Benjamin Wesolowski Université de Bordeaux, CNRS, Inria

Eurocrypt 2022, June 2022, Trondheim, Norway

Orientations and the supersingular endomorphism ring problem

Supersingular elliptic curves Isogenies and endomorphisms

Elliptic curves

Elliptic curve over \mathbb{F}_q : solutions (x, y) in \mathbb{F}_q of

 $y^2 = x^3 + ax + b$

Elliptic curves

Elliptic curve over \mathbb{F}_q : solutions (x, y) in \mathbb{F}_q of

$E(\mathbb{F}_q)$ is an additive group

 $y^2 = x^3 + ax + b$

Elliptic curves

Elliptic curve over \mathbb{F}_q : solutions (x, y) in \mathbb{F}_q of

 $E(\mathbb{F}_{a})$ is an additive group An isogeny in a map

which preserves certain structures. In particular, it is a group homomorphism with a finite kernel

 $y^2 = x^3 + ax + b$

- $\varphi: E \to F$

An **endomorphism** is an isogeny $\varphi : E \rightarrow E$

- An **endomorphism** is an isogeny $\varphi : E \rightarrow E$ They form a **ring** End(E)
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
 - $\varphi \psi$ is the composition: $(\varphi \psi)(P) = \varphi(\psi(P))$

- An **endomorphism** is an isogeny $\varphi : E \rightarrow E$ They form a **ring** End(E)
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
- $\varphi \psi$ is the composition: $(\varphi \psi)(P) = \varphi(\psi(P))$ What is the structure of End(E)?

- An endomorphism is an isogeny $\varphi : E \to E$ They form a **ring** End(E)
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
- $\varphi \psi$ is the composition: $(\varphi \psi)(P) = \varphi(\psi(P))$ What is the structure of End(E)?
 - It contains $\mathbb{Z} \subset \text{End}(E)$...

- An **endomorphism** is an isogeny $\varphi : E \rightarrow E$ They form a **ring** End(E)
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
- $\varphi \psi$ is the composition: $(\varphi \psi)(P) = \varphi(\psi(P))$ What is the structure of End(E)?
 - It contains $\mathbb{Z} \subset \text{End}(E)$...
 - (End(E), +) is a **lattice** of dimension 2 or 4

A curve E is supersingular if (End(E), +) is a lattice of dimension 4

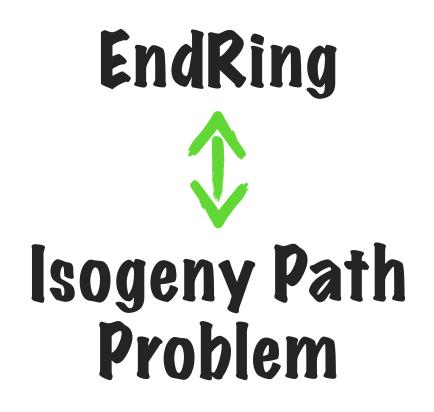
A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):

- $\mathsf{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):

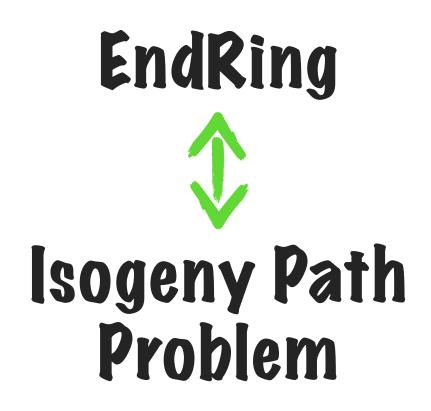
- $\mathsf{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):



- $\mathsf{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

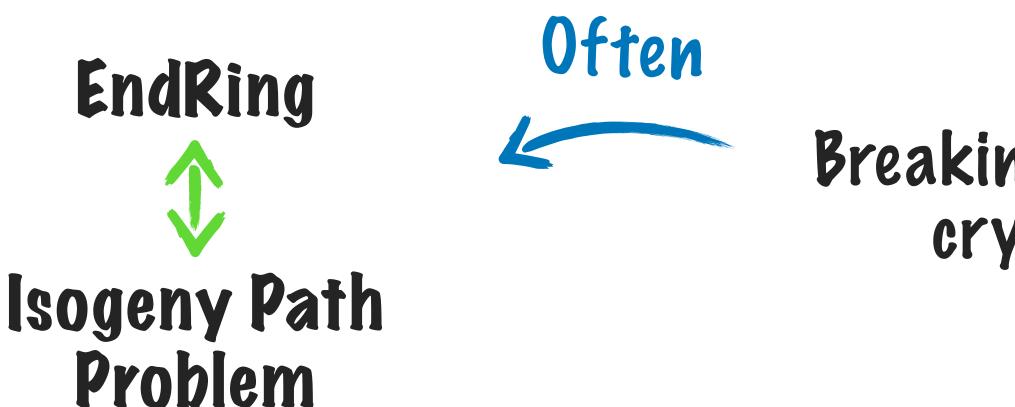
A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):



