Field Instruction Multiple Data

Khin Mi Mi Aung ¹, Enhui Lim ¹, <u>Jun Jie Sim</u> ¹ ², Benjamin Hong Meng Tan ¹, Huaxiong Wang ², Sze Ling Yeo

¹Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore

²School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

2 June 2022

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

3 This Work

- r-fold RMFEs
- 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

Homomorphic Encryption

Homomorphic Encryption (HE) [Gen09]

Applications in

- Bioinformatics analyzing sensitive genomic data
- Finance KYC

SIMD Packing

Pack multiple data into a single ciphertext

abcd.

• Applying the function *f* on the ciphertext is equivalent to simultaneously applying *f* on all data

$$f(\begin{array}{c|c} a & b & c & d \end{array}) \longrightarrow f(a) f(b) f(c) f(d)$$
.

SIMD rotate/shift

• Improve efficiency of HE schemes (BFV, BGV) by reducing the number of ciphertext needed.

Plaintext Space Decomposition

- Encode multiple data into a plaintext space R_t before encryption.
- Decomposition of the ring *R_t* into "slots" (Chinese Remainder Theorem)

$$R_t \simeq \mathbb{Z}[x]_{F_1(x)} \times \cdots \times \mathbb{Z}[x]_{F_\ell(x)} \mod t.$$

• Each slot (factor) is isomorphic to an finite extension field

$$\mathbb{Z}_t[x]/F_i(x) \simeq \mathbb{F}_{t^d}.$$

Parameter Choice for Homomorphic Encryption

- Choose powers-of-2 cyclotomics of degree n for R_t
 - HE Standarization
 - Fast negacyclic FFT

Parameter Choice for Homomorphic Encryption

- Choose powers-of-2 cyclotomics of degree n for R_t
 - HE Standarization
 - Fast negacyclic FFT
- Maximize number of slots \Rightarrow large prime *t* needed.

п	prime, <i>t</i>	max slots, ℓ	degree, <i>d</i>
	3	2	2048
	7	4	1024
4096	127	64	64
	12799	16	256
	40961	4096	1

Table: Choice of prime and number of slots

Parameter Choice for Homomorphic Encryption

- Choose powers-of-2 cyclotomics of degree n for R_t
 - HE Standarization
 - Fast negacyclic FFT
- Maximize number of slots \Rightarrow large prime *t* needed.

n	prime, <i>t</i>	max slots, ℓ	degree, <i>d</i>
	3	2	2048
	7	4	1024
4096	127	64	64
	12799	16	256
	40961	4096	1

Table: Choice of prime and number of slots

• Can we use smaller prime and encode as much data?

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

3 This Work

- r-fold RMFEs
- 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

A "Homomorphism" between a Vector Space and a Field

$(k, w)_t$ -RMFE [Cas+18]

Embed a length k vector $\in (\mathbb{F}_t)^k$ into an finite extension field \mathbb{F}_{t^w} of degree w < d via Riemann Roch spaces $\mathcal{L}(G)$, $\mathcal{L}(2G)$.

- A Riemann Roch space is a special set of polynomials defined over $\mathbb{F}_q(\mathcal{C})$, the function field over a curve \mathcal{C} .
- Additive and multiplicative "homomorphism" between $(\mathbb{F}_t)^k$ and \mathbb{F}_{t^w}

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2) \simeq \mathcal{X} + \mathcal{Y}$$

$$(x_1, x_2) \times (y_1, y_2) = (x_1y_1, x_2y_2) \simeq \mathcal{X} \cdot \mathcal{Y}$$

RMFE Maps

RMFE Maps [Cas+18]

• Decode,
$$\psi = \pi \circ \tau^{-1} : \mathbb{F}_{t^w} o (\mathbb{F}_t)^k$$

• π and τ are linear maps $\Rightarrow \phi$ and ψ are linear maps.

RMFE Maps

RMFE Maps [Cas+18]

• Decode,
$$\psi = \pi \circ au^{-1} : \mathbb{F}_{t^w} o (\mathbb{F}_t)^k$$

• Recode,
$$\phi \circ \psi : \mathbb{F}_{t^w} \to \mathbb{F}_{t^w}$$

- π and τ are linear maps $\Rightarrow \phi$ and ψ are linear maps.
- To support multiplication, τ is defined from $\mathcal{L}(2G)$.
 - If $f,g \in \mathcal{L}(G)$, then $fg \in \mathcal{L}(2G)$
 - Decode correctly after ≤ 1 multiplication.

