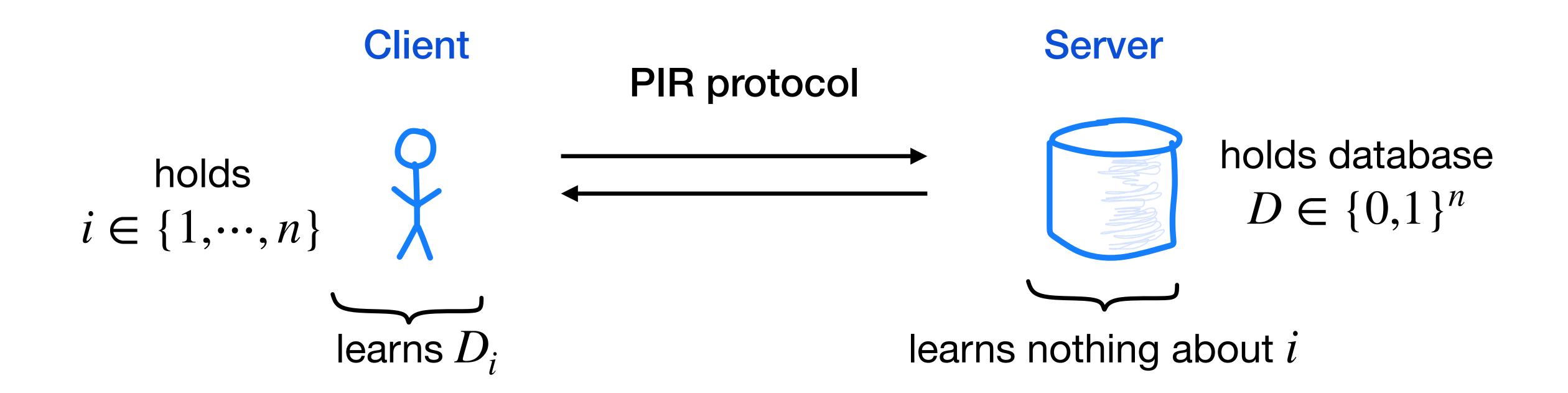
Single-Server Private Information Retrieval with Sublinear Amortized Time

Henry Corrigan-Gibbs
MIT

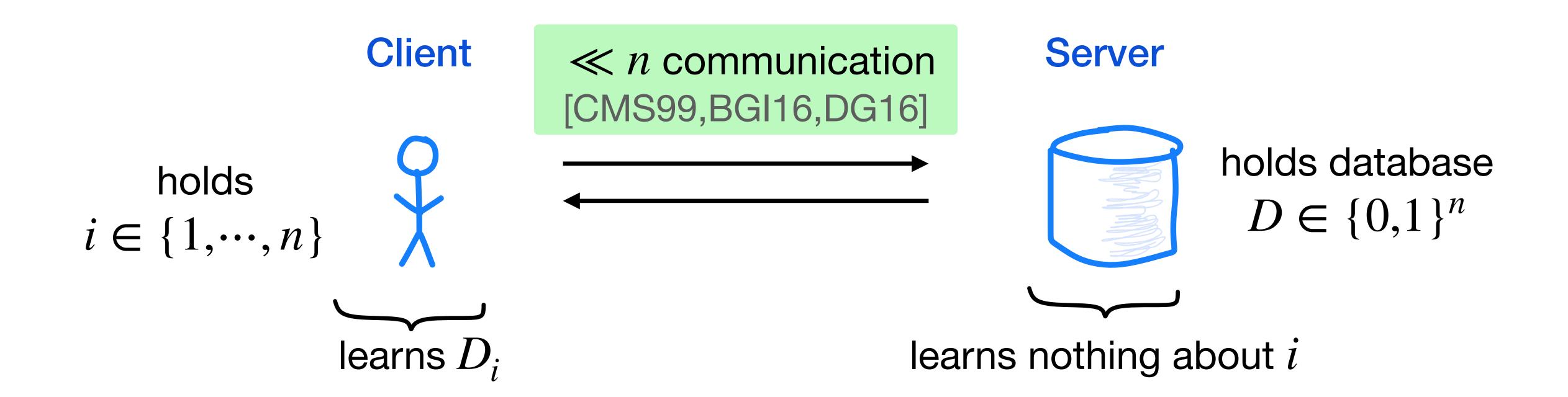
Alexandra Henzinger
MIT

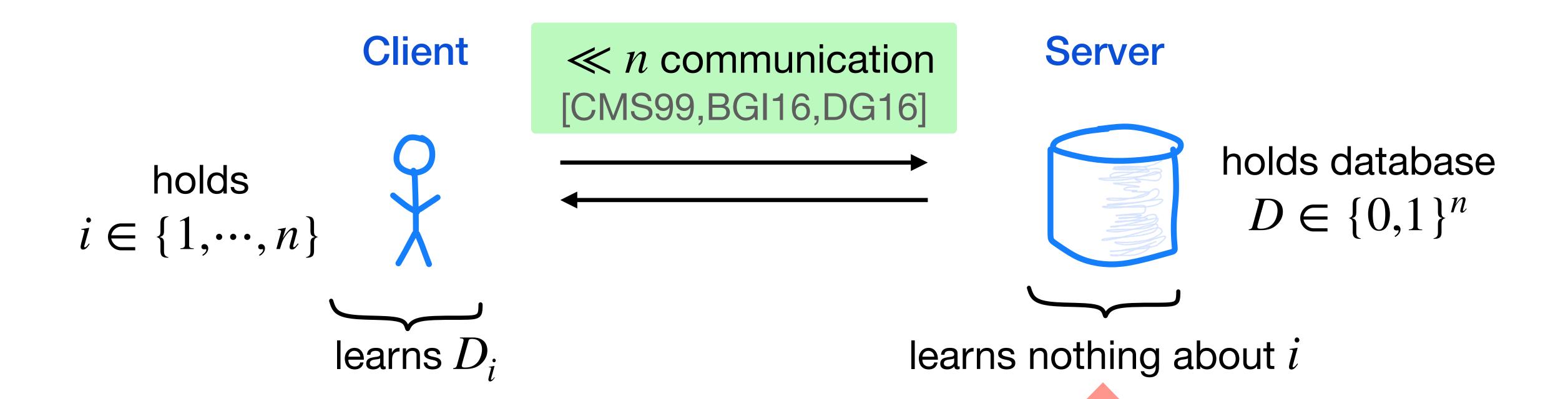
Dmitry Kogan Fordefi

Eurocrypt '22

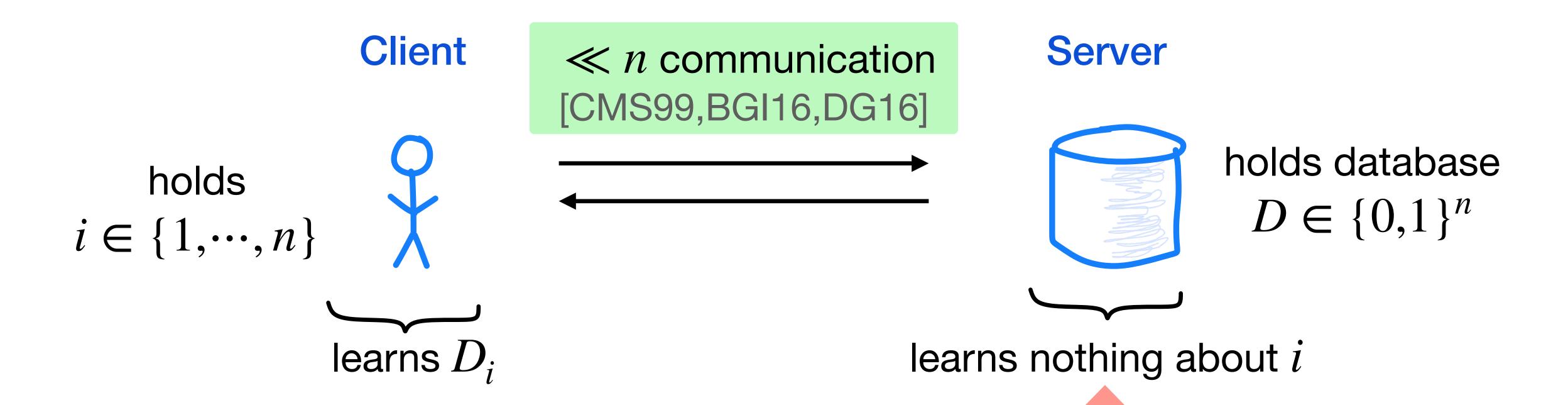


Applications: private media [GCMSAW16], private e-commerce [HOG11], private ads [J01...], private web browsing [KC21], metadata-hiding messaging [AS16...], ...





PIR inherently has high server-side computation costs [BIM04,PY22]: To answer a single query, the server(s) must run in time n.

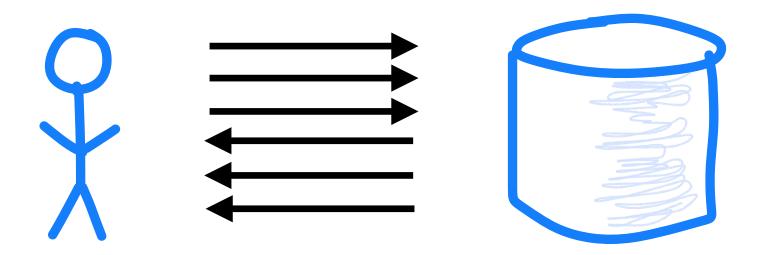


PIR inherently has high server-side computation costs [BIM04,PY22]: To answer a single query, the server(s) must run in time n.

Idea: Amortize the server time over many queries [BIM04,IKOS04]