- $\operatorname{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

Breaking isogeny-based cryptosystems

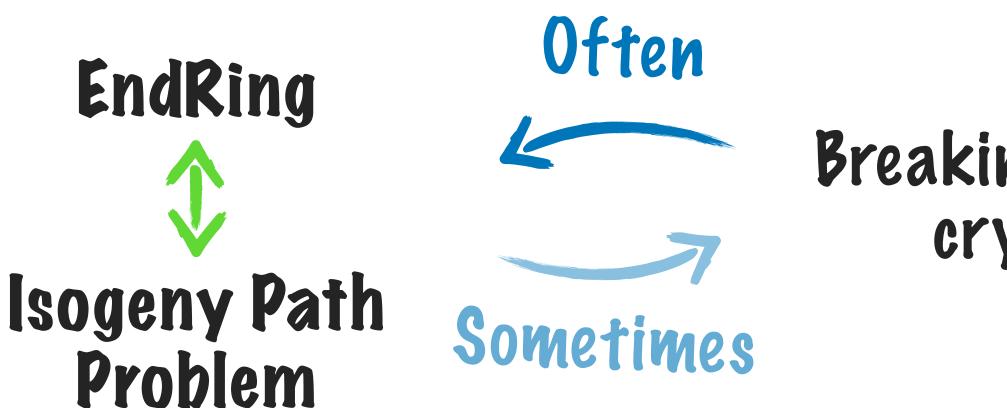
A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):



- $\operatorname{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

Breaking isogeny-based cryptosystems

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):



- $\operatorname{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$

Breaking isogeny-based cryptosystems

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):

Uber? Often EndRing Isogeny Path Sometimes Problem

- $\operatorname{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$
 - Vectorisation?
 - Breaking isogeny-based cryptosystems
 - Oriented Diffie-Hellman?

A curve E is supersingular if (End(E), +) is a lattice of dimension 4 **EndRing:** Given a supersingular curve E, compute End(E). I.e., find 4 endomorphisms that form a basis of End(E):

Uber? Often EndRing Isogeny Path Sometimes Problem

- $\operatorname{End}(E) = \mathbb{Z}\alpha_1 \oplus \mathbb{Z}\alpha_2 \oplus \mathbb{Z}\alpha_3 \oplus \mathbb{Z}\alpha_4$
 - Vectorisation?
 - Breaking isogeny-based cryptosystems
 - Oriented Diffie-Hellman?

Goal: get a sharper picture of the situation

Orientations Of supersingular elliptic curves

Let $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ • $\mathbb{Z}[\alpha] \subset \text{End}(E)$ is a subring of dimension 2

Let $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

- $\mathbb{Z}[\alpha] \subset \text{End}(E)$ is a subring of dimension 2
- $\mathbb{Z}[\alpha]$ is a **quadratic ring**, i.e., a ring of the form $\mathbb{Z}[x]/(x^2 + ax + b)$

Let $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

- $\mathbb{Z}[\alpha] \subset \text{End}(E)$ is a subring of dimension 2
- $\mathbb{Z}[\alpha]$ is a quadratic ring, i.e., a ring of the form $\mathbb{Z}[x]/(x^2 + ax + b)$

- Fix a quadratic ring \mathcal{O} . An \mathcal{O} -orientation is an injective homomorphism
 - $\iota: \mathcal{O} \to \operatorname{End}(E)$

Let $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

- $\mathbb{Z}[\alpha] \subset \text{End}(E)$ is a subring of dimension 2
- $\mathbb{Z}[\alpha]$ is a quadratic ring, i.e., a ring of the form $\mathbb{Z}[x]/(x^2 + ax + b)$

 (E, ι) is an \mathcal{O} -oriented curve

- Fix a quadratic ring \mathcal{O} . An \mathcal{O} -orientation is an injective homomorphism
 - $\iota: \mathcal{O} \to \operatorname{End}(E)$

Let $\alpha \in \text{End}(E) \setminus \mathbb{Z}$

- $\mathbb{Z}[\alpha] \subset \text{End}(E)$ is a subring of dimension 2
- $\mathbb{Z}[\alpha]$ is a quadratic ring, i.e., a ring of the form $\mathbb{Z}[x]/(x^2 + ax + b)$ Fix a quadratic ring \mathcal{O} . An \mathcal{O} -orientation is an injective homomorphism $\iota: \mathcal{O} \to \operatorname{End}(E)$

 (E, ι) is an \mathcal{O} -oriented curve $\operatorname{Ell}_{\mathscr{O}}(p)$ is the set of (supersingular) \mathscr{O} -oriented curves over $\overline{\mathbb{F}}_p$

Each quadratic ring \mathcal{O} comes with a finite abelian group $Cl(\mathcal{O})$, the **ideal** class group of \mathcal{O}

class group of \mathcal{O} There is an action of $Cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(p)$

- Each quadratic ring \mathcal{O} comes with a finite abelian group Cl(\mathcal{O}), the **ideal**

 - $* : Cl(\mathcal{O}) \times Ell_{\mathcal{O}}(p) \to Ell_{\mathcal{O}}(p)$ $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$

class group of \mathcal{O} There is an action of $Cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(p)$

- Each quadratic ring \mathcal{O} comes with a finite abelian group Cl(\mathcal{O}), the **ideal**

 - $* : Cl(\mathcal{O}) \times Ell_{\mathcal{O}}(p) \to Ell_{\mathcal{O}}(p)$ $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$
 - b * (a * E) = (ba) * E

class group of \mathcal{O} There is an action of $Cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(p)$

- Each quadratic ring \mathcal{O} comes with a finite abelian group Cl(\mathcal{O}), the **ideal**

 - $* : Cl(\mathcal{O}) \times Ell_{\mathcal{O}}(p) \to Ell_{\mathcal{O}}(p)$
 - $(\mathfrak{a}, E) \mapsto \mathfrak{a} * E$
 - b * (a * E) = (ba) * E
 - e * E = E

