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Device assessment

A round map

Develop⇒ Deployment ⇒ product assessment ⇒ “pass” or “fail”
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Device assessment

With leakage simulators

Develop⇒ assessment with simulators

early stage feedback

with reasoning (i.e. “what causes leakage”)
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Leakage simulators: developments

The gray-box route

E.g. the ELMO family (ELMO/ELMO*)

Target core: Cortex-M0

Instruction-level: built upon instruction simulator

Model trained from profiling traces

ALU leakage from STM32F0, extensions include:

Leakage on memory bus
NXP LPC1114
Cortex-M3

4/40



Leakage simulators: developments

The white-box route

E.g. MAPS [COSADE 18]

RTL level: ARM Academic version

µ-arch awareness

HD model on registers

no measurement required
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Leakage simulators: developments

Model “Completentess”(Recap from last talk)

Both are far from ideal...
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Leakage simulators: developments

Drawbacks: “relatively simple”

Drawbacks of ELMO/ELMO*

only focus on the ALU (versus a 3-stage pipeline core)

model built from the ALU buses (two magenta lines)

2 buses lie in µ-arch
ELMO’s model represents authors’ guess

E.g. “adds r0, r1”⇒ “which goes to bus A?”
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Leakage simulators: developments

Drawbacks: “relatively simple”

Drawbacks of MAPS

Same as product? Manufacturer’s version? [CHES 21a]

“The simulator traces only the registers”[COSADE 18]

no leakage from the ALU
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Leakage simulators: an example

(Another) 2-share bit-wise ISW multiplication

ELMO/ELMO*/MAPS/Realistic t-test

all written in Thumb assembly

Realistic: ARM Cortex-M3 (NXP LPC 1114)

ELMO: updated to the M3 model
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Leakage simulators: an example

2-share bit-wise ISW multiplication

Realistic t-test

C9 & C15
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Leakage simulators: an example

2-share bit-wise ISW multiplication

ELMO

both missed
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Leakage simulators: an example

2-share bit-wise ISW multiplication

ELMO*

both missed

produce another false-positive
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Leakage simulators: an example

2-share bit-wise ISW multiplication

MAPS

finds C15, misses C9
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Leakage simulators: an example

Missing leaks...

Why?

overly simplified model

µ-arch effects missing

Motivation for reverse engineering the µ-arch...

“leakage-wise reverse engineering”

µ-arch enhanced leakage simulator
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Starting point

Public info from ARM

ARM Cortex-M3 (NXP 1313)

3-stage pipeline core

Fe: Fetch
De: Decode
Ex: Execute

operands loaded in De
at least 2 reading ports
at least 2 pipeline
registers

ARM DDI 0337E
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Recovering micro-architectural elements: Fe

Fetch

Fetching instructions

PC provided address (F.1)

instruction to instruction registers (F.3)

no ambiguity not data-dependent

PC

Instruction memory

Fetch addr Fetch data

Instruction 
register

+4

F.1

F.2
F.3

To decoderFrom 
ALU

From 
decoder
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Recovering micro-architectural elements: De

Decode

Decode the instruction in IR

which operand enters which reading port?

rs
2

rs
1

Raddr
1

Raddr
2

Raddr
3
...

D.4D.2

D.5

D.9

Data
1

Data
2

Register File
Data

3
 ...

Instruction Decoder

From Fetch D.1

D.3

D.6 D.7 D.8: 
Imm

D.10

To Excute
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Recovering micro-architectural elements: De

Decode

Testing reading ports

A “interact” with C ⇒ A and C share the same reading port
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Recovering micro-architectural elements: De

Decode

−log(pv) > th ⇒ interaction exists

adds $c, $d: AC and BD

adds $c,#0: only AC
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Recovering micro-architectural elements: De

Decode

Most instructions loads the first operand accordingly,

adds $c, $d, $e: all 3 loaded, yet only BD visible

A to E, C to the third port
could be wrong, due to glitch

ldm $d, [loreglist]: nothing is loaded
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Recovering micro-architectural elements: De

Decode to Execute

2 pipeline registers rs1 and rs2

which operand enters rs1?

will rs1 and rs2 be updated?

rs
2

rs
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Raddr
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Raddr
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Recovering micro-architectural elements: Ex

Execute

Skip further details...
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Recovering micro-architectural elements: Memory

Memory

Often ignored by existing tools:

further away from the core

“asynchronous”: self-timed

but leaks heavily...
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Recovering micro-architectural elements: Memory

Memory

Cannot “synchronise” ⇒ No Completeness test

Existing knowledge

Word-wise memory access

ARM’s Specification

Shared read/write data bus
Shared address bus
Write buffer

Not ideal, similar to existing tools
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leakage modelling: general idea

Buses + registers

often assumed to be HW/HD
⊗: jointly leaking (HD included)
“previous value ⊗ current value”

Combinatorial logic

affected by glitches
conservative modelling
“previous inputs ⊗ current
inputs”

Reg Reg

Combinatorial logic

a’→a

b’→b

c’→c

a’→a

b’→b
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µ-arch leakage modelling

Fetch

Ignore Fetch: not data-dependent

PC

Instruction memory

Fetch addr Fetch data

Instruction 
register

+4

F.1

F.2
F.3

To decoderFrom 
ALU

From 
decoder
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µ-arch leakage modelling

Decode

Ignore all wires before the register file

D.5-7 (prime stands for the
previous value)

LD =
∑
i

porti ⊗ port′i

D.8 not data-dependent

D.9-10 considered later rs
2

rs
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Raddr
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Instruction Decoder
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D.6 D.7 D.8: 
Imm

D.10

To Excute
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µ-arch leakage modelling

Execute

“not gated”⇒ anything could happen

E.1-4 plus ALU

LE = rs′1 ⊗ rs′2 ⊗ rs1 ⊗ rs2
ALU

Shifter

rs
2

rs
1

Imm/
Control 
signal

E.1 E.2

E.3

E.4

To register 
file/memory
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µ-arch leakage modelling

Memory& Overall

Memory:

LM = {Bus⊗Bus′, Busw ⊗Bus′w, Addr ⊗Addr′}

Memory

Addr

W buffer

Write busRead bus

Data bus

Overall:
L = LD + LE + LM
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µ-arch leakage modelling

Put it together& testing “quality”

Evaluate the “quality” of our model[EUROCRYPT 22],

higher than threshold ⇒ model not complete

some instructions require more (“glitchy register access”)
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Impacts

Back to our example in the begining...

Reverse engineered µ-arch info helps to explain the leaks...

C9: ALU output HD

Not in ELMO or MAPS

C15: rs1 HD

MAPS got it
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Achievements & Future works

Achievements

We have successfully...

(leakage-wise) reverse engineered the µ-arch of an M3 core

built a µ-arch enhanced leakage model

shown its impacts on various masking implementations
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Achievements & Future works

Future works

“cycle-accurate” memory emulator

exploit more subtle µ-arch leaks

higher-order testing

flexible framework for other architectures (e.g. RISC-V)

formal verification
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The End

Questions?
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