Single-Server Private Information Retrieval
with Sublinear Amortized Time

Henry Corrigan-Gibbs Alexandra Henzinger Dmitry Kogan
MIT MIT Fordefi

Eurocrypt 22

Private information retrieval [CGKS95,KO97]

Client Server
PIR protocol
holds —_— holds databa;e
i€ (1,0 - D e {0,1}
— ——
learns D, learns nothing about 1

Applications: private media [GCMSAW16], private e-commerce [HOG11], private ads
[JO1...], private web browsing [KC21], metadata-hiding messaging [AS16...], ...

Private information retrieval [CGKS95,KO97]

Client < 1 communication Server
[CMS99,BGI16,DG16]

holds _— holds databa;e
ie{l,-,n) ' D € {0,1)
W_J W—J

learns D, learns nothing about 1

Private information retrieval [CGKS95,KO97]

Client < 1 communication Server
[CMS99,BGI16,DG16]

holds —_ holds database
i€ (1,0 - D e {0,1}
— —
learns D, learns nothing about 1

PIR inherently has high server-side computation costs [BIMO04,PY22]:
To answer a single query, the server(s) must run in time n.

Private information retrieval [CGKS95,KO97]

Client < 1 communication Server
[CMS99,BGI16,DG16]

holds _— holds database
ie{l,-,n) ' D € {0,1)
W_J W_"

learns D, learns nothing about 1

PIR inherently has high server-side computation costs [BIMO04,PY22]:
To answer a single query, the server(s) must run in time n.

ldea: Amortize the server time over many queries [BIMO04,IKOS04]

Existing PIR with sublinear time

Batch PIR with non-adaptive queries Offline/online PIR with 2 servers
—_—
— '\
\\]
[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18] [CK20,SACM21,KC21]
PIR with preprocessing Download the database

=0 gtec

[BIPW17,CHR17,HOWW18]

Existing PIR with sublinear time

Batch PIR with non-adaptive queries Offline/online PIR with 2 servers
—_—
— '\
\\]
[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18] [CK20,SACM21,KC21]
PIR with preprocessing Download the database

___, |nbitsper e~
$—— |client,or| &
D VBB

[BIPW17,CHR17,HOWW18]

This work

1. The first PIR schemes to have:

adaptive queries

_—
. —— .
sublinear —» sublinear
— e
extra storage a —— amortized time

a single server

- Results preview:
Th IS WO rk n°>'* time + storage from DDH
n? time + storage from FHE

1. The first PIR schemes to have:

adaptive queries

_—
. d— .
sublinear —_— sublinear
— . |
extra storage a — amortized time

a single server

- Results preview:
Th IS WO rk n°>'* time + storage from DDH
n? time + storage from FHE

1. The first PIR schemes to have:

adaptive queries

—ep

: —
sublinear —>

a «——

extra storage \ P E—

a single server

2. Matching lower bounds that relate server time and client storage.

This talk

1. Background: The offline/online PIR model
2.0ur results: New PIR schemes with sublinear time

3. Open questions

This talk

* 1. Background: The offline/online PIR model
2.0ur results: New PIR schemes with sublinear time

3. Open questions

Goal: build PIR for () adaptive queries, with sublinear amortized time

Our approach: build PIR with two phases

1. Once, run a linear-time “offline” phase.

2. For each of the () queries, run a sublinear-time “online” phase.

Many-query offline/online PIR

Many-query offline/online PIR

Many-query offline/online PIR

wants
1, € |n]

recovers D;

Many-query offline/online PIR

holds
.. D e {01}

wants

, € |n]

recovers D;

Many-query offline/online PIR

wants

Many-query offline/online PIR

holds
.. D e {01}

wants

i\, € [n]

recovers D,

O

Many-query PIR requirements

* Correctness: If the client and server execute the protocol faithfully,

forany D, for any iy, -++, i, € [n], the client correctly recovers D, , -+, DiQ

with overwhelming probability.