Cryptography from orientations Key exchange on the CSIDH

CSIDH key exchange

CSIDH key exchange Fix $E_0 \in \text{Ell}_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Alice

CSIDH key exchange Fix $E_0 \in \text{Ell}_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Alice Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$

CSIDH key exchange

Fix $E_0 \in Ell_{\mathcal{O}}$ Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathfrak{a} * E_0$

Fix $E_0 \in \text{Ell}_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$

CSIDH key exchange Fix $E_0 \in \text{Ell}_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$

Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathfrak{a} * E_0$

CSIDH key exchange Fix $E_0 \in Ell_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$

Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathfrak{a} * E_0$

Sample secret $\mathfrak{b} \in Cl(\mathcal{O})$

CSIDH key exchange Fix $E_0 \in \text{Ell}_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Alice

a * E0

Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathbf{a} * E_0$

CSIDH key exchangeFix $E_0 \in Ell_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Cl(\mathcal{O}) $\mathfrak{a} * \mathfrak{E}_0$

b * **E**0

Fix $E_0 \in Ell_{\mathcal{O}}$ Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathfrak{a} * E_0$

Bob

Sample secret $\mathfrak{b} \in Cl(\mathcal{O})$ Compute $\mathfrak{b} * E_0$

CSIDH key exchangeFix $E_0 \in Ell_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ $\mathfrak{a} * \mathcal{E}_0$

b * **E**0

Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

Bob

Sample secret $\mathfrak{b} \in Cl(\mathcal{O})$ Compute $\mathfrak{b} * E_0$

CSIDH key exchangeFix $E_0 \in Ell_{\mathcal{O}}(p)$, with $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ $\mathfrak{a} * \mathfrak{E}_0$

b * **E**0

Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

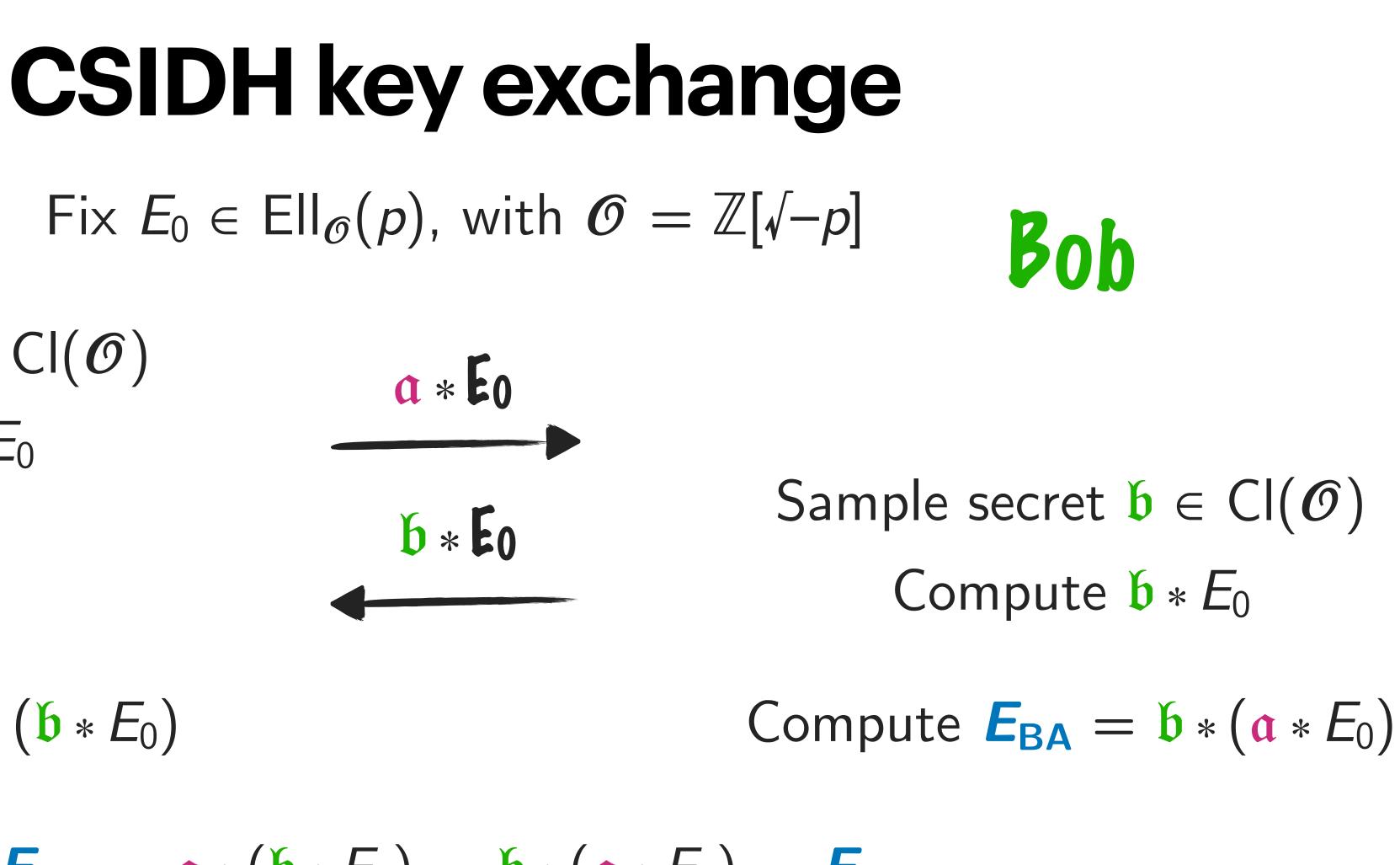
Sample secret $\mathfrak{b} \in Cl(\mathcal{O})$ Compute $\mathfrak{b} * E_0$

