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Elliptic curve over 𝔽q: solutions (x,y) in 𝔽q of

y 
2 = x 

3 + ax + b 

E(𝔽q) is an additive group

An isogeny in a map

𝜑 : E → F

which preserves certain structures. In particular, it is a group 
homomorphism with a finite kernel



Endomorphism ring

An endomorphism is an isogeny 𝜑 : E → E



Endomorphism ring

An endomorphism is an isogeny 𝜑 : E → E

They form a ring End(E )

‣ 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

‣ 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))



Endomorphism ring

An endomorphism is an isogeny 𝜑 : E → E

They form a ring End(E )

‣ 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

‣ 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

What is the structure of End(E )?



Endomorphism ring

An endomorphism is an isogeny 𝜑 : E → E

They form a ring End(E )

‣ 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

‣ 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

What is the structure of End(E )?

‣ It contains ℤ ⊂ End(E )…



Endomorphism ring

An endomorphism is an isogeny 𝜑 : E → E

They form a ring End(E )

‣ 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

‣ 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

What is the structure of End(E )?

‣ It contains ℤ ⊂ End(E )…

‣ (End(E ), +) is a lattice of dimension 2 or 4 



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing

Isogeny Path 
Problem



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing
Breaking isogeny-based 

cryptosystems
Isogeny Path 

Problem



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing
Breaking isogeny-based 

cryptosystems

Often

Isogeny Path 
Problem



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing
Breaking isogeny-based 

cryptosystems
Sometimes

Often

Isogeny Path 
Problem



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing
Breaking isogeny-based 

cryptosystems
Sometimes

Often

Isogeny Path 
Problem

Uber? Vectorisation?

Oriented Diffie-Hellman?



The Endomorphism Ring problem

A curve E is supersingular if (End(E ), +) is a lattice of dimension 4

EndRing: Given a supersingular curve E, compute End(E ). I.e., find 4 
endomorphisms that form a basis of End(E ):

End(E ) = ℤ𝛼1 ⊕ ℤ𝛼2 ⊕ ℤ𝛼3 ⊕ ℤ𝛼4

EndRing
Breaking isogeny-based 

cryptosystems
Sometimes

Often Goal: get a 
sharper picture 
of the situationIsogeny Path 

Problem

Uber? Vectorisation?

Oriented Diffie-Hellman?
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Oriented elliptic curves

Let α ∈ End(E ) \ ℤ
‣ ℤ[α] ⊂ End(E ) is a subring of dimension 2

‣ ℤ[α] is a quadratic ring, i.e., a ring of the form ℤ[x ]/(x 2 + ax + b)

Fix a quadratic ring 𝓞. An 𝓞-orientation is an injective homomorphism

ι : 𝓞 → End(E )

(E, ι) is an 𝓞-oriented curve

Ell𝓞(p) is the set of (supersingular) 𝓞-oriented curves over 𝔽p
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Action of the class group

Each quadratic ring 𝓞 comes with a finite abelian group Cl(𝓞), the ideal 
class group of 𝓞

There is an action of Cl(𝓞) on Ell𝓞(p)

∗ : Cl(𝓞) × Ell𝓞(p) → Ell𝓞(p)

(𝔞, E ) ⟼ 𝔞 ∗ E

𝔟 ∗ (𝔞 ∗ E) = (𝔟𝔞) ∗ E
e ∗ E = E
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Alice Bob
Sample secret 𝔞 ∈ Cl(𝓞)

Compute 𝔞 ∗ E0 
𝔞 ∗ E0

Sample secret 𝔟 ∈ Cl(𝓞)
Compute 𝔟 ∗ E0 

𝔟 ∗ E0

Compute EAB = 𝔞 ∗ (𝔟 ∗ E0) Compute EBA = 𝔟 ∗ (𝔞 ∗ E0)

A spy sees E0, 𝔞 ∗ E0, and 𝔟 ∗ E0. Can they recover the secret (𝔞𝔟) ∗ E0?

The CSIDH problem

Fix E0 ∈ Ell𝓞(p), with 𝓞 = ℤ[√–p]
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Vectorisation

𝓞-Diffie-Hellman: Given 𝓞-oriented E, 𝔞 ∗ E and 𝔟 ∗ E, compute 

(𝔞𝔟) ∗ E.

𝓞-Vectorisation: Given 𝓞-oriented E and 𝔞 ∗ E, find 𝔞.

Evidently*, 𝓞-Diffie-Hellman reduces to 𝓞-Vectorisation

Theorem 1: There is a quantum polynomial time reduction from 𝓞-
Vectorisation to 𝓞-Diffie-Hellman (assuming GRH).

Previous work: subexponential, heuristic, quantum reduction [Galbraith, 
Panny, Smith, Vercauteren 2021]
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Oriented EndRing

𝓞-EndRing: Given 𝓞-oriented E, compute End(E ).

𝓞-Vectorisation: Given 𝓞-oriented E and 𝔞 ∗ E, find 𝔞.

Theorem 2: Given the factorisation of disc(𝓞), the problems 𝓞-
Vectorisation and 𝓞-EndRing are equivalent (assuming GRH).

Previous work: subexponential reduction for 𝓞 = ℤ[√–p] from 𝓞-
Vectorisation to 𝓞-EndRing [Castryck, Panny, Vercauteren 2020] 
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Many isogeny-based cryptosystems reduces to:

𝓞-Uber: Given 𝓞-oriented (E,ι), and an 𝓞-orientable curve F, find 𝔞 such 
that 𝔞 ∗ E = F.

𝓞-EndRing*: Given 𝓞-orientable E, compute End(E ) and an 𝓞-
orientation ι of E.

Theorem 3: Given the factorisation of disc(𝓞), the problems 𝓞-Uber and 
𝓞-EndRing* are equivalent (assuming GRH).
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