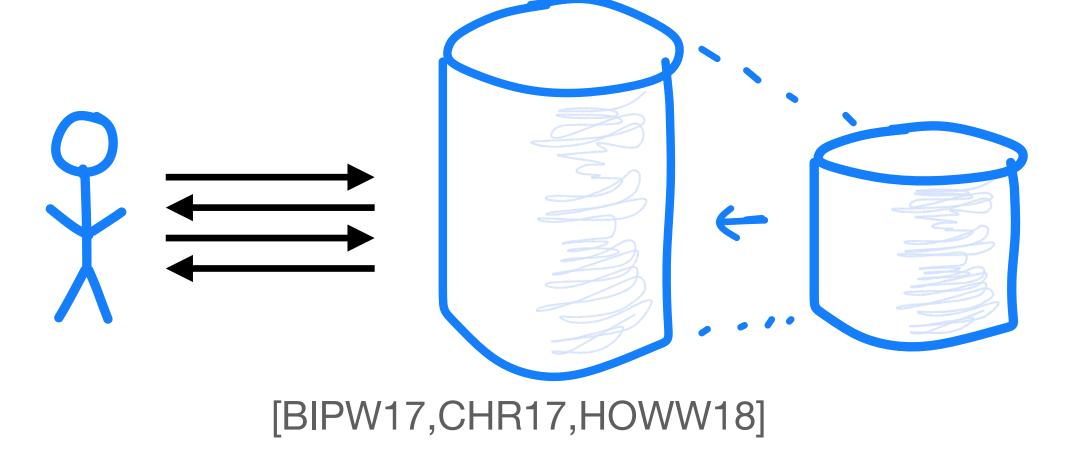
Existing PIR with sublinear time

Batch PIR with non-adaptive queries

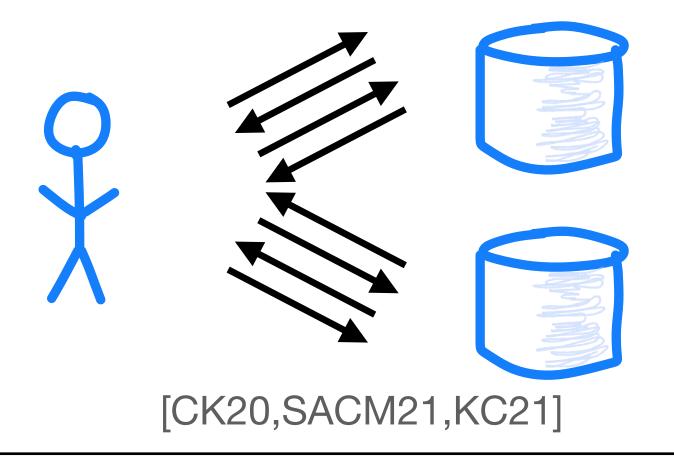


[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

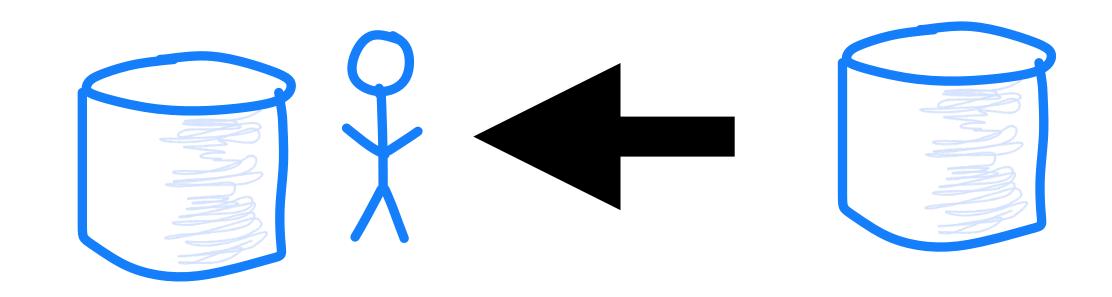
PIR with preprocessing



Offline/online PIR with 2 servers

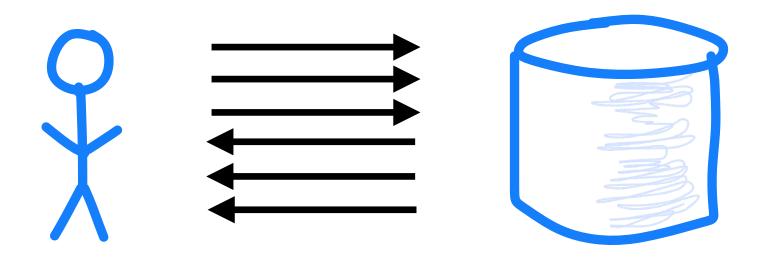


Download the database



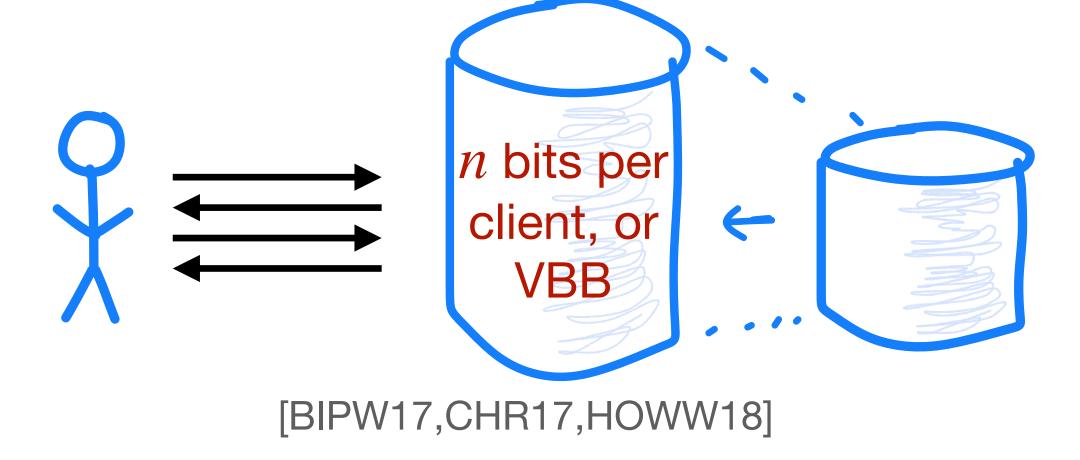
Existing PIR with sublinear time

Batch PIR with non-adaptive queries

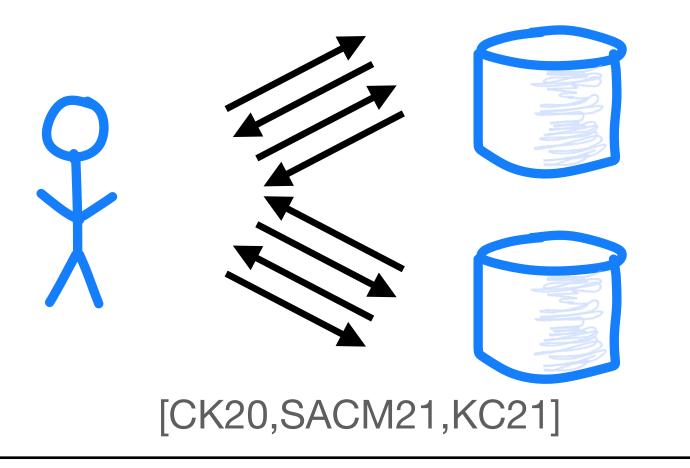


[IKOS04,HHG13,GKL10,AS16,H16,ACLS18,CHLR18]

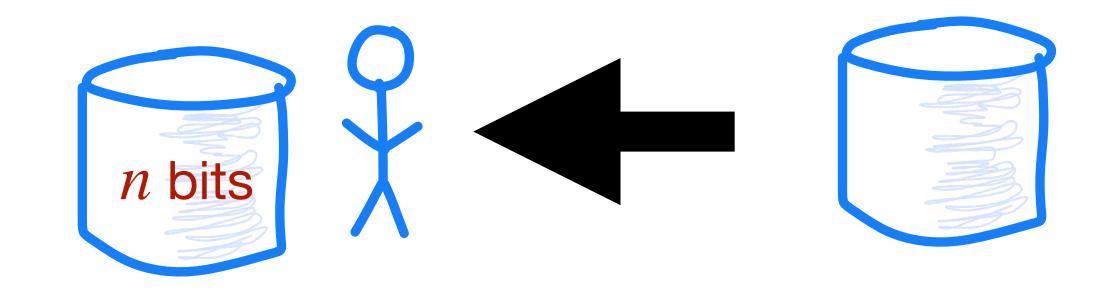
PIR with preprocessing



Offline/online PIR with 2 servers

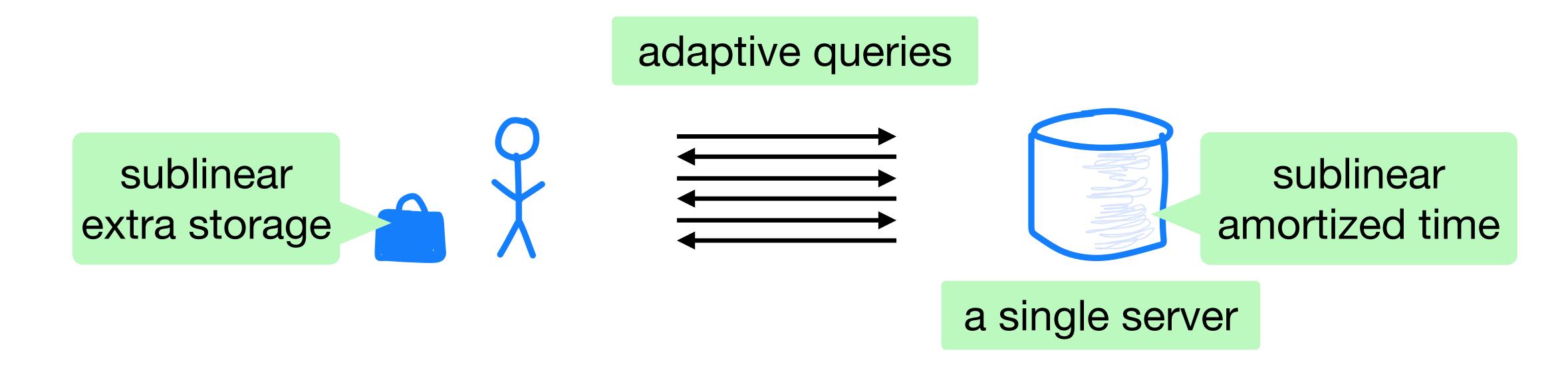


Download the database



This work

1. The first PIR schemes to have:



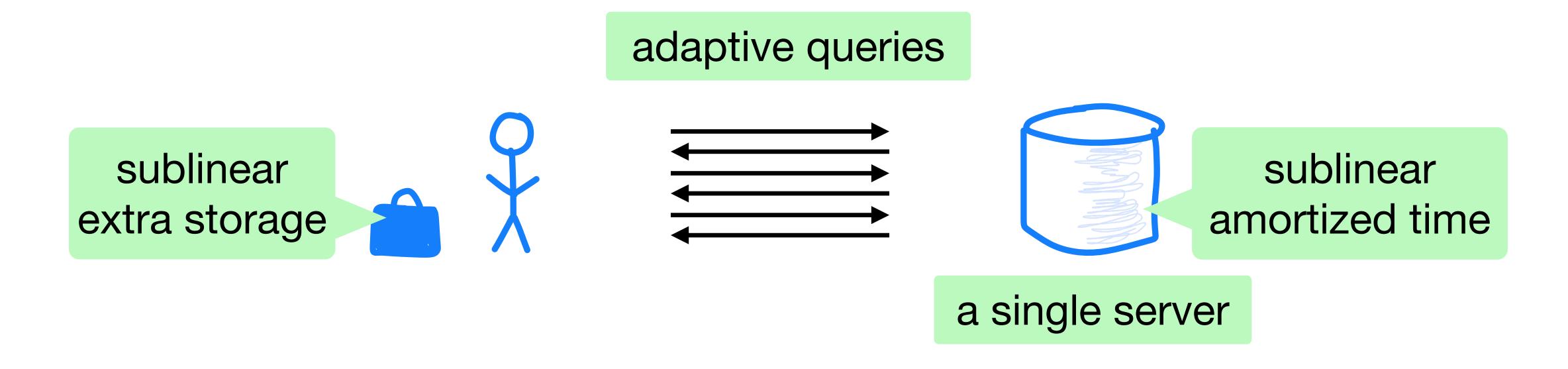
2. Matching lower bounds that relate server time and client storage.

This work

Results preview:

 $n^{3/4}$ time + storage from DDH $n^{1/2}$ time + storage from FHE

1. The first PIR schemes to have:



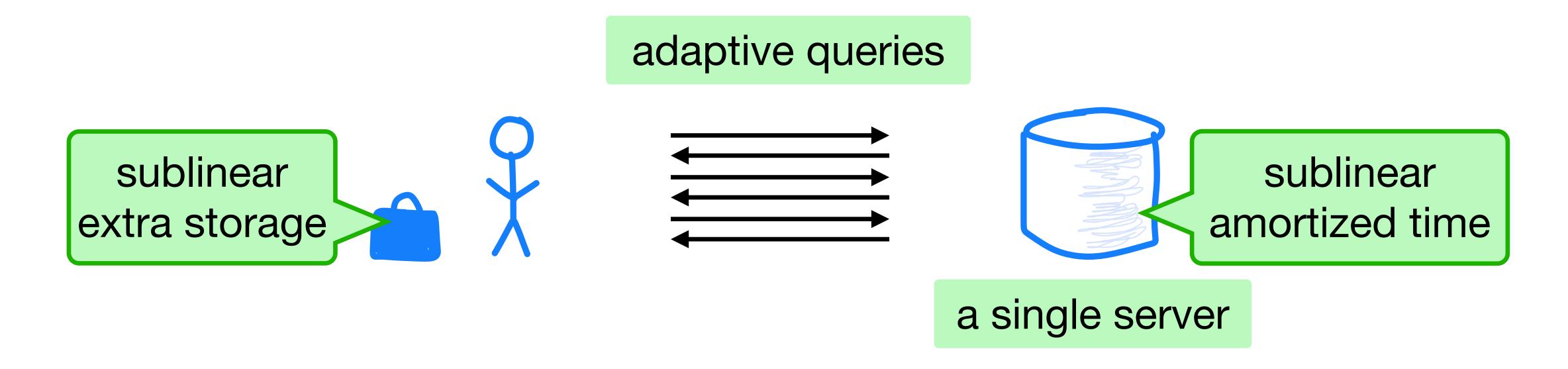
2. Matching lower bounds that relate server time and client storage.