Compute $E_{BA} = \mathfrak{b} * (\mathfrak{a} * E_0)$

$\begin{array}{l} \textbf{CSIDHke}\\ \textbf{Alice}\\ Fix \ E_0 \in Ell_{\mathcal{O}}(\mu)\\ Sample \ secret \ \mathfrak{a} \in Cl(\mathcal{O})\\ Compute \ \mathfrak{a} \ast E_0 \end{array}$

Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

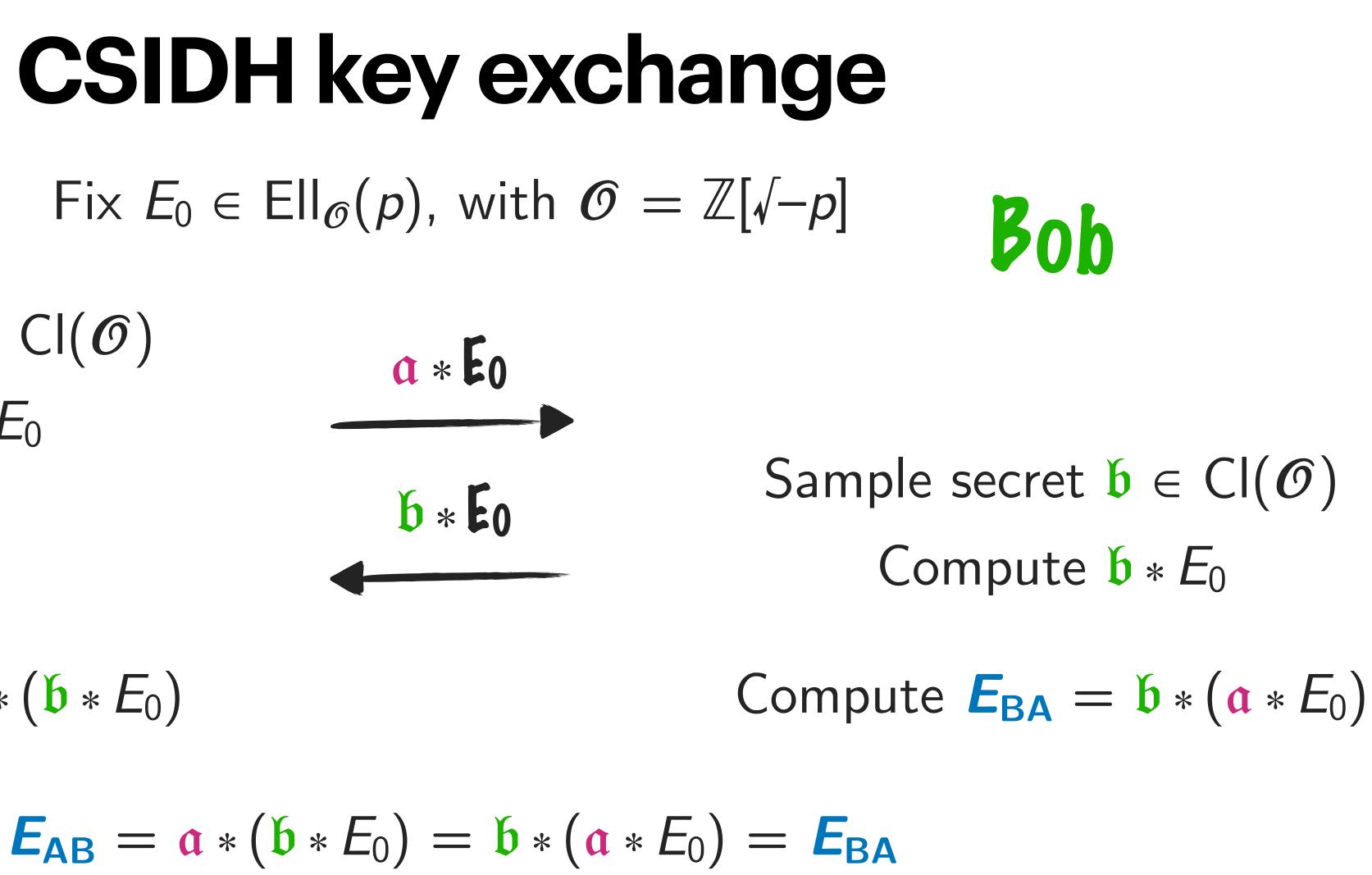
 $\boldsymbol{E}_{AB} = \boldsymbol{\mathfrak{a}} * (\boldsymbol{\mathfrak{b}} * E_0) = \boldsymbol{\mathfrak{b}} * (\boldsymbol{\mathfrak{a}} * E_0) = \boldsymbol{E}_{BA}$



