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Applications: private media [GCMSAW16], private e-commerce [HOG11], private ads
[JO1...], private web browsing [KC21], metadata-hiding messaging [AS16...], ...
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PIR inherently has high server-side computation costs [BIMO04,PY22]:
To answer a single query, the server(s) must run in time n.

ldea: Amortize the server time over many queries [BIMO04,IKOS04]
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2. Matching lower bounds that relate server time and client storage.
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Goal: build PIR for () adaptive queries, with sublinear amortized time

Our approach: build PIR with two phases

1. Once, run a linear-time “offline” phase.

2. For each of the () queries, run a sublinear-time “online” phase.
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Many-query PIR requirements

* Correctness: If the client and server execute the protocol faithfully,

forany D, for any iy, -++, i, € [n], the client correctly recovers D, , -+, DiQ

with overwhelming probability.

* Malicious security: Even if the server does not follow the protocol, the
server learns nothing about 7, ---, iQ.

More formally, for any I, I’ € [n]<,
{Server's view on query sequence I} ~_. {Server's view on query sequence '}
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Many-query PIR requirements

 Correctness: If the client and server execute the protocol faithfully,

forany D, for any iy, -++, i, € [n], the client correctly recovers D, , -+, DiQ

with overwhelming probability.

* Malicious security: Even if the server does not follow the protocol, the
server learns nothing about 7, ---, iQ.

More formally, for any [, I’ & (n]<,
{Server's view on query sequence [} =_. {Server's view on query sequence [’}

Goal: Minimize communication, computation, and storage costs
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Theorem 1: From linearly homomorphic encryption.

Under DDH, QR, DCR, or LWE, there is a single-server PIR scheme that, on
database size n, when the client makes ni'4 adaptive queries, has:

e amortized server time n3/4,

e client storage n>* and no extra server storage,

. amortized client time 1 1/2 . and

e amortized communication n1/2.

Throughout this talk, we omit log(n) and poly(4) factors.
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Proof sketch for Theorem 1

New: Many-query PIR with
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[IKOS04]

Single-query PIR with
sublinear online time
[CK20]
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Our compiler: To handle O adaptive queries, split the database into ) random chunks.

sends permutation
—>

Observation: When the client makes O adaptive queries,  holds D € {0,1}",
at most A distinct queries fall in any one chunk, in O chunks of size n/Q
with probability 1 — negl(4).
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Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.
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Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Correctness: for any query sequence, the client does not run out of fresh hints
(with overwhelming probability over the choice of permutation).



Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Security: The client’s query does not reveal which chunk it is reading.



Offline: Permute + partition the database, then run 4 offline phases on each chunk.

Online: Run an online phase on each chunk, using a hint matching the index.
The client caches all recovered bits, to never re-query for the same index.

holds D € {0,1}",
in O chunks of size n/Q

Cost: We ran the underlying PIR AQ times, on database size n/Q.
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Informal claim 1.

Given the parities of O((Q) random, size-n/( subsets of the database,
the client can make Q adaptive queries with online time n/Q.

Prior work [CK20,SACM21,KC21] only supports one adaptive query.

Informal claim 2.

We give a Boolean circuit for retrieving the parities of O((Q) subsets of
the database, each of size n/Q, in O(n) gates.

In the offline phase, the server runs the circuit under FHE in linear time.
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