* Malicious security: Even if the server does not follow the protocol, the
server learns nothing about 7, ---, iQ.

More formally, for any I, I’ € [n]<,
{Server's view on query sequence I} ~_. {Server's view on query sequence '}

Many-query PIR requirements

* Correctness: If the client and server execute the protocol faithfully,

forany D, for any iy, -++, i, € [n], the client correctly recovers D, , -+, DiQ

with overwhelming probability.

 Malicious security: Even if the server does not follow the protocol, the
server learns nothing about 7, ---, iQ.

More formally, for any I, I’ € [n]<,
{Server's view on query sequence I} ~_. {Server's view on query sequence [’}

In our schemes, the queries are independent of the server’s past answers.

Many-query PIR requirements

 Correctness: If the client and server execute the protocol faithfully,

forany D, for any iy, -++, i, € [n], the client correctly recovers D, , -+, DiQ

with overwhelming probability.

* Malicious security: Even if the server does not follow the protocol, the
server learns nothing about 7, ---, iQ.

More formally, for any [, I’ & (n]<,
{Server's view on query sequence [} =_. {Server's view on query sequence [’}

Goal: Minimize communication, computation, and storage costs

This talk

1. Background: The offline/online PIR model
=) 2. Our results: New PIR schemes with sublinear time

3. Open questions

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size n, when the client makes ni'4 adaptive queries, has:

e amortized server time n3/4,

e client storage n>* and no extra server storage,

. amortized client time 1 1/2 . and

e amortized communication n1/2.

Throughout this talk, we omit log(n) and poly(4) factors.

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size n, when the client makes ni'4 adaptive queries, has:

e amortized server time n3/4,

e client storage n>* and no extra server storage,

. amortized client time 1 1/2 . and

e amortized communication n1/2.

Theorem 2: From fully homomorphic encryption.

Assuming FHE™, we improve the amortized server time and client storage to
, If the client makes n'l’? adaptive queries.

" 1/2

Throughout this talk, we omit log(n) and poly(4) factors.

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

database size n, when the client makes ni'4 adaptive queries, has:
e amortized server time n3/4,
e client storage n>* and no extra server storage,
. amortized client time 1 1/2 . and

e amortized communication n1/2.

Theorem 2: From fully homomorphic encryption.

Assuming FHE™, we improve the amortized server time and client storage to
nt/ 2, if the client makes 1’2 adaptive queries.

We prove that the tradeoff between server time + client storage is optimal.

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on

database size n, when the client makes ni'4 adaptive queries, has:
e amortized server time n3/4,
e client storage n>* and no extra server storage,
. amortized client time 1 1/2 . and

e amortized communication n1/2.

Theorem 2: From fully homomorphic encryption.

Assuming FHE™, we improve the amortized server time and client storage to
nt/ 2, if the client makes 1’2 adaptive queries.

We prove that the tradeoff between server time + client storage is optimal.

Proof sketch for Theorem 1

New: Many-query PIR with
sublinear amortized time

New: generic compiler,

applying ideas from batch codes
[IKOS04]

Single-query PIR with
sublinear online time
[CK20]

Single-query PIR with sublinear online time [CK20)]

offline time n

hint size n2/3 ﬁ % —

holds
.. D E {O,l}n
wants
1 € |n] online time n*>

recovers D,

Assuming DDH, QR, DCR, or LWE

Single-query PIR with sublinear online time [CK20)]

offline time n

hint size n2/3 ﬁ % —

holds
.. D E {O,l}n
wants
1 € |n] online time n*>

recovers D,

Assuming DDH, QR, DCR, or LWE

Our compiler: To handle O adaptive queries, split the database into) random chunks.

sends permutation
%

holds D € {0,1}",
in O chunks of size n/Q

Our compiler: To handle O adaptive queries, split the database into) random chunks.

sends permutation
—>

Observation: When the client makes O adaptive queries, holds D € {0,1}",
at most A distinct queries fall in any one chunk, in O chunks of size n/Q
with probability 1 — negl(4).