Alice Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathbf{a} * E_0$

Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

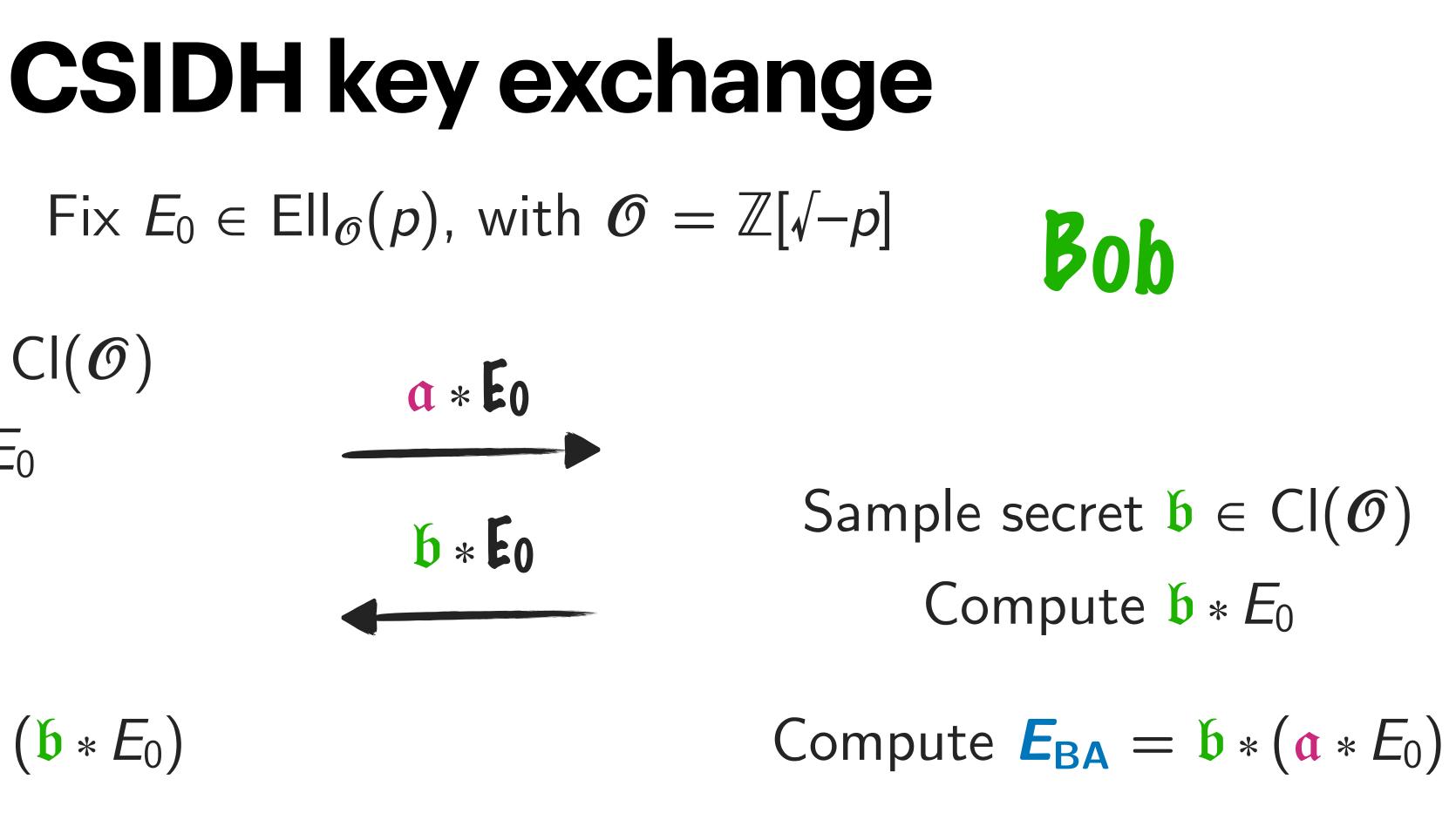
 $E_{AB} = E_{BA}$ is Alice and Bob's shared secret



$\begin{array}{l} \textbf{CSIDH ke} \\ \textbf{Alice} \\ Fix \ E_0 \in Ell_{\mathcal{O}}(\mu) \\ Sample \ secret \ \mathfrak{a} \in Cl(\mathcal{O}) \\ Compute \ \mathfrak{a} \ast E_0 \end{array}$

Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

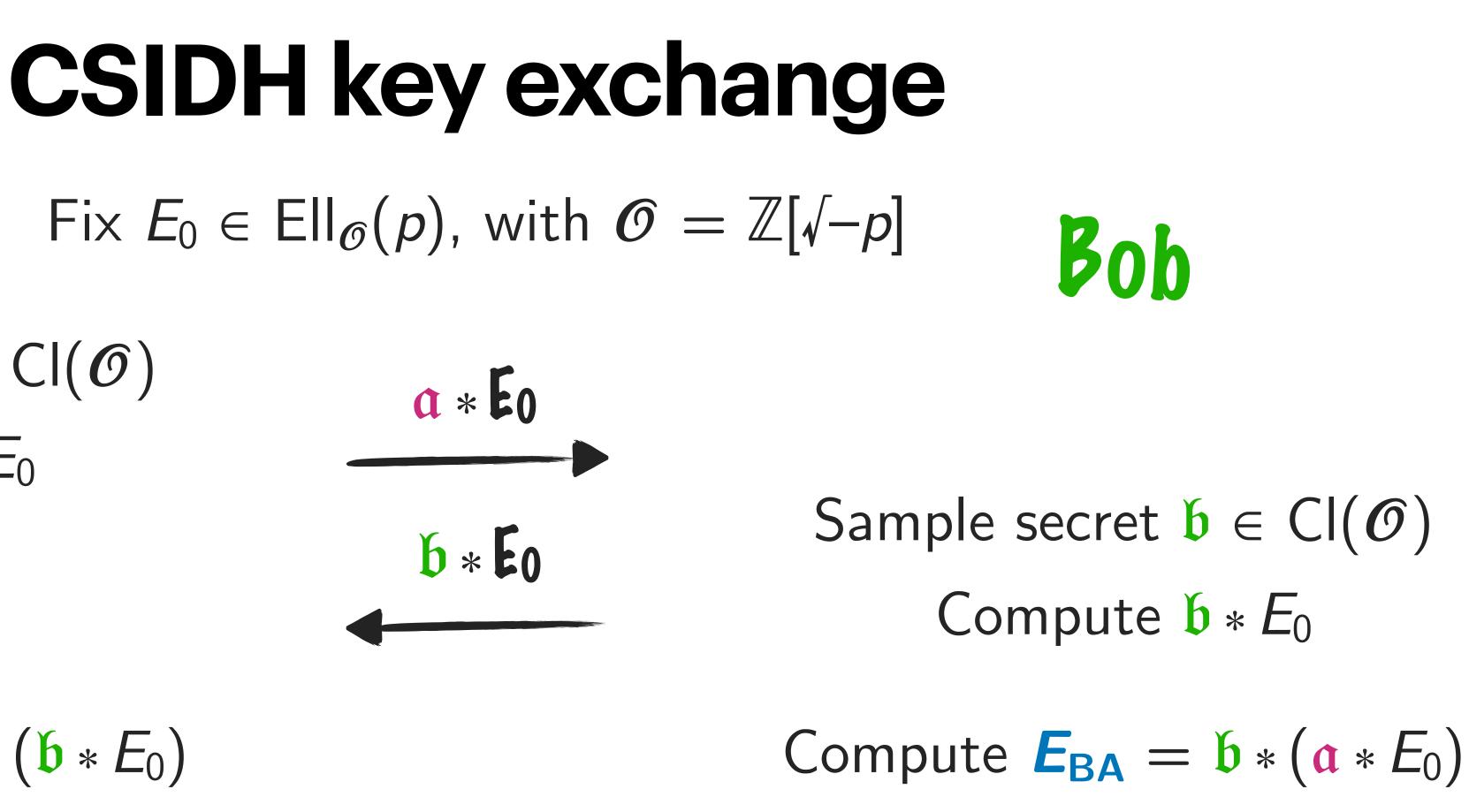
A spy sees E_0 , $\mathfrak{a} * E_0$, and $\mathfrak{b} * E_0$. Can they recover the secret $(\mathfrak{a}\mathfrak{b}) * E_0$?



Alice Sample secret $\mathfrak{a} \in Cl(\mathcal{O})$ Compute $\mathbf{a} * E_0$

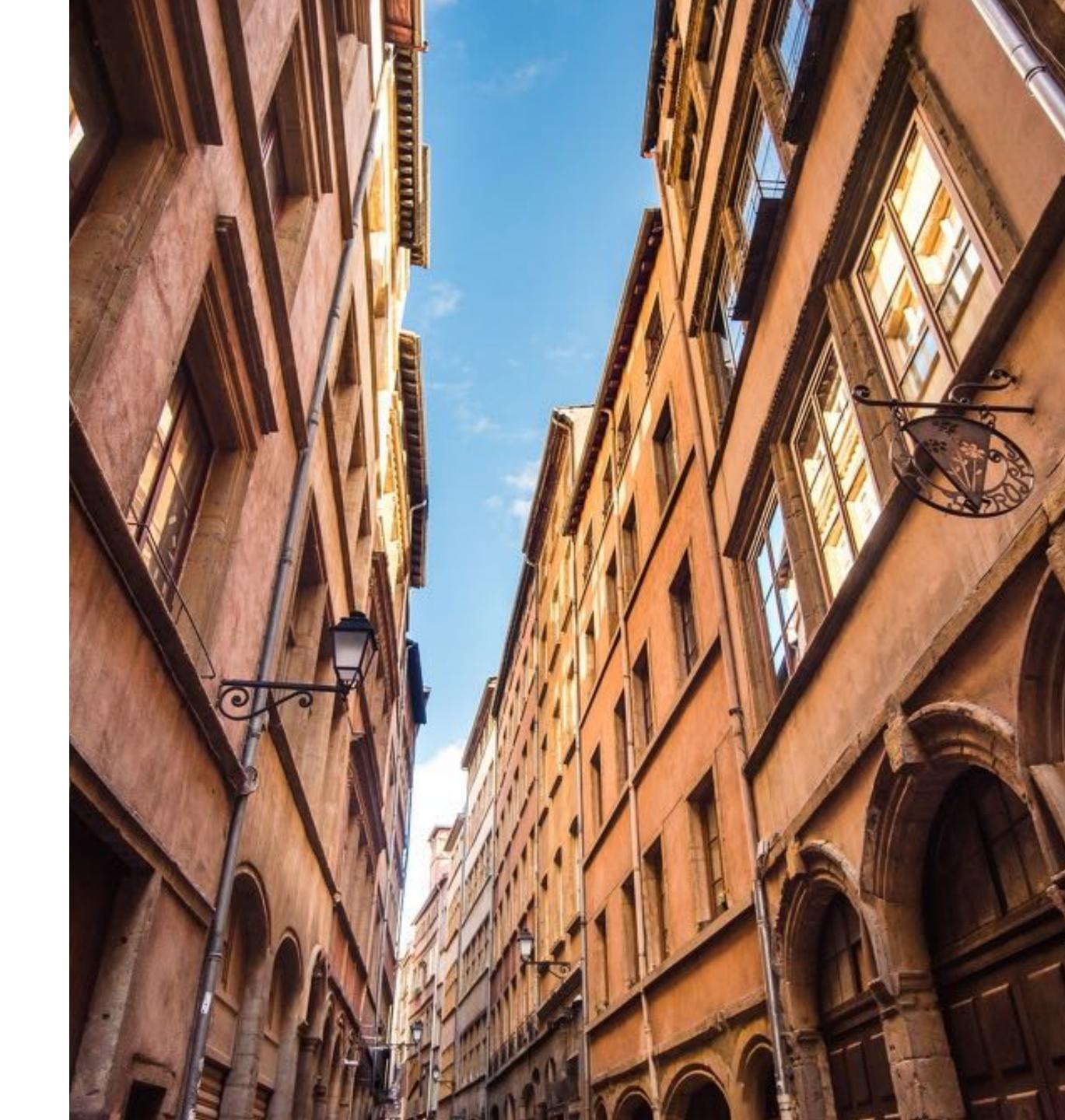
Compute $E_{AB} = \mathfrak{a} * (\mathfrak{b} * E_0)$