This work

Results preview:

 $n^{3/4}$ time + storage from DDH $n^{1/2}$ time + storage from FHE

1. The first PIR schemes to have:



2. Matching lower bounds that relate server time and client storage.

This talk

- 1. Background: The offline/online PIR model
- 2. Our results: New PIR schemes with sublinear time
- 3. Open questions

This talk



1. Background: The offline/online PIR model

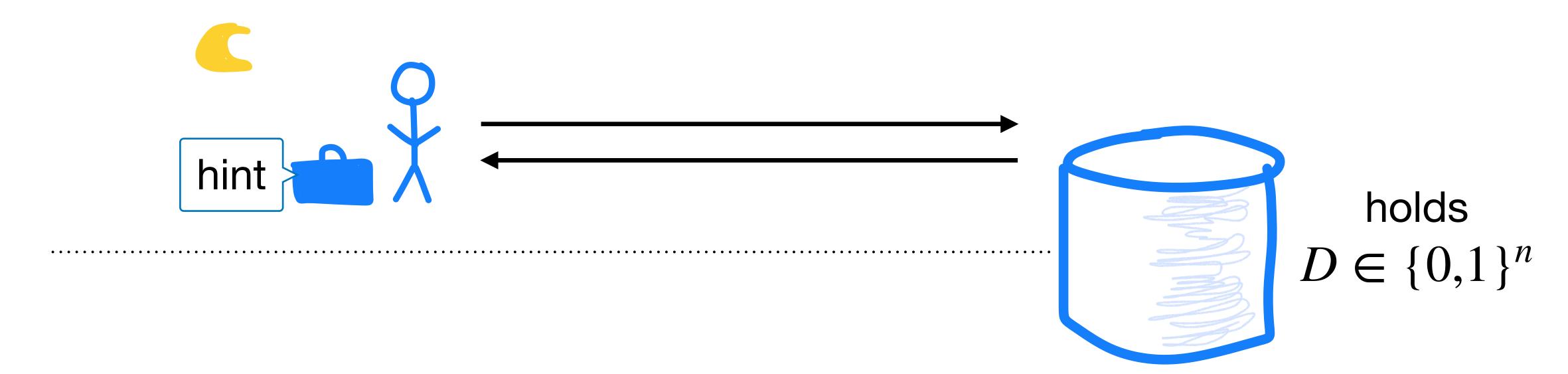
2. Our results: New PIR schemes with sublinear time

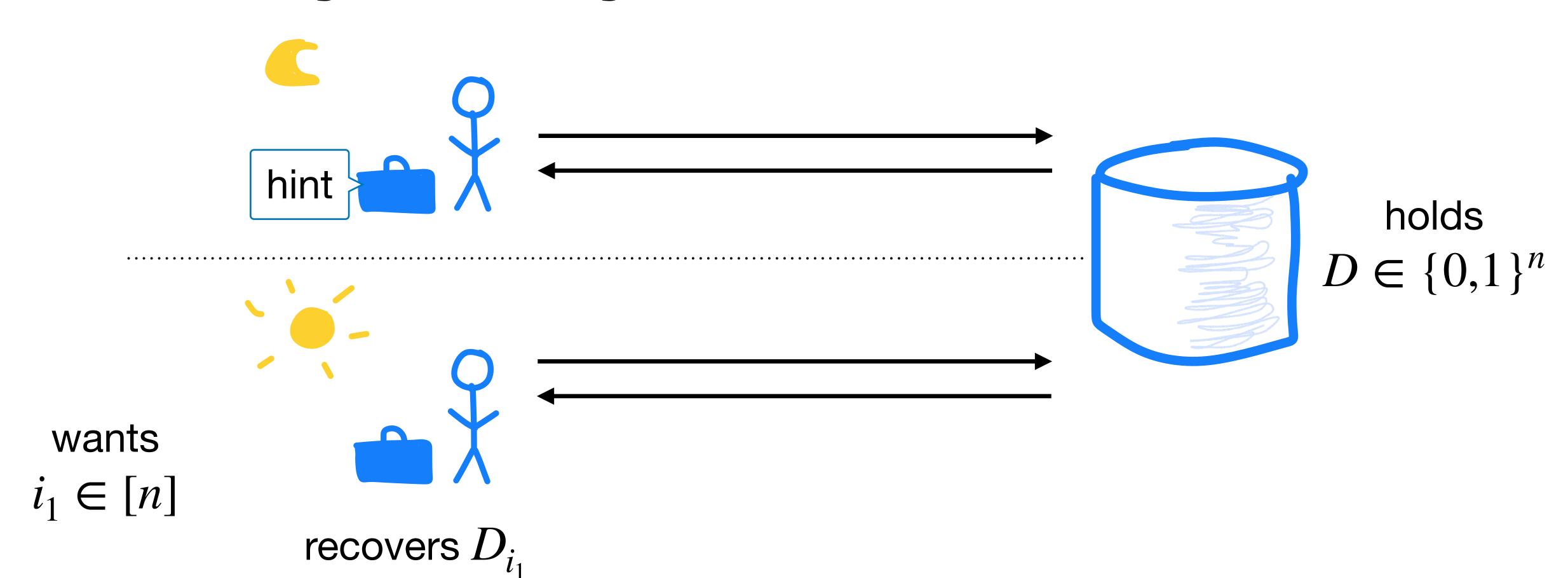
3. Open questions

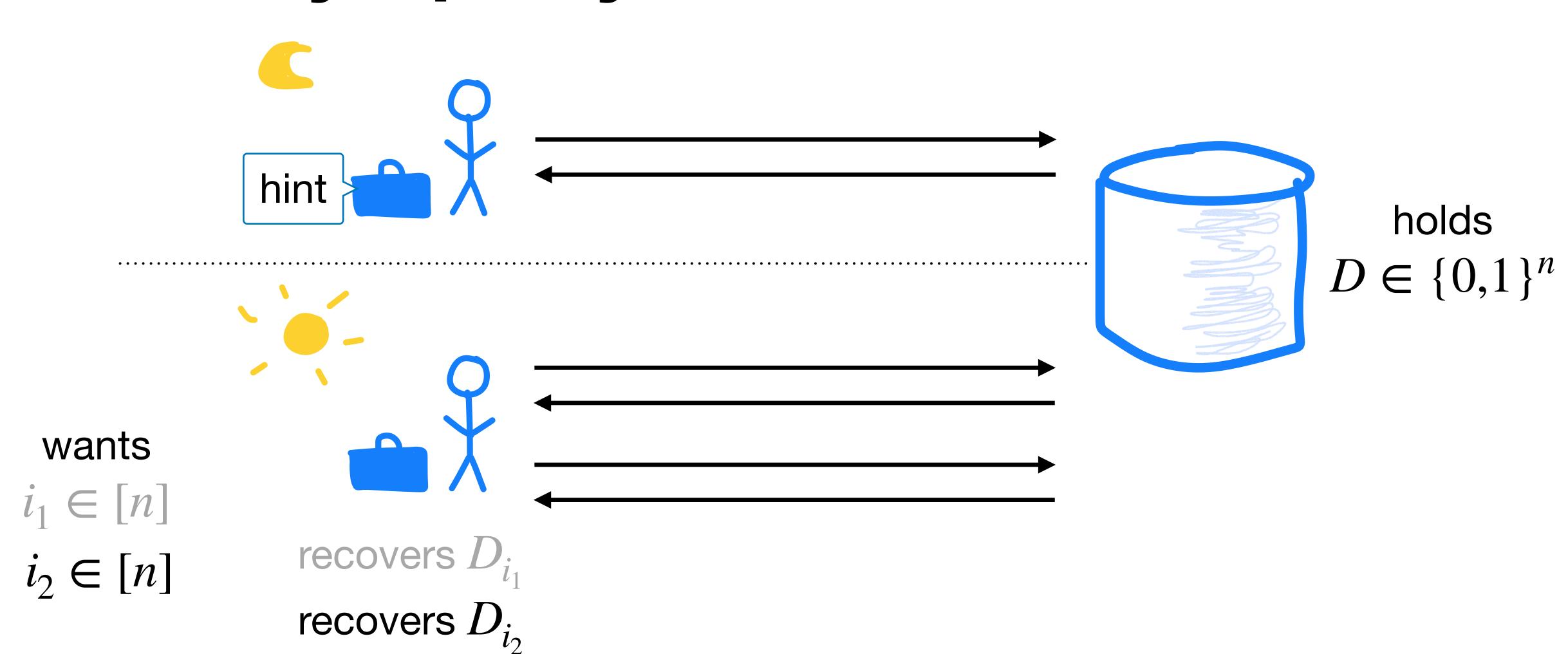
Goal: build PIR for Q adaptive queries, with sublinear amortized time