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

3 This Work

- r-fold RMFEs
- 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

Field Instruction Multiple Data (FIMD)

Field Instruction Multiple Data (FIMD)

•
$$\mu \in R_t \leftarrow$$

FIMD.Encode $\begin{pmatrix} x_1 & \cdots & x_k \end{pmatrix}, \dots, \begin{pmatrix} x_{k(\ell-1)+1} & \cdots & x_{k\cdot\ell} \end{pmatrix}$
• $\hat{x}_i \leftarrow \text{RMFE.Encode}\begin{pmatrix} x_{k(i-1)+1} & \cdots & x_{k\cdot i} \end{pmatrix}$ for $i = 1, \dots, \ell$
• $\mu \in \mathbb{F}_{t^d} \leftarrow \text{SIMD.Encode}\begin{pmatrix} \hat{x}_1 & \cdots & \hat{x}_\ell \end{pmatrix}$
• $\mathbf{m} \in (\mathbb{F}_t)^{k \cdot \ell} \leftarrow \text{FIMD.Decode}(\mu \in R_t)$
• $\hat{m}_1 & \cdots & \hat{m}_\ell \in (\mathbb{F}_t)^\ell \leftarrow \text{SIMD.Decode}(\mu)$
• $\mathbf{m} \in (\mathbb{F}_t)^{k \cdot \ell} \leftarrow (\text{RMFE.Decode}\begin{pmatrix} \hat{m}_1 \\ \end{pmatrix}, \dots, \text{RMFE.Decode}\begin{pmatrix} \hat{m}_\ell \end{pmatrix})$

FIMD Operations

FIMD Operations

•
$$c^+ \leftarrow \mathsf{FIMD}.\mathsf{Add}(\hat{\mu_1},\hat{\mu_2})$$

$$c^+ = \mathsf{HE}.\mathsf{Add}(\hat{\mu_1}, \hat{\mu_2}).$$

•
$$c^{\times} \leftarrow \mathsf{FIMD}.\mathsf{Mult}(\hat{\mu_1}, \hat{\mu_2})$$

 $c^{\times} = \mathsf{RMFE}.\mathsf{Recode}(\mathsf{HE}.\mathsf{Mult}(\hat{\mu_1},\hat{\mu_2})).$

• $c' \leftarrow \text{FIMD.Rotate/Shift}(c, p)$.

- **1** Write $p = p_{\text{SIMP}}k + p_{\text{RMFE}}$
- 2 If $p_{\text{RMFE}} = 0$, c' = HE.Rotate/Shift(c, p).
- **③** Else, $c' = \text{HE.Rotate/Shift}(\text{RMFE.Rotate/Shift}(c, p_{\text{RMFE}}))$

RMFE Extensions

Two RMFE extensions for FIMD

- r-fold RMFE
- 3-Stage-Recode for Composite RMFE

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

- 3 This Work
 - r-fold RMFEs
 - 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

r-fold RMFE

r-fold RMFE

Define τ such that r multiplications can be supported before recoding.

$$\tau:\mathcal{L}(2^rG)\longrightarrow \mathbb{F}_{t^w}$$

Assign a tag η to each FIMD ciphertext such that if $\eta = r$, recode.

- Fully utilize the whole field extension if dim $(\mathcal{L}(2G)) \ll d$.
- Reduce the number of RMFE.Recodes
- Interoperability between data multiplied different number of times,
 e.g. a ⋅ b for a ∈ L(2G) and b ∈ L(4G).

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

3 This Work

- r-fold RMFEs
- 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

Composite RMFE

Composite RMFE [Cas+18]

• Inner $(k_{in}, w_{in})_t$ -RMFE • $\phi_{in} : (\mathbb{F}_t)^{k_{in}} \to \mathbb{F}_{t^{w_{in}}}$ • $\psi_{in} : \mathbb{F}_{t^{w_{in}}} \to (\mathbb{F}_t)^{k_{in}}$ • Outer $(k_{out}, w_{out})_{t^{w_{in}}}$ -RMFE • $\phi_{out} : (\mathbb{F}_{t^{w_{in}}})^{k_{out}} \to \mathbb{F}_{t^{w_{in}w_{out}}}$ • $\psi_{out} : \mathbb{F}_{t^{w_{in}w_{out}}} \to (\mathbb{F}_{t^{w_{in}}})^{k_{out}}$

