
Towards Micro-Architectural Leakage
Simulators: Reverse Engineering

Micro-Architectural Leakage Features is
Practical

Si Gao1 Elisabeth Oswald1 Dan Page2

1Digital Age Research Center (D!ARC), University of Klagenfurt, Austria
2Department of Computer Science, University of Bristol, UK

May 27, 2022

0/40

Outline

1 Leakage simulators: how and why

2 Recovering major micro-architectural leakage elements

3 µ-arch leakage modelling

4 Impacts on leakage simulators

5 Achievements & Future works

1/40

Device assessment

A round map

Develop⇒ Deployment ⇒ product assessment ⇒ “pass” or “fail”

2/40

Device assessment

With leakage simulators

Develop⇒ assessment with simulators

early stage feedback

with reasoning (i.e. “what causes leakage”)

3/40

Leakage simulators: developments

The gray-box route

E.g. the ELMO family (ELMO/ELMO*)

Target core: Cortex-M0

Instruction-level: built upon instruction simulator

Model trained from profiling traces

ALU leakage from STM32F0, extensions include:

Leakage on memory bus
NXP LPC1114
Cortex-M3

4/40

Leakage simulators: developments

The white-box route

E.g. MAPS [COSADE 18]

RTL level: ARM Academic version

µ-arch awareness

HD model on registers

no measurement required

5/40

Leakage simulators: developments

Model “Completentess”(Recap from last talk)

Both are far from ideal...

6/40

Leakage simulators: developments

Drawbacks: “relatively simple”

Drawbacks of ELMO/ELMO*

only focus on the ALU (versus a 3-stage pipeline core)

model built from the ALU buses (two magenta lines)

2 buses lie in µ-arch
ELMO’s model represents authors’ guess

E.g. “adds r0, r1”⇒ “which goes to bus A?”

7/40

Leakage simulators: developments

Drawbacks: “relatively simple”

Drawbacks of MAPS

Same as product? Manufacturer’s version? [CHES 21a]

“The simulator traces only the registers”[COSADE 18]

no leakage from the ALU

8/40

Leakage simulators: an example

(Another) 2-share bit-wise ISW multiplication

ELMO/ELMO*/MAPS/Realistic t-test

all written in Thumb assembly

Realistic: ARM Cortex-M3 (NXP LPC 1114)

ELMO: updated to the M3 model

5 10 15
Cycle

-50

0

50

T

s
t
a
t
i
s
t
i
c
s

5 10 15
Cycle

-50

0

50

T

s
t
a
t
i
s
t
i
c
s

5 10 15
Cycle

-50

0

50

T

s
t
a
t
i
s
t
i
c
s

500 1000 1500 2000 2500
Time(*4ns)

-50

0

50

T

s
t
a
t
i
s
t
i
c
s

C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

9/40

Leakage simulators: an example

2-share bit-wise ISW multiplication

Realistic t-test

C9 & C15

10/40

Leakage simulators: an example

2-share bit-wise ISW multiplication

ELMO

both missed

11/40

Leakage simulators: an example

2-share bit-wise ISW multiplication

ELMO*

both missed

produce another false-positive

12/40

Leakage simulators: an example

2-share bit-wise ISW multiplication

MAPS

finds C15, misses C9

13/40

Leakage simulators: an example

Missing leaks...

Why?

overly simplified model

µ-arch effects missing

Motivation for reverse engineering the µ-arch...

“leakage-wise reverse engineering”

µ-arch enhanced leakage simulator

14/40

Outline

1 Leakage simulators: how and why

2 Recovering major micro-architectural leakage elements

3 µ-arch leakage modelling

4 Impacts on leakage simulators

5 Achievements & Future works

15/40

Starting point

Public info from ARM

ARM Cortex-M3 (NXP 1313)

3-stage pipeline core

Fe: Fetch
De: Decode
Ex: Execute

operands loaded in De
at least 2 reading ports
at least 2 pipeline
registers

ARM DDI 0337E

16/40

Recovering micro-architectural elements: Fe

Fetch

Fetching instructions

PC provided address (F.1)

instruction to instruction registers (F.3)

no ambiguity not data-dependent

PC

Instruction memory

Fetch addr Fetch data

Instruction
register

+4

F.1

F.2
F.3

To decoderFrom
ALU

From
decoder

17/40

Recovering micro-architectural elements: De

Decode

Decode the instruction in IR

which operand enters which reading port?

rs
2

rs
1

Raddr
1

Raddr
2

Raddr
3
...

D.4D.2

D.5

D.9

Data
1

Data
2

Register File
Data

3
 ...

Instruction Decoder

From Fetch D.1

D.3

D.6 D.7 D.8:
Imm

D.10

To Excute

18/40

Recovering micro-architectural elements: De

Decode

Testing reading ports

A “interact” with C ⇒ A and C share the same reading port

19/40

Recovering micro-architectural elements: De

Decode

−log(pv) > th ⇒ interaction exists

adds $c, $d: AC and BD

adds $c,#0: only AC

20/40

Recovering micro-architectural elements: De

Decode

Most instructions loads the first operand accordingly,

adds $c, $d, $e: all 3 loaded, yet only BD visible

A to E, C to the third port
could be wrong, due to glitch

ldm $d, [loreglist]: nothing is loaded

21/40

Recovering micro-architectural elements: De

Decode to Execute

2 pipeline registers rs1 and rs2

which operand enters rs1?

will rs1 and rs2 be updated?

rs
2

rs
1

Raddr
1

Raddr
2

Raddr
3
...