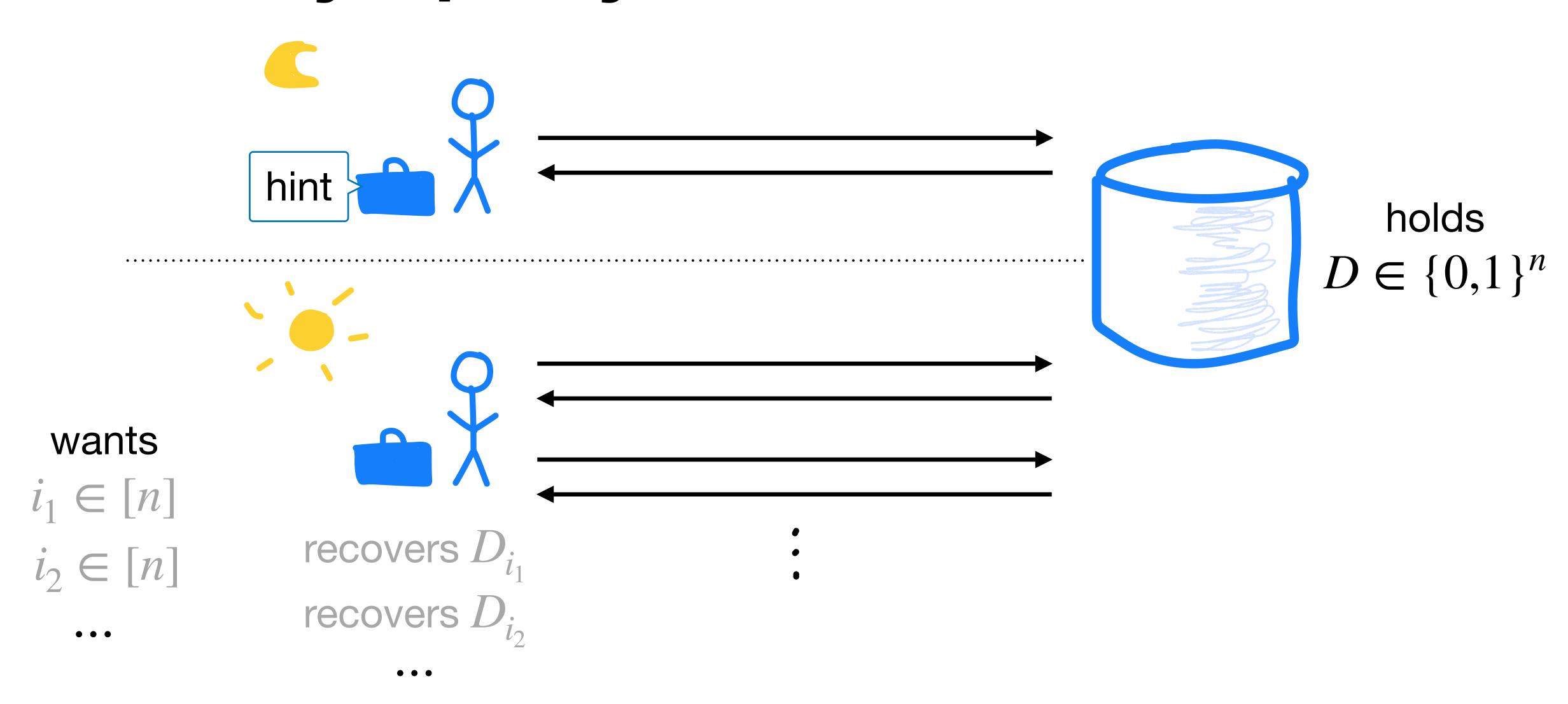
Our approach: build PIR with two phases

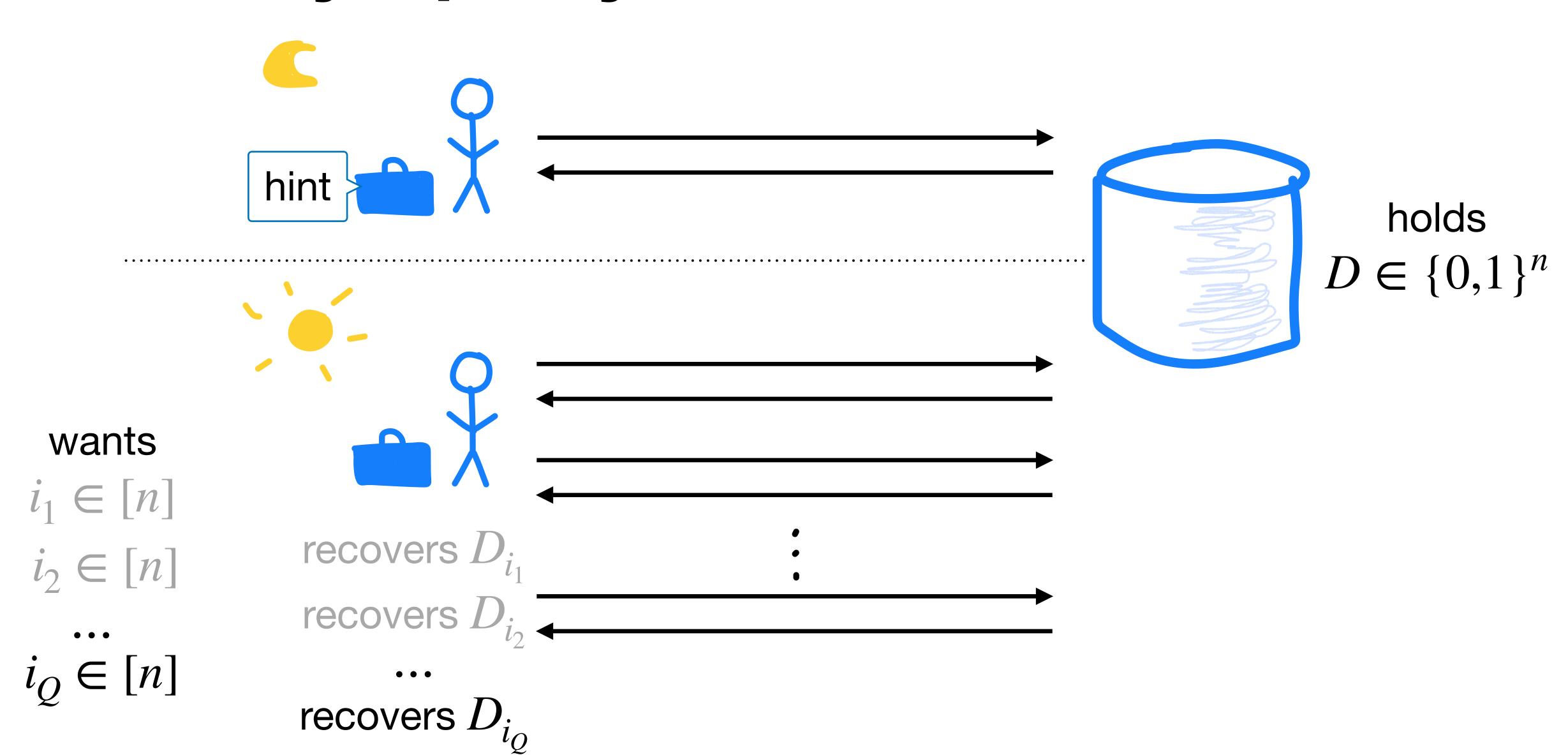
- 1. Once, run a linear-time "offline" phase.
- 2. For each of the Q queries, run a sublinear-time "online" phase.











Many-query PIR requirements

- Correctness: If the client and server execute the protocol faithfully, for any D, for any $i_1, \cdots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \cdots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \cdots, i_Q .

```
More formally, for any I, I' \in [n]^Q,
```

{Server's view on query sequence I} \approx_c {Server's view on query sequence I'}

Many-query PIR requirements

- Correctness: If the client and server execute the protocol faithfully, for any D, for any $i_1, \cdots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \cdots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \cdots, i_Q . More formally, for any $I, I' \in [n]^Q$, {Server's view on query sequence I} \approx_c {Server's view on query sequence I'}

In our schemes, the queries are independent of the server's past answers.

Many-query PIR requirements

- Correctness: If the client and server execute the protocol faithfully, for any D, for any $i_1, \cdots, i_Q \in [n]$, the client correctly recovers D_{i_1}, \cdots, D_{i_Q} , with overwhelming probability.
- Malicious security: Even if the server does not follow the protocol, the server learns nothing about i_1, \dots, i_Q .

 More formally, for any $I, I' \in [n]^Q$,

{Server's view on query sequence I} $pprox_c$ {Server's view on query sequence I'}

Goal: Minimize communication, computation, and storage costs

This talk

1. Background: The offline/online PIR model



2. Our results: New PIR schemes with sublinear time

3. Open questions

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- ullet amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- ullet amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

We prove that the tradeoff between server time + client storage is optimal.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

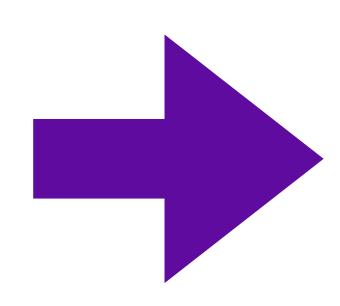
Theorem 2: From fully homomorphic encryption.

Assuming FHE*, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

We prove that the tradeoff between server time + client storage is optimal.

Proof sketch for Theorem 1

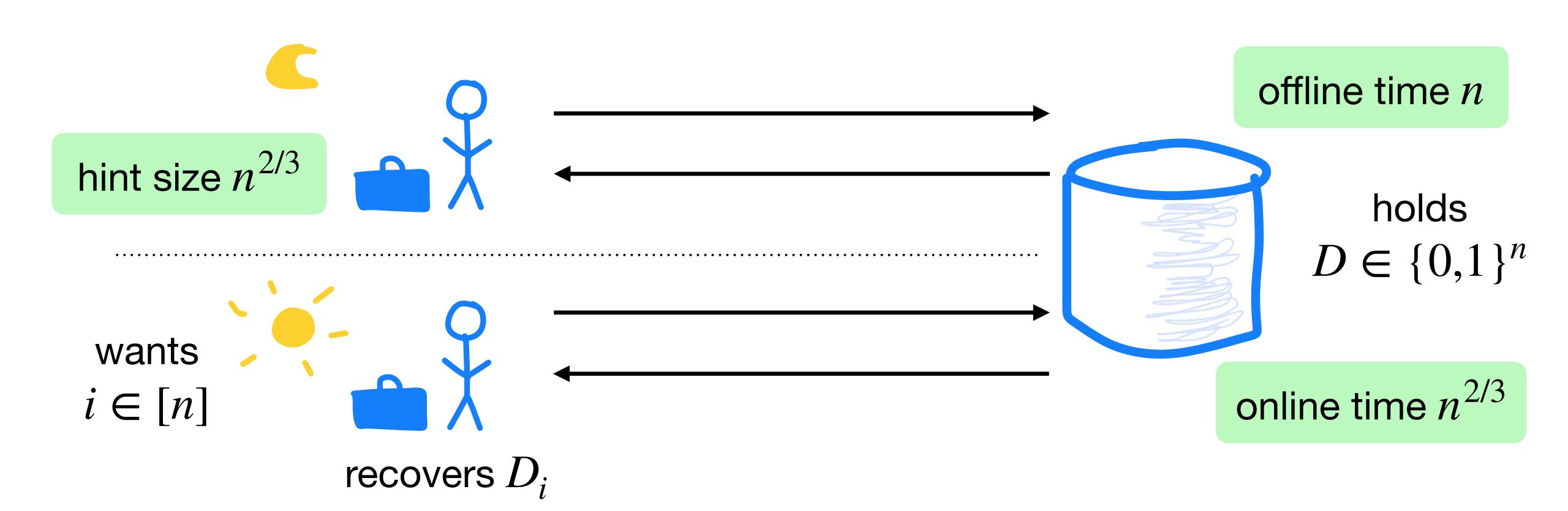
Single-query PIR with sublinear online time [CK20]



New: Many-query PIR with sublinear amortized time

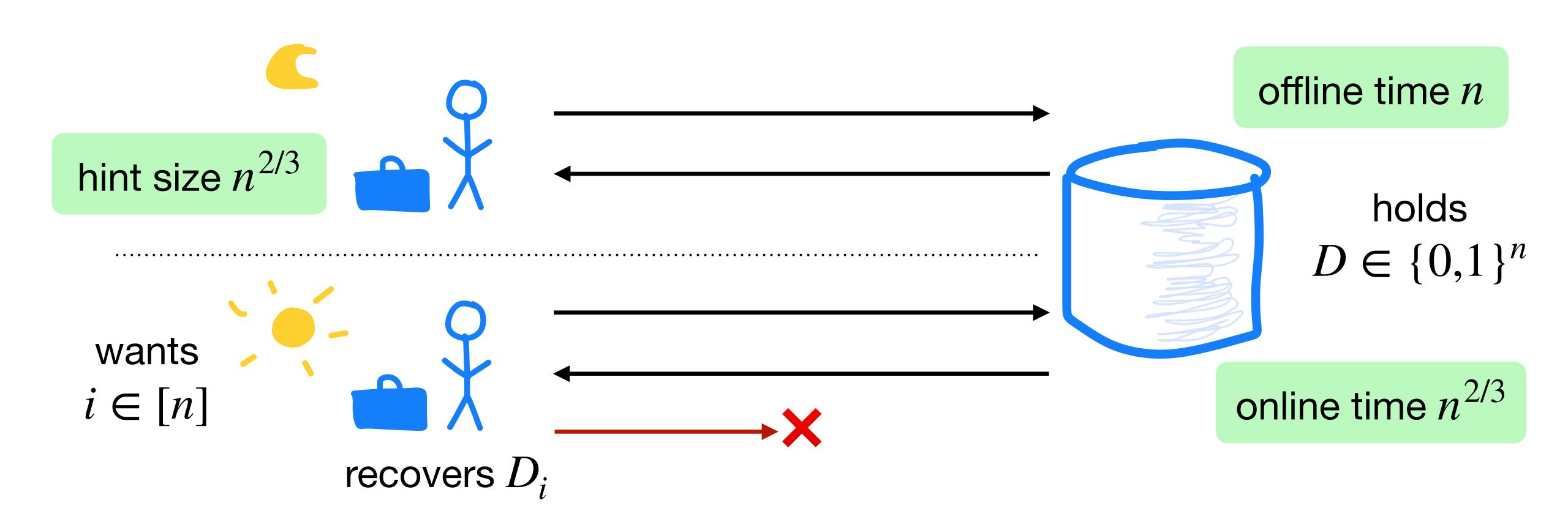
New: generic compiler, applying ideas from batch codes [IKOS04]

Single-query PIR with sublinear online time [CK20]



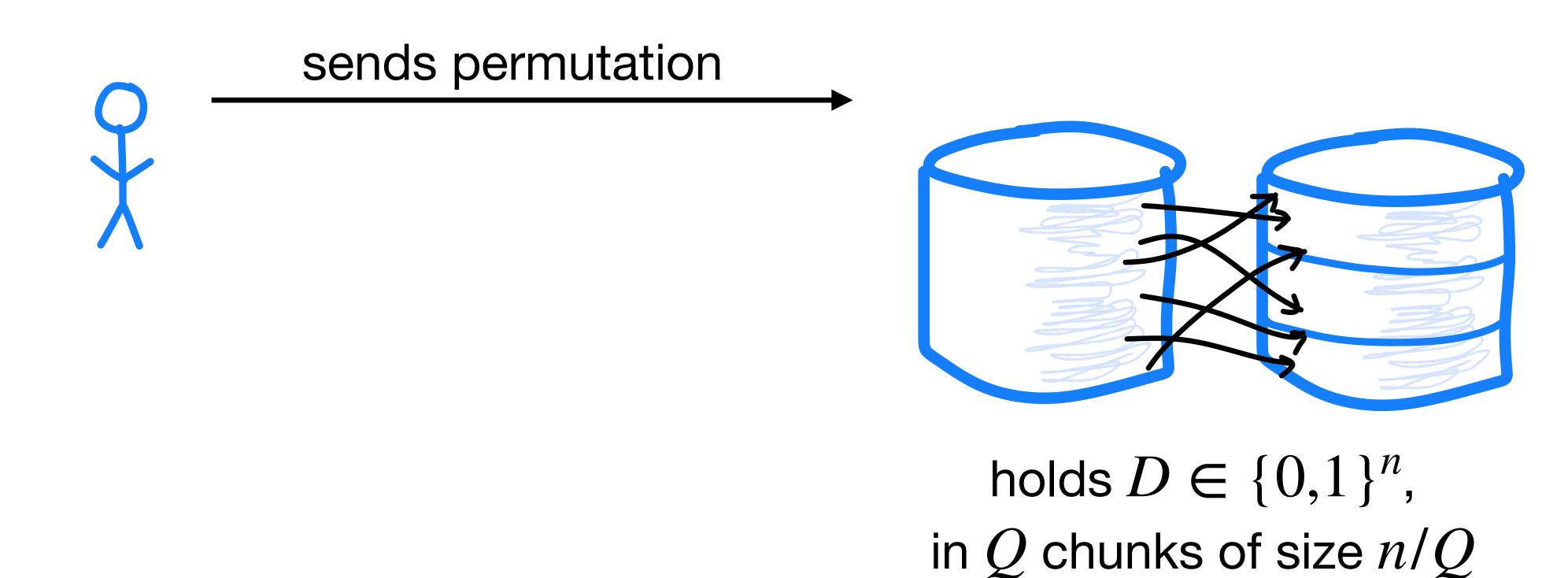
Assuming DDH, QR, DCR, or LWE

Single-query PIR with sublinear online time [CK20]

