝑘,𝑘𝑘∗

1Simulation:
• Pick an active key for each wire
• 1 ciphertext encrypts the active key
• Other 3 ciphertexts are simulated
• Set output table to match the output 𝐶𝐶(𝑥𝑥)

Given input 𝑥𝑥, show the consistent randomness generation
• Inactive keys
• Randomness for encryption

Simulated
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘(𝑘𝑘)
Simulated
Simulated

𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘∗,𝑘𝑘(𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘(𝑘𝑘)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘,𝑘𝑘∗(𝑘𝑘∗)
𝐸𝐸𝐸𝐸𝐴𝐴𝑘𝑘∗,𝑘𝑘∗(𝑘𝑘)

? ? ? → 𝑘𝑘,𝑘𝑘, 𝑘𝑘

We have: We need:

Which key should be encrypted is
determined by the wire values of

circuit C.

Non-Committing Encryption

• Honestly generated cipertexts: standard correctness and security
• Simulated cipertexts can be “opened” to any plain text 𝑚𝑚𝑖𝑖:

• Sim can generate 𝑘𝑘𝑖𝑖 such that 𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴 𝑘𝑘𝑖𝑖:𝑚𝑚𝑖𝑖

𝑘𝑘1

𝑘𝑘2

𝑘𝑘3

Simulated c

plaintexts

too many options to open too large k Exp. Growth of keys

O

O

O

Circuit-Efficient Equivocal Encryption (Def.)

• Simulated cipertexts can be “opened” to some (but exp many) plaintexts:
• Sim can generate 𝑘𝑘𝑖𝑖 such that 𝐴𝐴 = 𝐸𝐸𝐸𝐸𝐴𝐴 𝑘𝑘𝑖𝑖 ,𝑚𝑚𝑖𝑖

• Only plaintexts in the image space of a function F can be equivocated.

x

F
O

O

O

CEE Property:
𝑘𝑘 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝑣𝑣𝐵𝐵𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴(𝑥𝑥)

𝐷𝐷𝐴𝐴𝐴𝐴 𝑘𝑘; 𝐴𝐴 = 𝐹𝐹 𝑥𝑥 for simulated 𝐴𝐴

plaintexts • [CPV17] F is expressed as a circuit.
• Next, we will see how to instantiate F.

Function For Equivocal Encryption

CPU Step

But the step circuits are dependent and take additional inputs other than 𝑥𝑥.
• Given just input 𝑥𝑥, it is not sufficient to compute wire values in any step circuit.

• Require state and memory values to evaluate the wire values in intermediate step circuits
• Solution: So, we could convert the RAM to a circuit and then use this within Enc.

Function 𝐹𝐹

Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step

Circuit size is �𝑂𝑂 𝑇𝑇3 !

Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step

Circuit size is �𝑂𝑂 𝑇𝑇3 !

• Each ciphertext is of size �𝑂𝑂 𝑇𝑇3
• There are 𝑇𝑇 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝 𝑇𝑇 such ciphertexts in the entire garbled RAM
• So, the communication is �𝑂𝑂 𝑇𝑇4 !

Function For Equivocation Encryption

Function 𝐹𝐹

CPU Step

Circuit size is �𝑂𝑂 𝑇𝑇3 !

• Each ciphertext is of size �𝑂𝑂 𝑇𝑇
• There are 𝑇𝑇 ⋅ 𝑝𝑝𝐵𝐵𝐴𝐴𝑝𝑝𝐴𝐴𝐵𝐵𝑝𝑝 𝑇𝑇 such ciphertexts in the entire garbled RAM
• So, the communication is �𝑂𝑂 𝑇𝑇2

RAM-Efficient Equivocal
Encryption (REE)

Other Challenges…

• Most Garbled RAM works are non-black-box in PRFs
• Non-trivial to equivocate!

• However, [GLO15] fits well into our framework
• Black-box use of underlying primitives
• Memory is expressed as a tree of circuits

• Malicious security
• Construct RAM-efficient adaptively-secure Zero-knowledge proofs
• Previously based on indistinguishability obfuscation [GP15, CPV17].
• Then apply standard transformation (GMW compiler)

Future Directions

For fully adaptive constant-round protocols, the communication is
• [CPV17] Quadratic in the circuit complexity of a function
• Our result: Quadratic in the RAM complexity of a function

Is the quadratic communication cost in the circuit/RAM
complexity inherent in this regime?

THANK YOU!

	Adaptively Secure Computation For RAM Programs
	Our Result in a Nutshell
	Secure Multiparty Computation
	Secure Multiparty Computation
	Fully Adaptive MPC
	Adaptive MPC (Definition)
	Slide Number 7
	RAM Model
	Prior Work: Adaptive MPC (for Circuits)
	Prior Work: Adaptive MPC (for Circuits)
	Slide Number 11
	Prior Work: Static/Adaptive MPC (for RAM)
	Main Theorem
	Main Ideas: �Challenges Towards Constructing Adaptive Garbled RAM�and How To Overcome Them
	Naïve Attempt: RAM to Circuit Conversion
	Smarter Attempt: Garble each step circuit…
	Smarter Attempt: Garble each step circuit…
	Smarter Attempt: Garble each step circuit…
	Addressing Challenge I
	Oblivious RAM (ORAM)
	Equivocal Oblivious RAM (ORAM)
	Equivocal Oblivious RAM (ORAM)
	Equivocal Oblivious RAM (ORAM)
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	Quick Review of Tree-Based ORAM [CP13]
	What does it mean to show ORAM is adaptive?
	Addressing Challenge II
	Overview: How to Garble Circuits?
	Overview: How to Adaptively Garble Circuits?
	Overview: How to Adaptively Garble RAM Programs?
	Yao’s Garbling Scheme
	Yao’s Garbling: Static Security
	Non-Committing Encryption
	Circuit-Efficient Equivocal Encryption (Def.)
	Function For Equivocal Encryption
	Function For Equivocation Encryption
	Function For Equivocation Encryption
	Function For Equivocation Encryption
	Other Challenges…
	Future Directions