Use smaller RMFEs to build a $(k_{in}k_{out}, w_{in}w_{out})_t$ -RMFE

$$\begin{split} \phi &: (\mathbb{F}_{t})^{k_{\text{in}}k_{\text{out}}} \to \mathbb{F}_{t^{w_{\text{in}}w_{\text{out}}}} \qquad \psi : \mathbb{F}_{t^{w_{\text{in}}w_{\text{out}}}} \to (\mathbb{F}_{t})^{k_{\text{in}}} \\ \phi(\cdot) &= \phi_{\text{out}} \Big(\phi_{\text{in}} \Big(\begin{array}{c|c} x_{1,1} & \cdots & x_{1,k_{\text{in}}} \end{array} \Big), \cdots, \phi_{\text{in}} \Big(\begin{array}{c|c} x_{k_{\text{out}},1} & \cdots & x_{k_{\text{out}},k_{\text{in}}} \end{array} \Big) \Big) \\ \psi(\cdot) &= \Big(\psi_{\text{in}} \Big(\begin{array}{c|c} \psi_{\text{out}}[1] \end{array} \Big), \cdots, \psi_{\text{in}} \Big(\begin{array}{c|c} \psi_{\text{out}}[k_{\text{out}}] \end{array} \Big) \Big) \end{split}$$

Composite RMFE

 $(k_{in}k_{out}, w_{in}w_{out})_t$ Composite RMFE

Let (ϕ, ψ) be a $(k_{in}k_{out}, w_{in}w_{out})_t$ composite RMFE

$$\begin{split} \phi &: (\mathbb{F}_t)^{k_{\text{in}}k_{\text{out}}} \to \mathbb{F}_t^{w_{\text{in}}w_{\text{out}}} \\ \psi &: \mathbb{F}_t^{w_{\text{in}}w_{\text{out}}} \to (\mathbb{F}_t)^{k_{\text{in}}k_{\text{out}}} \end{split}$$

• Decompose \mathbb{F}_{t^w} into a tower of field extensions of \mathbb{F}_t with $w_{\mathrm{in}} w_{\mathrm{out}} \leq w$

 $\mathbb{F}_t \subseteq \mathbb{F}_{t^{w_{\text{in}}}} \subseteq \mathbb{F}_{t^{w_{\text{in}}w_{\text{out}}}}.$

- Reduce the cost of RMFEs used (size of linear maps).
 - E.g. Mapping between $(\mathbb{F}_3)^k$ and $\mathbb{F}_{3^{2048}}$, with intermediate field $\mathbb{F}_{3^{16}}$:
 - Direct RMFE encode: $k_{in}k_{out} \times 2048$ matrix.
 - Composite RMFE encode: k_{out} many inner k_{in} × 16 matrices and outer k_{out} × 128 matrix.

3-Stage-Recode - Composite RMFE

3-Stage-Recode

$$(\mathbb{F}_t)^{k_{\text{in}}k_{\text{out}}} \xrightarrow{2a. k_{\text{out}} \text{ many } \psi_{\text{in}}}{2b. k_{\text{out}} \text{ many } \phi_{\text{in}}} (\mathbb{F}_{t^{w_{\text{in}}}})^{k_{\text{out}}} \xrightarrow{1. \psi_{\text{out}}}{3. \phi_{\text{out}}} \mathbb{F}_{t^{w_{\text{in}}w_{\text{out}}}}$$

- Step 1 and 3 work over the intermediate field $\mathbb{F}_{t^{w_{in}}}$.
- Step 2 work over \mathbb{F}_t .

3-Stage-Recode - Composite RMFE

3-Stage-Recode

$$(\mathbb{F}_t)^{k_{\text{in}}k_{\text{out}}} \xrightarrow{2a. \ k_{\text{out}} \ \text{many} \ \psi_{\text{in}}}{2b. \ k_{\text{out}} \ \text{many} \ \phi_{\text{in}}} (\mathbb{F}_t^{w_{\text{in}}})^{k_{\text{out}}} \xrightarrow{1. \ \psi_{\text{out}}}{3. \ \phi_{\text{out}}} \mathbb{F}_t^{w_{\text{in}}w_{\text{out}}}$$

- Step 1 and 3 work over the intermediate field $\mathbb{F}_{t^{w_{in}}}$.
- Step 2 work over \mathbb{F}_t .
- Optimization: Extend to r-fold RMFE for both inner and outer RMFEs.
- Delay inner recode (Step 2a, 2b) until necessary.