D.4D.2

D.5

D.9

Data
1

Data
2

Register File
Data

3
 ...

Instruction Decoder

From Fetch D.1

D.3

D.6 D.7 D.8:
Imm

D.10

To Excute

22/40

Recovering micro-architectural elements: Ex

Execute

Skip further details...

23/40

Recovering micro-architectural elements: Memory

Memory

Often ignored by existing tools:

further away from the core

“asynchronous”: self-timed

but leaks heavily...

24/40

Recovering micro-architectural elements: Memory

Memory

Cannot “synchronise” ⇒ No Completeness test

Existing knowledge

Word-wise memory access

ARM’s Specification

Shared read/write data bus
Shared address bus
Write buffer

Not ideal, similar to existing tools

25/40

Outline

1 Leakage simulators: how and why

2 Recovering major micro-architectural leakage elements

3 µ-arch leakage modelling

4 Impacts on leakage simulators

5 Achievements & Future works

26/40

leakage modelling: general idea

Buses + registers

often assumed to be HW/HD
⊗: jointly leaking (HD included)
“previous value ⊗ current value”

Combinatorial logic

affected by glitches
conservative modelling
“previous inputs ⊗ current
inputs”

Reg Reg

Combinatorial logic

a’→a

b’→b

c’→c

a’→a

b’→b

27/40

µ-arch leakage modelling

Fetch

Ignore Fetch: not data-dependent

PC

Instruction memory

Fetch addr Fetch data

Instruction
register

+4

F.1

F.2
F.3

To decoderFrom
ALU

From
decoder

28/40

µ-arch leakage modelling

Decode

Ignore all wires before the register file

D.5-7 (prime stands for the
previous value)

LD =
∑
i

porti ⊗ port′i

D.8 not data-dependent

D.9-10 considered later rs
2

rs
1

Raddr
1

Raddr
2

Raddr
3
...

D.4D.2

D.5

D.9

Data
1

Data
2

Register File
Data

3
 ...

Instruction Decoder

From Fetch D.1

D.3

D.6 D.7 D.8:
Imm

D.10

To Excute

29/40

µ-arch leakage modelling

Execute

“not gated”⇒ anything could happen

E.1-4 plus ALU

LE = rs′1 ⊗ rs′2 ⊗ rs1 ⊗ rs2
ALU

Shifter

rs
2

rs
1

Imm/
Control
signal

E.1 E.2

E.3

E.4

To register
file/memory

30/40

µ-arch leakage modelling

Memory& Overall

Memory:

LM = {Bus⊗Bus′, Busw ⊗Bus′w, Addr ⊗Addr′}

Memory

Addr

W buffer

Write busRead bus

Data bus

Overall:
L = LD + LE + LM

31/40

µ-arch leakage modelling

Put it together& testing “quality”

Evaluate the “quality” of our model[EUROCRYPT 22],

higher than threshold ⇒ model not complete

some instructions require more (“glitchy register access”)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200
Time(*4ns)

0

10

20

-
l
o
g
(
p
-
v
a
l
u
e
)

32/40

Outline

1 Leakage simulators: how and why

2 Recovering major micro-architectural leakage elements

3 µ-arch leakage modelling

4 Impacts on leakage simulators

5 Achievements & Future works

33/40

Impacts

Back to our example in the begining...

Reverse engineered µ-arch info helps to explain the leaks...

C9: ALU output HD

Not in ELMO or MAPS

C15: rs1 HD

MAPS got it

34/40

Outline

1 Leakage simulators: how and why

2 Recovering major micro-architectural leakage elements

3 µ-arch leakage modelling

4 Impacts on leakage simulators

5 Achievements & Future works

35/40

Achievements & Future works

Achievements

We have successfully...

(leakage-wise) reverse engineered the µ-arch of an M3 core

built a µ-arch enhanced leakage model

shown its impacts on various masking implementations

36/40

Achievements & Future works

Future works

“cycle-accurate” memory emulator

exploit more subtle µ-arch leaks

higher-order testing

flexible framework for other architectures (e.g. RISC-V)

formal verification

37/40

The End

Questions?

38/40

Reference

COSADE 18 Corre, Y.L., Großschädl, J., Dinu, D.: Micro-architectural
Power Simulator for Leakage Assessment of Cryptographic
Software on ARM Cortex-M3 Processors. In Fan, J., Gierlichs,
B., eds.: Constructive Side-Channel Analysis and Secure
Design - 9th International Workshop, COSADE 2018,
Singapore, April 23-24, 2018, Proceedings. Volume 10815 of
Lecture Notes in Computer Science., Springer (2018) 82–98

CHES 21a Marshall, B., Page, D., & Webb, J. (2021). MIRACLE:
MIcRo-ArChitectural Leakage Evaluation: A study of
micro-architectural power leakage across many devices. IACR
Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1), 175–220.

39/40

Reference

CHES 21b Barthe, G., Gourjon, M., Gr´egoire, B., Orlt, M., Paglialonga,
C., Porth, L.: Masking in Fine-Grained Leakage Models:
Construction, Implementation and Verification. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2021(2) (2021) 189–228

EUROCRYPT 22 Gao, S., Oswald, E.: A Novel Completeness Test and its
Application to Side Channel Attacks and Simulators

40/40

	Leakage simulators: how and why
	Recovering major micro-architectural leakage elements
	-arch leakage modelling
	Impacts on leakage simulators
	Achievements & Future works