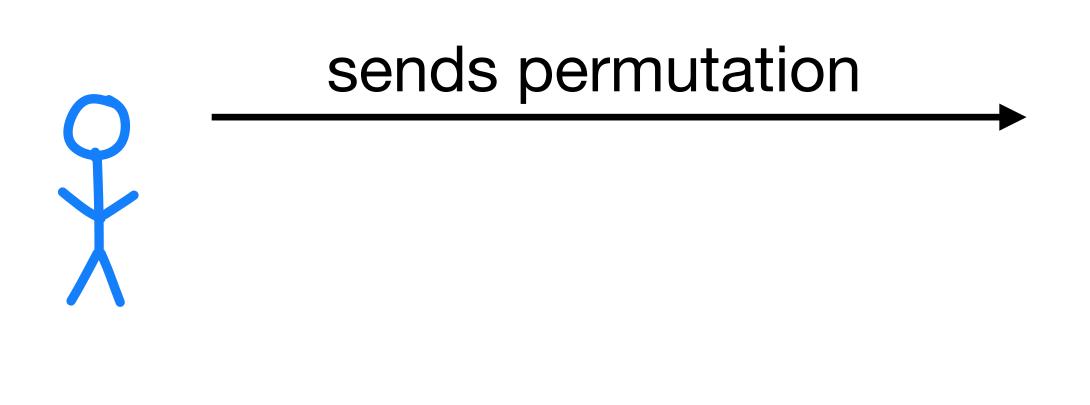


Assuming DDH, QR, DCR, or LWE

Our compiler: To handle ${\it Q}$ adaptive queries, split the database into ${\it Q}$ random chunks.



Our compiler: To handle ${\it Q}$ adaptive queries, split the database into ${\it Q}$ random chunks.

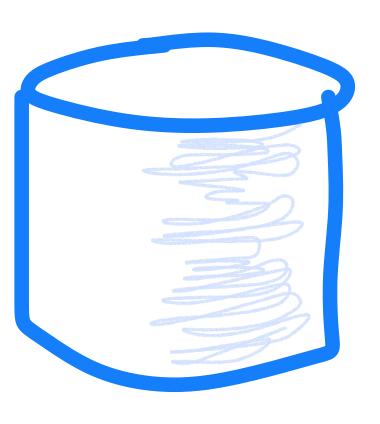


Observation: When the client makes Q adaptive queries, at most λ distinct queries fall in any one chunk, with probability $1 - \text{negl}(\lambda)$.

holds $D \in \{0,1\}^n$, in Q chunks of size n/Q

Online: Run an online phase on each chunk, using a hint matching the index.

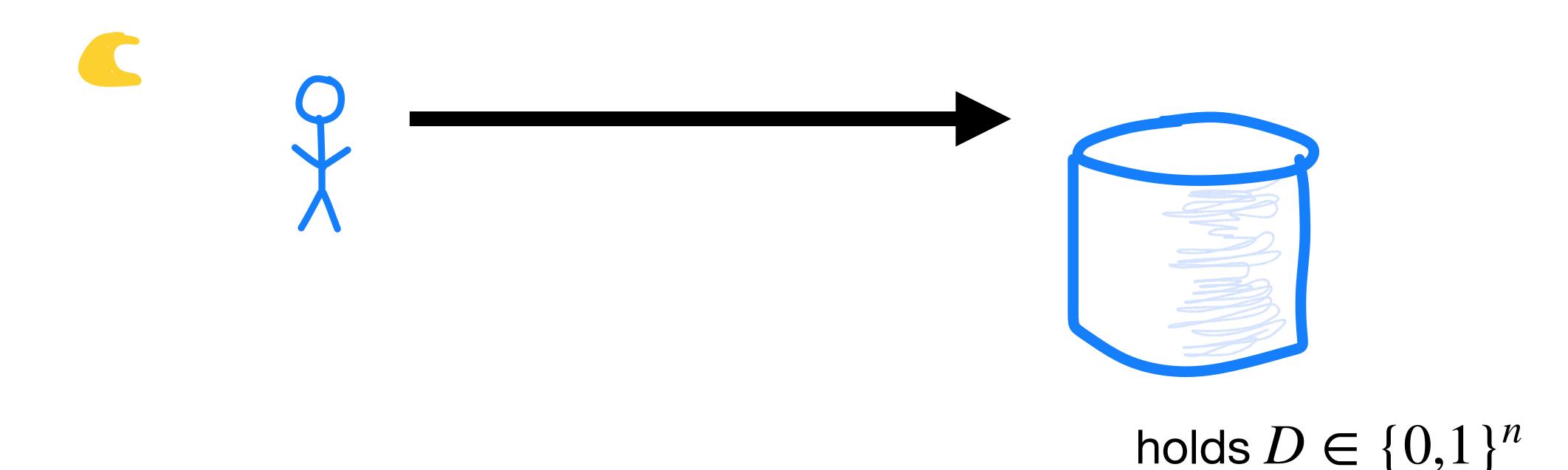
The client caches all recovered bits, to never re-query for the same index.



$$\mathsf{holds}\,D \in \{0,1\}^n$$

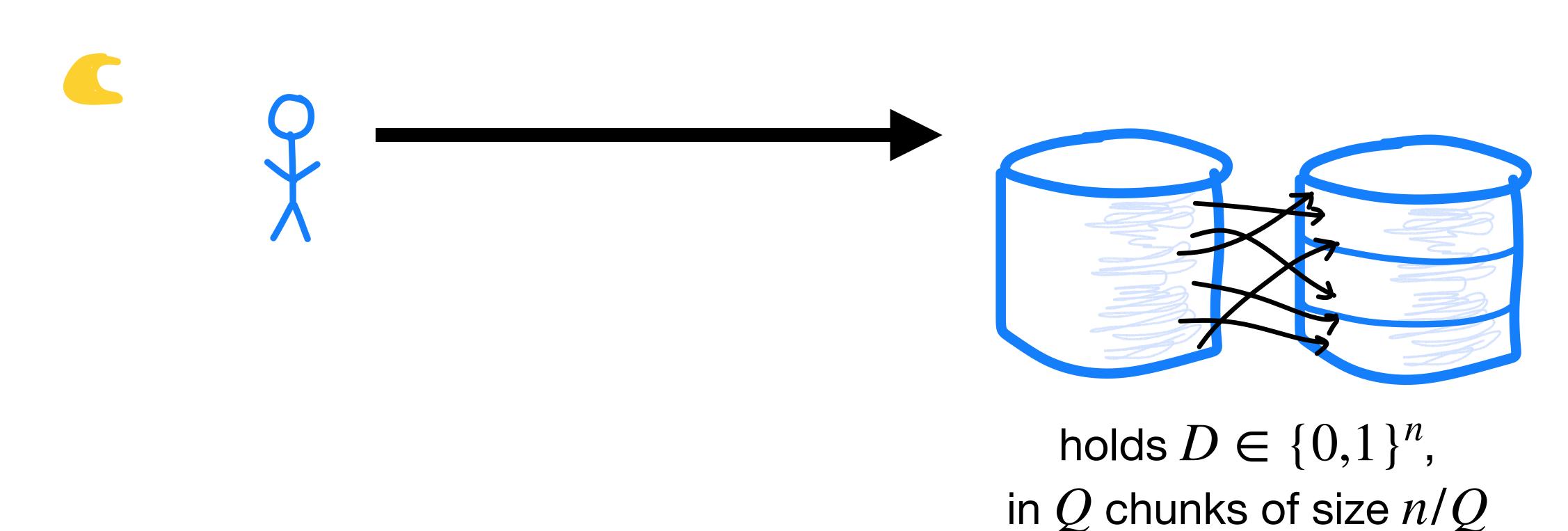
Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



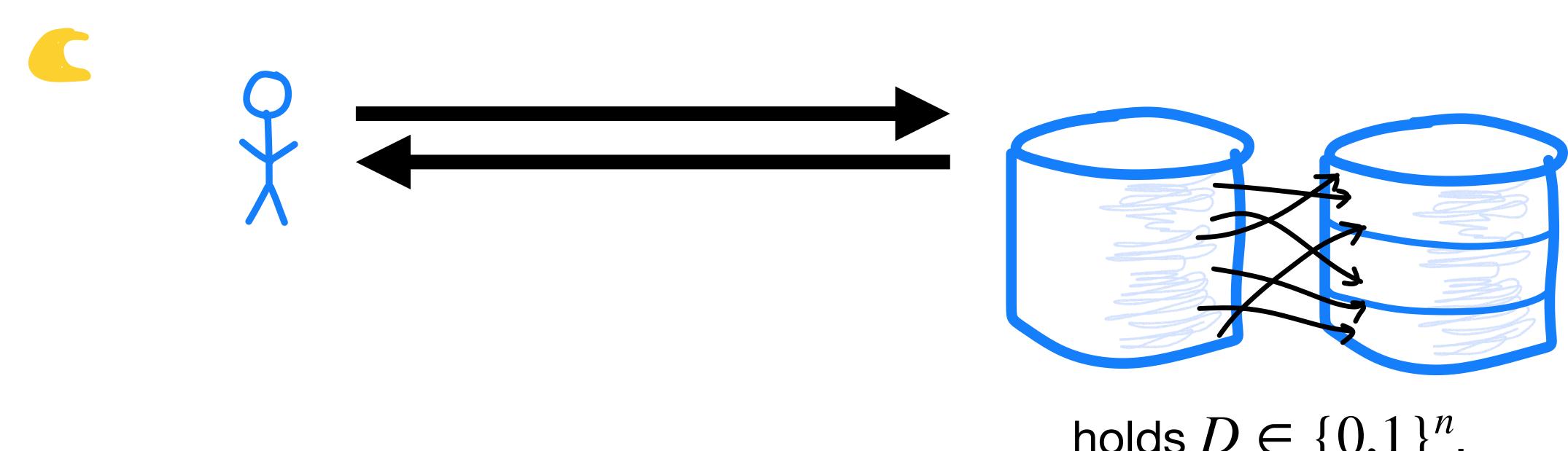
Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



Online: Run an online phase on each chunk, using a hint matching the index.

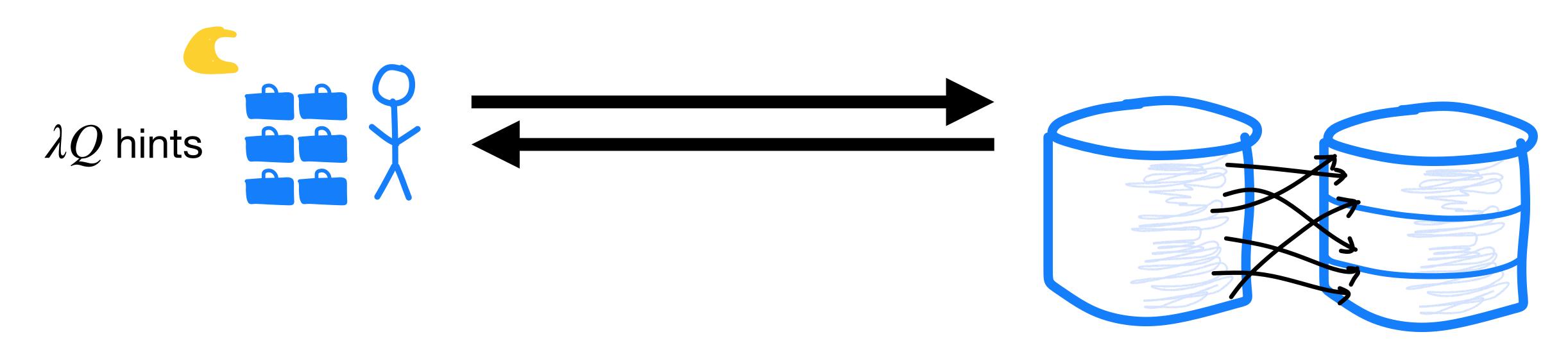
The client caches all recovered bits, to never re-query for the same index.