- Homomorphic Encryption
- 2 Reverse Multiplication Friendly Embeddings (RMFE)
- 3 This Work
 - r-fold RMFEs
 - 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results
- 5 Conclusion

RMFE Parameters

$Curve\;\mathcal{C}$	Base Field	Max <i>k</i>	Genus g	W
Projective Elliptic Hermitian	$ \mathbb{F}_t \\ \mathbb{F}_t \\ ^*\mathbb{F}_{t^2} $	$t+1 \\ t+1+2\sqrt{t} \\ t^3+1$	$0 \\ 1 \\ \frac{t(t-1)}{2}$	2k+4g-1

Table: Possible RMFE parameters with particular curves

 \star With Hermitian curves, the slot degree *d* is effectively halved.

Experimental Setup

- Choice of primes t = 3, 7.
- HE parameters set to 80-bit security
 - ▶ *n* = 4096
 - max log *p* = 159
- Repeated squaring of one FIMD ciphertext and one HE ciphertext until decryption fails.
- Record the time and number of multiplications.
- Amortized speedup between FIMD ciphertext multiplication and HE ciphertext multiplication.

- Homomorphic Encryption
- 2 Reverse Multiplication Friendly Embeddings (RMFE)
- 3 This Work
 - r-fold RMFEs
 - 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

r-fold RMFE Results

t-Field	k	r	(r)FIMD:HE Mult	(r)FIMD Mult Time (sec)	Amortized Speedup
7-P	8	1 4 4*	3 : 5 4 : 5 4 : 5	3.7435 1.1595 0.0431	0.0516× 0.2606× 7.4935×
7-E	13	1 4 4*	3:5 4:5 4:5	3.7146 0.9307 0.0478	0.0853× 0.5362× 10.9844×
7-H	214	1	3:5	1.8301	2.7884×

*No recodes were performed

Table: (r)FIMD Mult Noise Consumption

r-fold RMFE Results

t-Field	k	r	(r)FIMD:HE Mult	(r)FIMD Mult Time (sec)	Amortized Speedup			
7-P	8	1 4 4*	3 : 5 4 : 5 4 : 5	3.7435 1.1595 0.0431	0.0516× 0.2606× 7.4935×			
7-E	13	1 4 4*	3 : 5 4 : 5 4 : 5	3.7146 0.9307 0.0478	0.0853× 0.5362× 10.9844×			
7-H	214	1	3 : 5	1.8301	2.7884×			
*No rec	*No recodes were performed							

Table: Better amortized time/speedup as r increases

r-fold RMFE Results

t-Field	k	r	(r)FIMD:HE Mult	(r)FIMD Mult Time (sec)	Amortized Speedup
7-P	8	1 4 4*	3 : 5 4 : 5 4 : 5	3.7435 1.1595 0.0431	0.0516× 0.2606× 7.4935×
7-E	13	1 4 4*	3 : 5 4 : 5 4 : 5	3.7146 0.9307 0.0478	0.0853× 0.5362× 10.9844×
7-H	214	1	3 : 5	1.8301	2.7884×

*No recodes were performed

Table: Higher k gives better amortized speedup

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

- 3 This Work
 - r-fold RMFEs
 - 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

t-Field	d k	r	d _k ((r)FIMD:H Mult	HE (r)FIN Tim	ID Mult e (sec)	Amortized Speedup
3-E	7	1	293	3:6] 7	.16	0.0176×
t-Field	(k _{in} , r _{in}) _t	$(k_{\text{out}}, r_{\text{out}})_{t^d}$, d _{ktotal}	(r)FIMD:HE Mult	(r)FIMD Mu Time (sec)	ult Amortized) Speedup
C3-E	(6,1)	3	$(64, 1)_{3^{16}}$	5.33	2:6	2.434	1.9544 imes

Table: Noise Consumption in Composite RMFE vs r-fold RMFE

t-Field	d k	r	d _k	(r)FIMD:H Mult	HE (r)FIM Time	1D Mult e (sec)	Amortized Speedup
3-E	7	1	293	3 : 6	7	.16	0.0176×
t-Field	(k _{in} , r	n) _t	$(k_{\text{out}}, r_{\text{out}})$	$t^{d'}$ $d_{k_{total}}$	(r)FIMD:HE Mult	(r)FIMD Mi Time (sec	ult Amortized) Speedup
C3-E	(6,1)3	$(64, 1)_3$	16 5.33	2:6	2.434	$1.9544 \times$

Table: Packing Improvements in Composite RMFE vs r-fold RMFE

t-Field	k	w	r	Max (r)FIMD Mult	(r)FIMD Mult (sec)	1 (r)FIMD Mult (sec)
С7-Р 7-Н	$\begin{array}{c} 8\cdot 32=256\\ 214\end{array}$	$\begin{array}{c} 16\cdot 63=1008\\ 511 \end{array}$	(1,1) 1	1 3	0.754 1.83	0.754 0.610