A spy sees E_0 , $\mathfrak{a} * E_0$, and $\mathfrak{b} * E_0$. Can they recover the secret $(\mathfrak{a}\mathfrak{b}) * E_0$?



The CSIDH problem

Vectorisation And the oriented endomorphism ring problem



O-Diffie-Hellman: Given **O**-oriented E, $\mathfrak{a} * E$ and $\mathfrak{b} * E$, compute $(\mathfrak{ab}) * E$.

O-Diffie-Hellman: Given **O**-oriented E, $\mathfrak{a} * E$ and $\mathfrak{b} * E$, compute $(\mathfrak{a}\mathfrak{b}) * E.$ **O-Vectorisation:** Given **O**-oriented E and $\mathfrak{a} * E$, find \mathfrak{a} .

 \mathcal{O} -Diffie-Hellman: Given \mathcal{O} -oriented E, $\mathfrak{a} * E$ and $\mathfrak{b} * E$, compute $(\mathfrak{a}\mathfrak{b}) * E$. \mathcal{O} -Vectorisation: Given \mathcal{O} -oriented E and $\mathfrak{a} * E$, find \mathfrak{a} . Evidently*, \mathcal{O} -Diffie-Hellman reduces to \mathcal{O} -Vectorisation

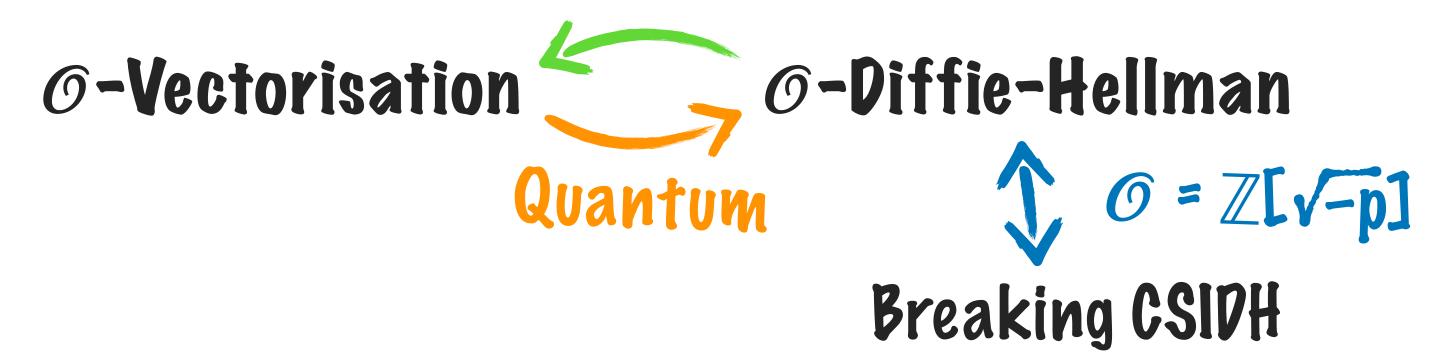
* actually not so evident, because applying the action of \mathfrak{a} on $\mathfrak{b} * E$ to get $\mathfrak{ab} * E$ may not be efficient. This issue can be fixed

Ø-Diffie-Hellman: Given Ø-oriented E, a * E and b * E, compute (ab) * E.
Ø-Vectorisation: Given Ø-oriented E and a * E, find a.
Evidently*, Ø-Diffie-Hellman reduces to Ø-Vectorisation
Theorem 1: There is a quantum polynomial time reduction from Ø-Vectorisation to Ø-Diffie-Hellman (assuming GRH).

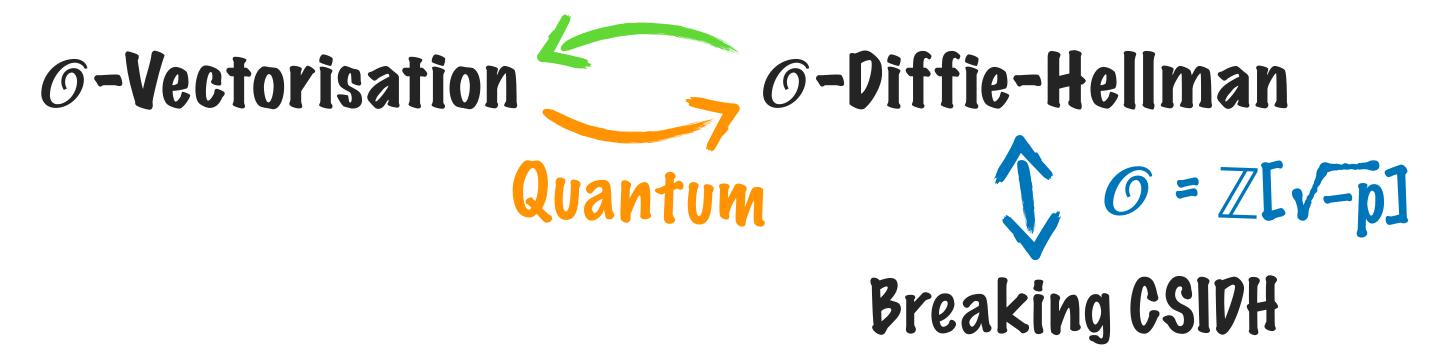
Ø-Diffie-Hellman: Given Ø-oriented E, a * E and b * E, compute (ab) * E.
Ø-Vectorisation: Given Ø-oriented E and a * E, find a.
Evidently*, Ø-Diffie-Hellman reduces to Ø-Vectorisation
Theorem 1: There is a quantum polynomial time reduction from Ø-Vectorisation to Ø-Diffie-Hellman (assuming GRH).