holds $D \in \{0,1\}^n$, in Q chunks of size n/Q

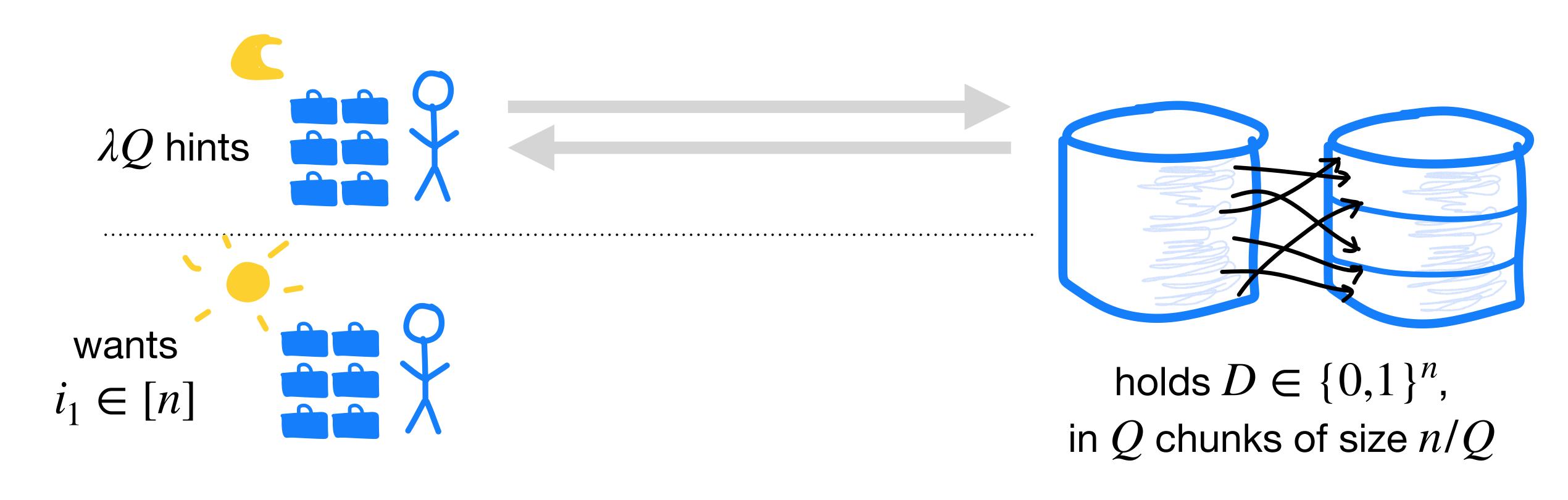
Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



holds $D \in \{0,1\}^n$, in Q chunks of size n/Q

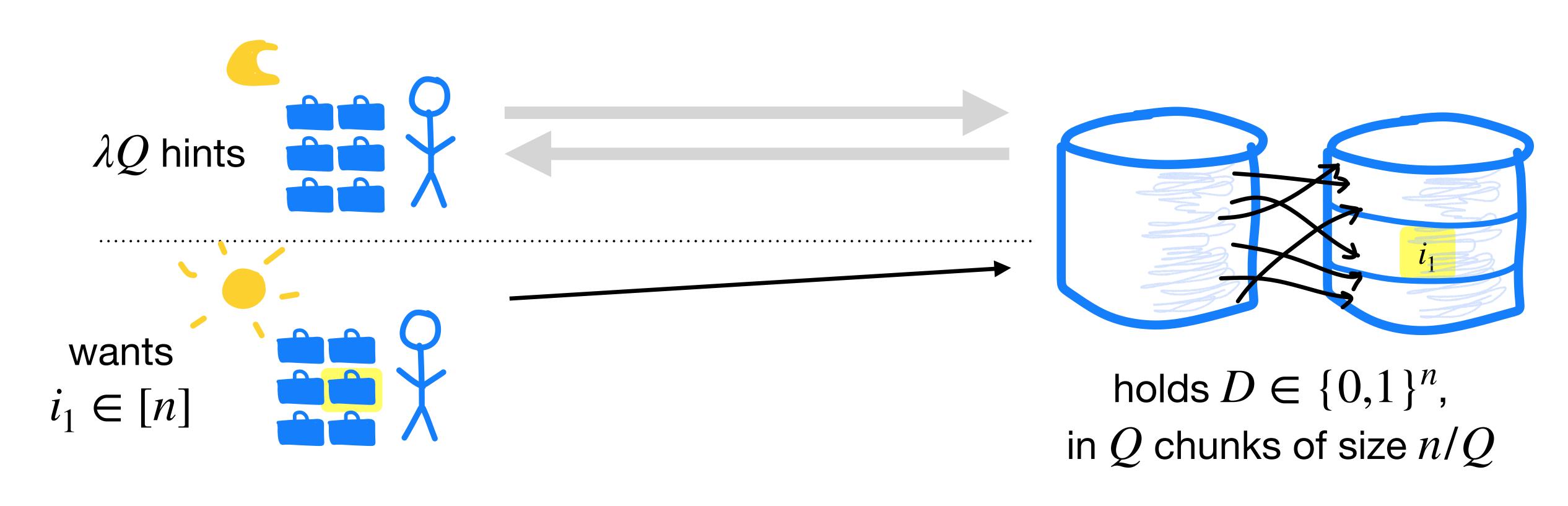
Online: Run an online phase on each chunk, using a hint matching the index.



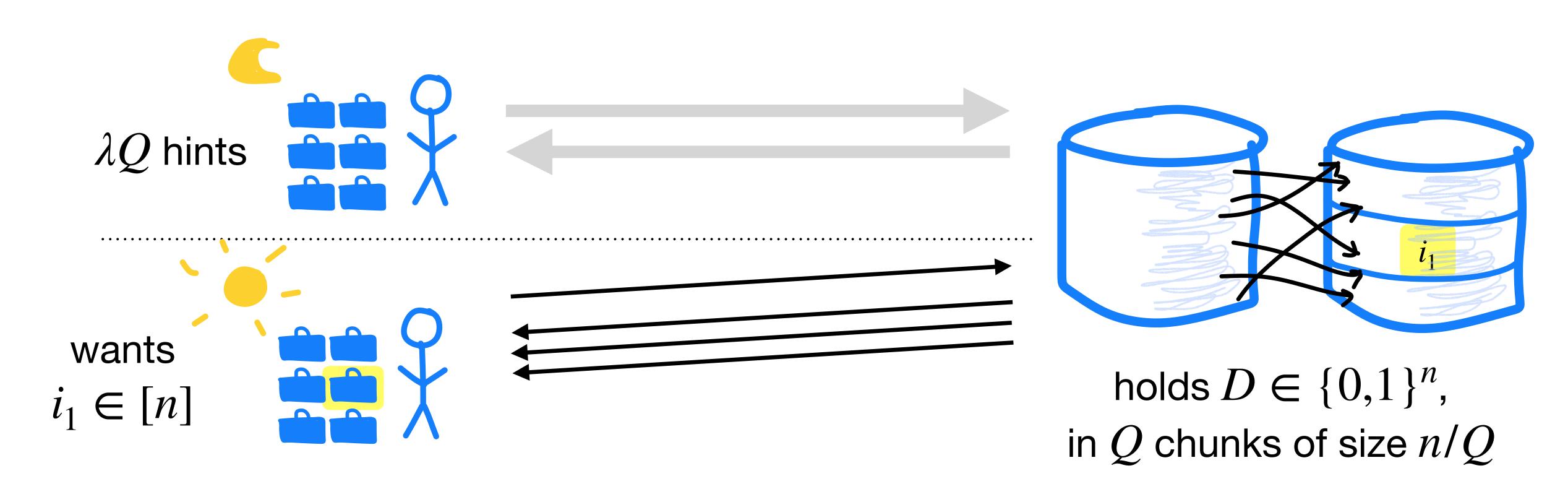
Online: Run an online phase on each chunk, using a hint matching the index.



Online: Run an online phase on each chunk, using a hint matching the index.

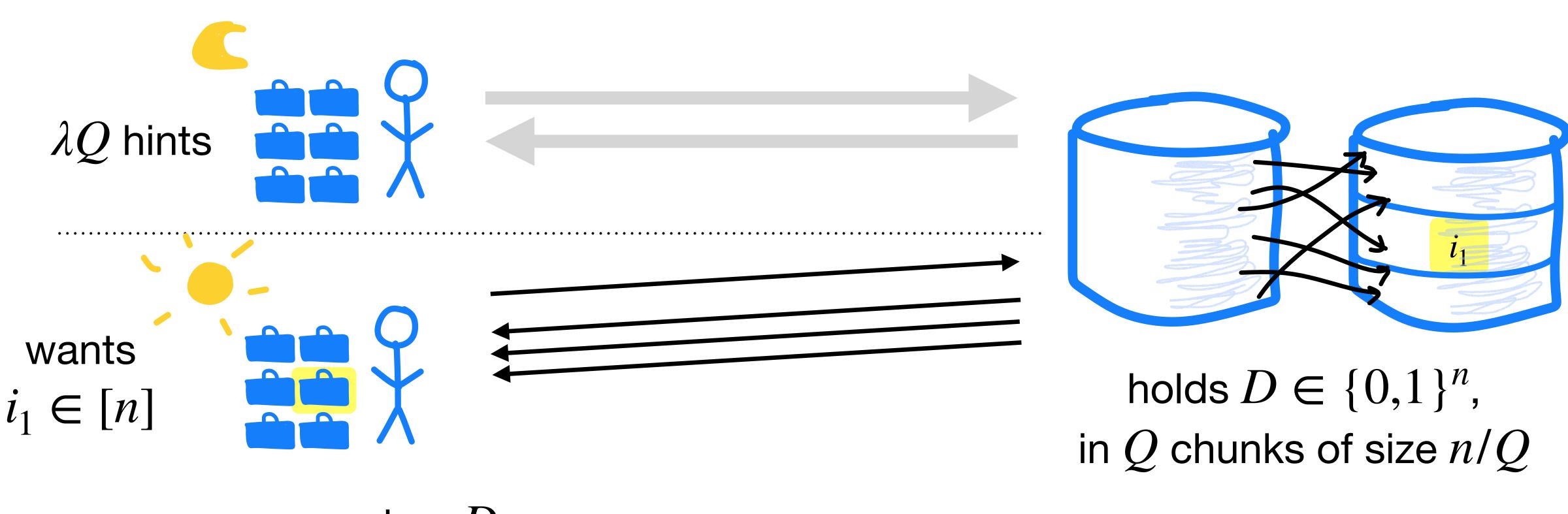


Online: Run an online phase on each chunk, using a hint matching the index.



Online: Run an online phase on each chunk, using a hint matching the index.

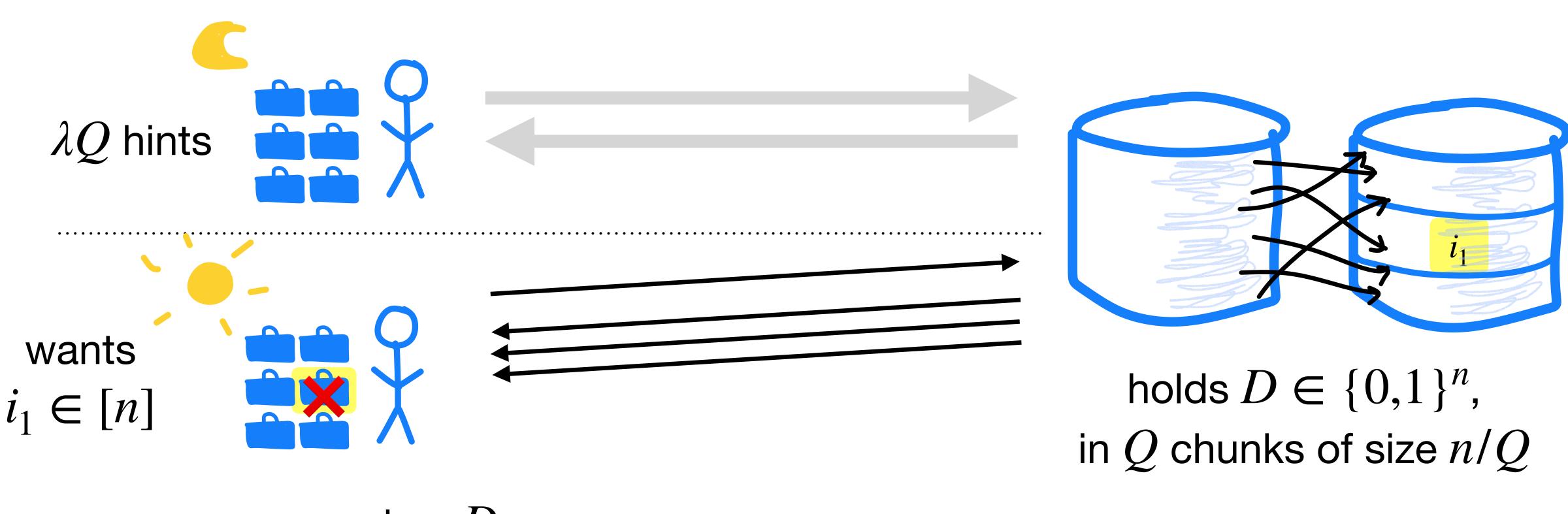
The client caches all recovered bits, to never re-query for the same index.