Table: 3-Stage-Recode versus Direct Recode

- Did not compute direct recode map for C7-P (too large).
- Theoretical w_{total} for C7-P is $16 \cdot 63 = 1008$.
- Extrapolated direct recode time C7-P based on 7-H

$$0.610 \cdot \frac{1008}{511} = 1.203$$
 seconds.

t-Field	$(k_{\rm in}, r_{\rm in})_t$	$(k_{\text{out}}, r_{\text{out}})_{t^{d'}}$	$k_{ m total}$	(r)FIMD Mult	(r)FIMD Mult Time (sec)	Amortized Speedup
С3-Е	$(2,2)_3$ $(6,1)_3$	$egin{array}{c} (64,1)_{3^{16}}\ (64,1)_{3^{16}} \end{array}$	128 384	2 2	1.4284200 2.4344100	1.138740 imes 1.954400 imes
	$(3,2)_3$ $(11,1)_3$	$egin{array}{c} (16,1)_{3^{64}}\ (16,1)_{3^{64}} \end{array}$	48 176	2 2	0.4838210 1.1126300	1.189630 imes 1.891190 imes
С3-Н	$(11,2)_3$ $(27,1)_3$	$egin{array}{c} (8,1)_{3^{128}}\ (8,1)_{3^{128}} \end{array}$	88 216	2 2	0.4557780 1.0570600	2.271160× 2.641760×

Table: Effect of varying r_{in} , keeping r_{out} and d' fixed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

t-Field	$(k_{\rm in}, r_{\rm in})_t$	$(k_{\text{out}}, r_{\text{out}})_{t^{d'}}$	$k_{ m total}$	(r)FIMD Mult	(r)FIMD Mult Time (sec)	Amortized Speedup
С3-Е	$(2,2)_3$ $(6,1)_3$	$egin{array}{c} (64,1)_{3^{16}}\ (64,1)_{3^{16}} \end{array}$	128 384	2 2	1.4284200 2.4344100	1.138740× 1.954400×
	$(3,2)_3$ $(11,1)_3$	$egin{array}{c} (16,1)_{3^{64}}\ (16,1)_{3^{64}} \end{array}$	48 176	2 2	0.4838210 1.1126300	1.189630× 1.891190×
С3-Н	$(11,2)_3$ $(27,1)_3$	$egin{array}{c} (8,1)_{3^{128}}\ (8,1)_{3^{128}} \end{array}$	88 216	2 2	0.4557780 1.0570600	2.271160× 2.641760×

Table: Effect of varying r_{in} , keeping r_{out} and d' fixed

• Balance between multiplication timing and amount of data to pack.

Homomorphic Encryption

2 Reverse Multiplication Friendly Embeddings (RMFE)

3 This Work

- r-fold RMFEs
- 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

Conclusion

- Allow small primes with Homomorphic Encryption
 - Almost the same amount of packed data.
- Two RMFE extensions
 - r-fold RMFE
 - 3-Stage-Recode with Composite RMFE
- Tradeoff when using FIMD
 - FIMD multiplication consumes more noise.
 - Amortized speedup when using FIMD.
 - Some form of balancing between running time and amount of data to pack.

Thank you

メロト メポト メヨト メヨト

- Homomorphic Encryption
- 2 Reverse Multiplication Friendly Embeddings (RMFE)
- 3 This Work
 - r-fold RMFEs
 - 3-Stage-Recode for Composite RMFEs

Experimental Results

- r-fold RMFE Results
- Composite RMFE Results

5 Conclusion

References I

[Gen09] Craig Gentry. "Fully Homomorphic Encryption Using Ideal Lattices". In: STOC '09. 2009. URL: https://doi.org/10.1145/1536414.1536440.

- [SV11] N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. Cryptology ePrint Archive, Report 2011/133. https://ia.cr/2011/133. 2011.
- [Cas+18] Ignacio Cascudo et al. Amortized Complexity of Information-Theoretically Secure MPC Revisited. Cryptology ePrint Archive, Report 2018/429. https://ia.cr/2018/429. 2018.
- [FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2012/144. https://ia.cr/2012/144. 2012.

References II

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomorphic Encryption without Bootstrapping. Cryptology ePrint Archive, Report 2011/277. https://ia.cr/2011/277. 2011.

[Che+16] Jung Hee Cheon et al. Homomorphic Encryption for Arithmetic of Approximate Numbers. Cryptology ePrint Archive, Report 2016/421. https://ia.cr/2016/421. 2016.