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

X

holds D € {0,1}"

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

holds D € {0,1}"

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

5}—»

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

A =

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

recovers + caches D;

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

recovers + caches D;

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

]
AQ hints wiavis

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

wants

i, € [n] holds D € {0,1}",

in O chunks of size n/Q

recovers + caches D;

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

]
AQ hints wiavis

holds D € {0,1}",
in O chunks of size n/Q

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

wants

i € [n] holds D € {0,1}",

in O chunks of size n/Q

recovers + caches D;

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Correctness: for any query sequence, the client does not run out of fresh hints
(with overwhelming probability over the choice of permutation).

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Security: The client’s query does not reveal which chunk it is reading.

Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Cost: We ran the underlying PIR AQ times, on database size n/Q.

Proof sketch for Theorem 1

Input: Single-query PIR with Output: Many-query PIR with
sublinear online time [CK20] sublinear amortized time
hint size n*> hint size n°/*

offline time n offline time n

online time n%3 Generic compiler, with online time 73/
O = n'"* queries

Throughout this talk, we omit log(n) and poly(4) factors.

Proof sketch for Theorem 1

Input: Single-query PIR with Output: Many-query PIR with
sublinear online time [CK20] sublinear amortized time
hint size n/> hint size n°/*

offline time n offline time n

online time n%3 Generic compiler, with online time 73/

O = n'"* queries *

amortized time n

3/4

Throughout this talk, we omit log(n) and poly(4) factors.

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size n, when the client makes > ni'4 adaptive queries, has:

e amortized server time n3/4,

e client storage n>* and no extra server storage,

. amortized client time 1 1/2 . and

e amortized communication n1/2.

Theorem 2: From fully homomorphic encryption.

Assuming FHE, we improve the amortized server time and client storage to
, If the client makes n'l’? adaptive queries.

" 1/2

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size n, when the client makes > ni'4 adaptive queries, has:

e amortized server time n3/4,

e client storage n>* and no extra server storage,

. amortized client time 1 1/2 . and

e amortized communication n1/2.

Theorem 2: From fully homomorphic encryption.

Assuming FHE, we improve the amortized server time and client storage to
, If the client makes n'l’? adaptive queries.

" 1/2

Proof idea for I heorem 2

Informal claim 1.

Given the parities of O((Q) random, size-n/(subsets of the database,
the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Proof idea for I heorem 2

Informal claim 1.

Given the parities of O((Q) random, size-n/(subsets of the database,
the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of O((Q) subsets of
the database, each of size n/Q, in O(n) gates.

In the offline phase, the server runs the circuit under FHE in linear time.

This talk

1. Background: The offline/online PIR model

2.0ur results: New PIR schemes with sublinear time

=) 3.0Open questions

Adaptive single-server PIR with sublinear time + storage is feasible:

\/; adaptive queries

\/ﬁ client a % h — | ! \/Z amortized

storage time

Adaptive single-server PIR with sublinear time + storage is feasible:

\/2 adaptive queries

\/; client ﬁ % h — | ! \/Z amortized

storage time

But, these schemes are not yet efficient enough for use in practice.

» Follow-up work [ZLTS22] improves the communication to 5/1(1).

» Can we construct optimal schemes from assumptions weaker than FHE"

» Can we beat our lower bounds by having the server encode the database”?

Adaptive single-server PIR with sublinear time + storage is feasible:

\/; adaptive queries

\/ﬁ client a % h— | ! \/Z amortized
S —

storage time

But, these schemes are not yet efficient enough for use in practice.

» Follow-up work [ZLTS22] improves the communication to 5/1(1).

» Can we construct optimal schemes from assumptions weaker than FHE"

» Can we beat our lower bounds by having the server encode the database”?

ahenz@csail.mit.edu — https://eprint.iacr.org/2022/081

mailto:ahenz@csail.mit.edu
https://eprint.iacr.org/2022/081