recovers + caches D_{i_1}

Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



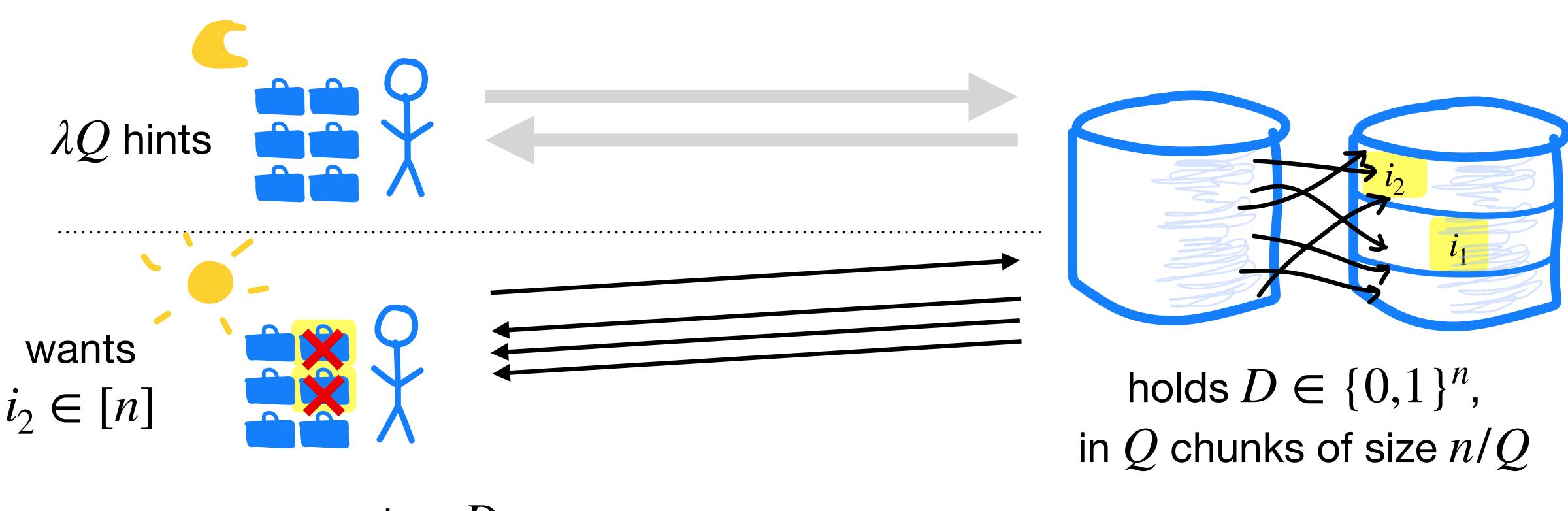
recovers + caches D_{i_1}

Online: Run an online phase on each chunk, using a hint matching the index.



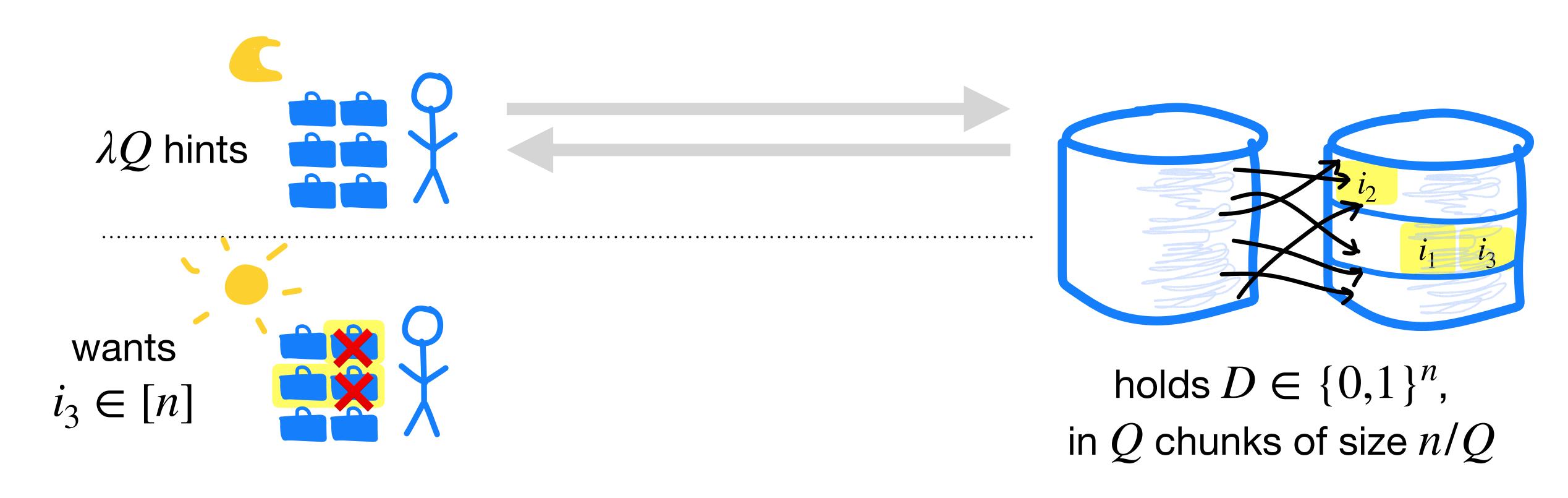
Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



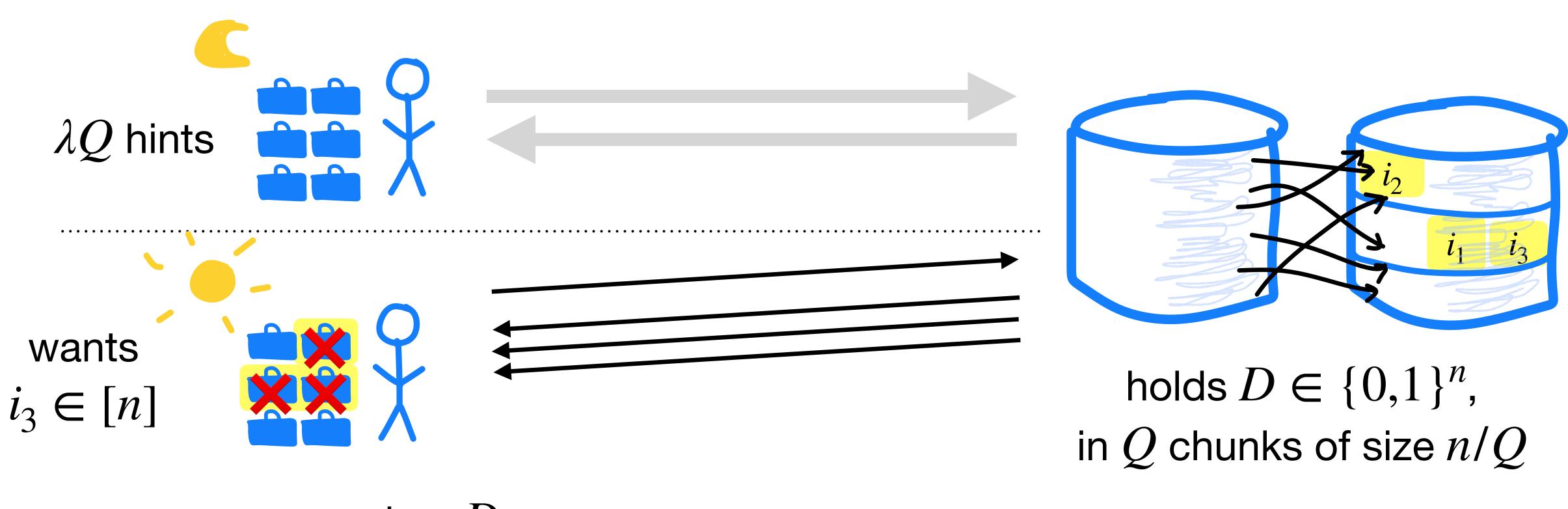
recovers + caches D_{i_2}

Online: Run an online phase on each chunk, using a hint matching the index.



Online: Run an online phase on each chunk, using a hint matching the index.

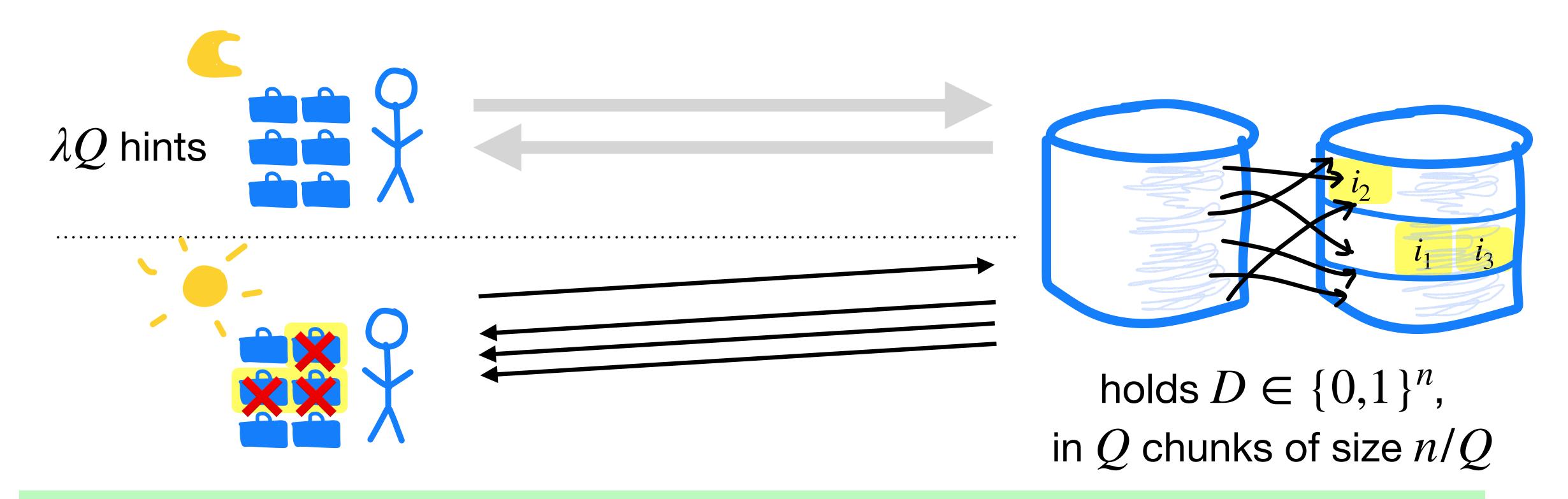
The client caches all recovered bits, to never re-query for the same index.



recovers + caches D_{i_3}

Online: Run an online phase on each chunk, using a hint matching the index.

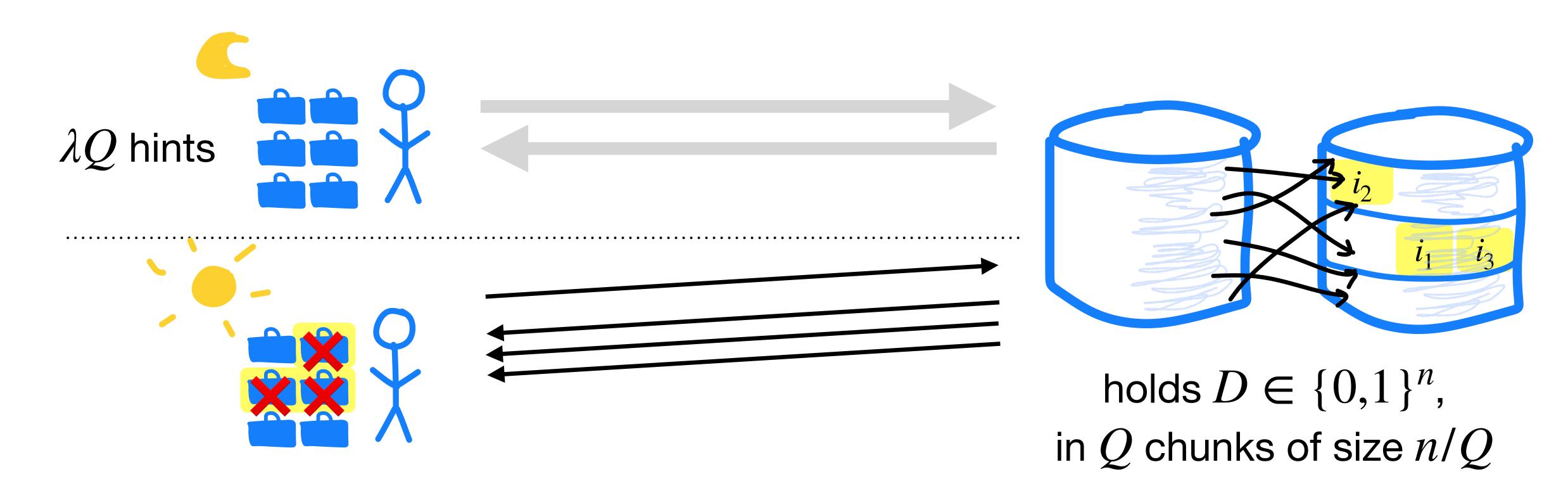
The client caches all recovered bits, to never re-query for the same index.



Correctness: for any query sequence, the client does not run out of fresh hints (with overwhelming probability over the choice of permutation).

Online: Run an online phase on each chunk, using a hint matching the index.

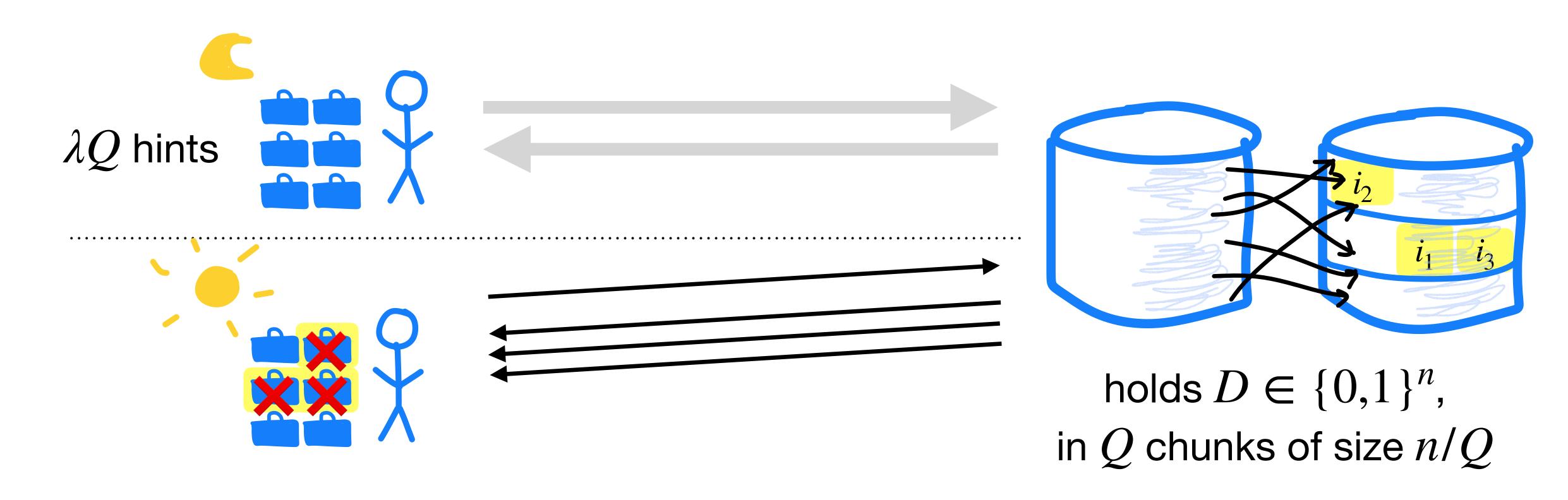
The client caches all recovered bits, to never re-query for the same index.



Security: The client's query does not reveal which chunk it is reading.

Online: Run an online phase on each chunk, using a hint matching the index.

The client caches all recovered bits, to never re-query for the same index.



Cost: We ran the underlying PIR λQ times, on database size n/Q.

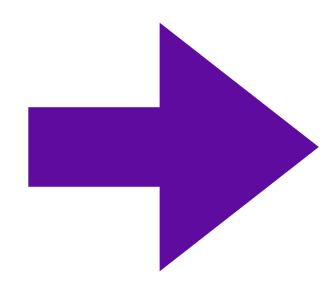
Proof sketch for Theorem 1

Input: Single-query PIR with sublinear online time [CK20]

hint size $n^{2/3}$

offline time *n*

online time $n^{2/3}$



Generic compiler, with $Q = n^{1/4}$ queries

Output: Many-query PIR with sublinear amortized time

hint size $n^{3/4}$

offline time n

online time $n^{3/4}$

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.

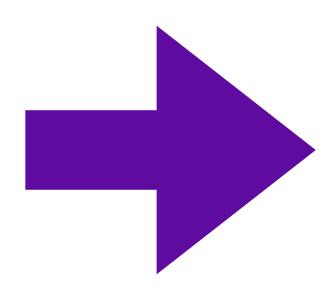
Proof sketch for Theorem 1

Input: Single-query PIR with sublinear online time [CK20]

hint size $n^{2/3}$

offline time *n*

online time $n^{2/3}$



Generic compiler, with $Q = n^{1/4}$ queries

Output: Many-query PIR with sublinear amortized time

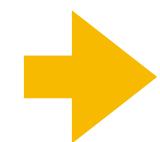
hint size $n^{3/4}$

offline time *n*

online time $n^{3/4}$

amortized time $n^{3/4}$

Throughout this talk, we omit log(n) and $poly(\lambda)$ factors.



Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $\geq n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on database size n, when the client makes $\geq n^{1/4}$ adaptive queries, has:

- amortized server time $n^{3/4}$,
- client storage $n^{3/4}$ and no extra server storage,
- ullet amortized client time $n^{1/2}$, and
- amortized communication $n^{1/2}$.

Theorem 2: From fully homomorphic encryption.

Assuming FHE, we improve the amortized server time and client storage to $n^{1/2}$, if the client makes $n^{1/2}$ adaptive queries.

Proof idea for Theorem 2

Informal claim 1.

Given the parities of O(Q) random, size-n/Q subsets of the database, the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Proof idea for Theorem 2

Informal claim 1.

Given the parities of O(Q) random, size-n/Q subsets of the database, the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of O(Q) subsets of the database, each of size n/Q, in O(n) gates.

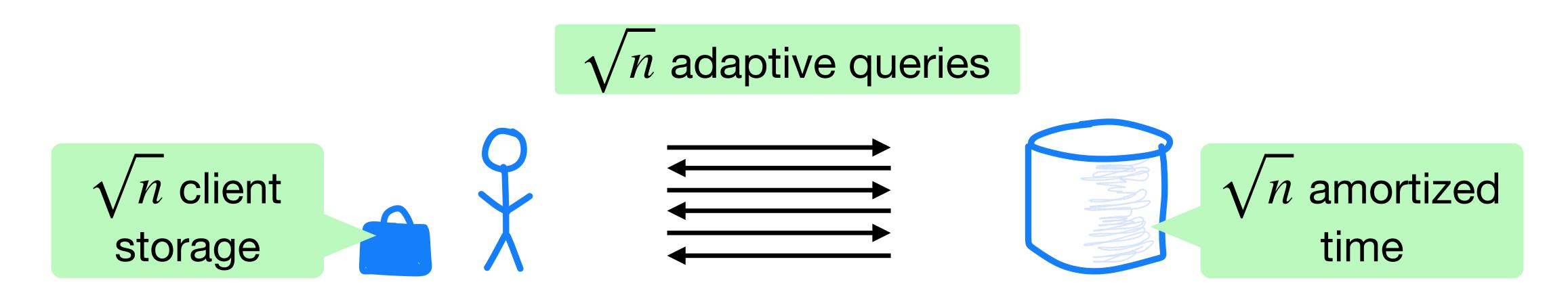
In the offline phase, the server runs the circuit under FHE in linear time.

This talk

- 1. Background: The offline/online PIR model
- 2. Our results: New PIR schemes with sublinear time

3. Open questions

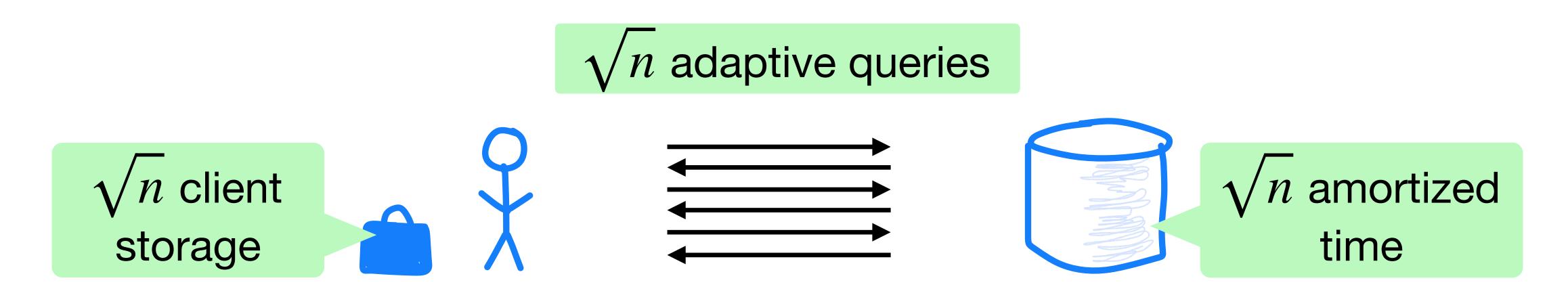
Adaptive single-server PIR with sublinear time + storage is feasible:



But, these schemes are not yet efficient enough for use in practice.

- > Follow-up work [ZLTS22] improves the communication to $\tilde{O}_{\lambda}(1)$.
- > Can we construct optimal schemes from assumptions weaker than FHE?
- > Can we beat our lower bounds by having the server encode the database?

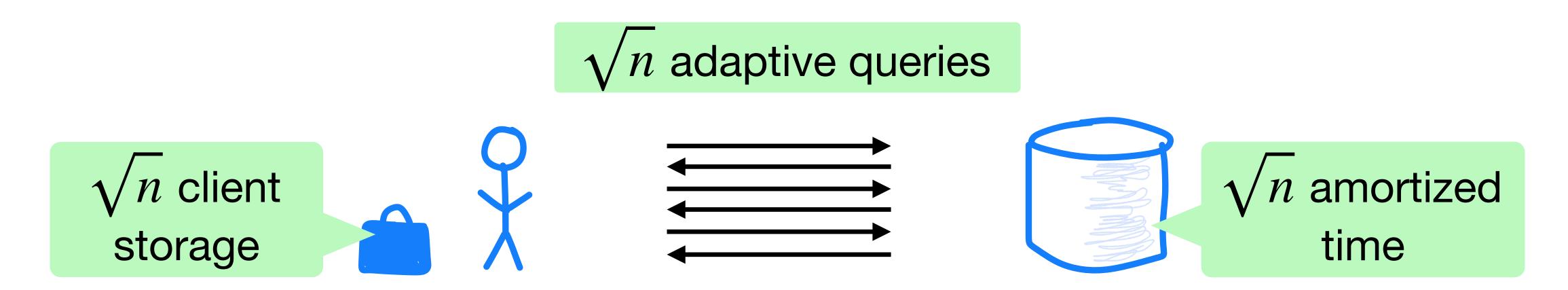
Adaptive single-server PIR with sublinear time + storage is feasible:



But, these schemes are not yet efficient enough for use in practice.

- ightharpoonup Follow-up work [ZLTS22] improves the communication to $\tilde{O}_{\lambda}(1)$.
- > Can we construct optimal schemes from assumptions weaker than FHE?
- > Can we beat our lower bounds by having the server encode the database?

Adaptive single-server PIR with sublinear time + storage is feasible:



But, these schemes are not yet efficient enough for use in practice.

- ightharpoonup Follow-up work [ZLTS22] improves the communication to $\tilde{O}_{\lambda}(1)$.
- > Can we construct optimal schemes from assumptions weaker than FHE?
- > Can we beat our lower bounds by having the server encode the database?

ahenz@csail.mit.edu — https://eprint.iacr.org/2022/081