Previous work: subexponential, heuristic, quantum reduction [Galbraith, Panny, Smith, Vercauteren 2021]

0-Diffie-Hellman



How does this relate to EndRing? O-Vector



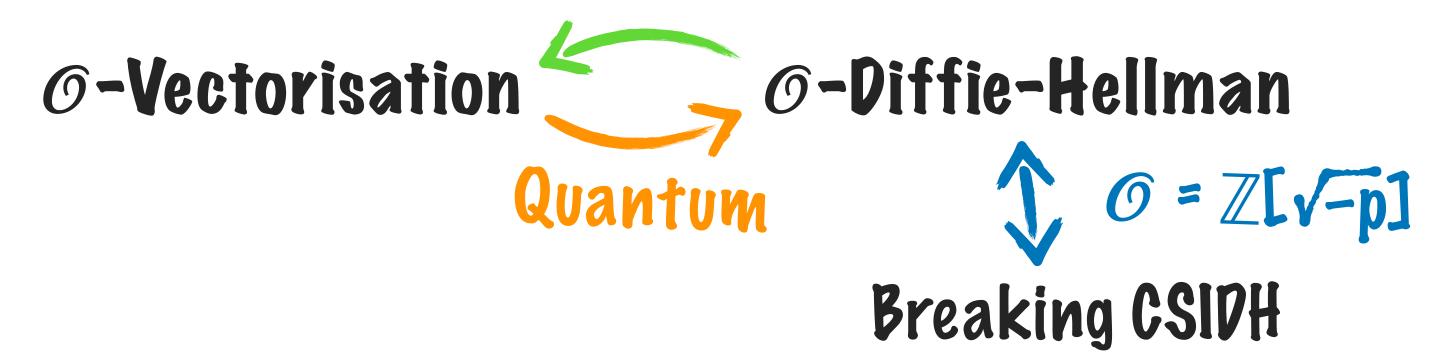
\mathcal{O}-EndRing: Given \mathcal{O} -oriented *E*, compute End(*E*).

\mathcal{O}-EndRing: Given \mathcal{O} -oriented *E*, compute End(*E*). \mathcal{O} -Vectorisation: Given \mathcal{O} -oriented E and $\mathfrak{a} * E$, find \mathfrak{a} .

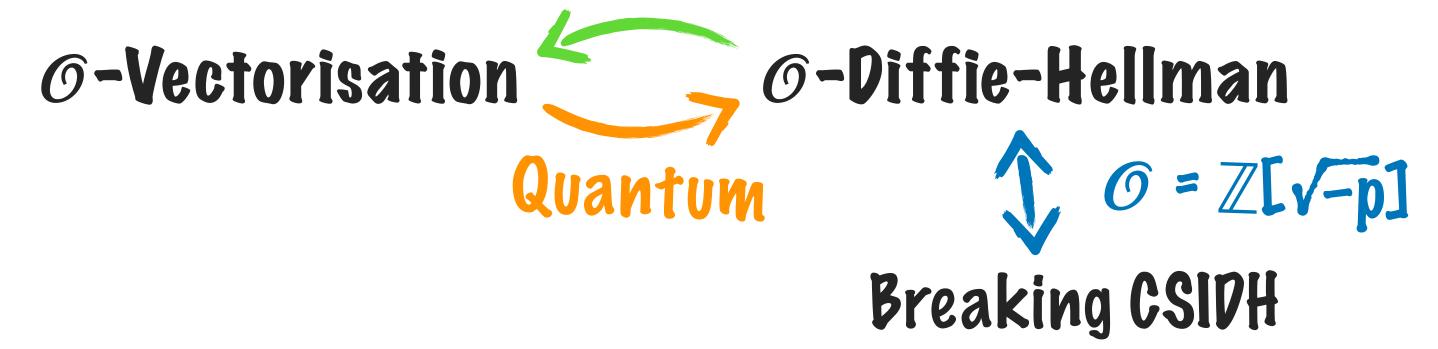
\mathcal{O}-EndRing: Given \mathcal{O} -oriented *E*, compute End(*E*). \mathcal{O} -Vectorisation: Given \mathcal{O} -oriented E and $\mathfrak{a} * E$, find \mathfrak{a} . **Theorem 2:** Given the factorisation of disc(\mathcal{O}), the problems \mathcal{O} -Vectorisation and \mathcal{O} -EndRing are equivalent (assuming GRH).

 \mathcal{O} -EndRing: Given \mathcal{O} -oriented E, compute End(E). \mathcal{O} -Vectorisation: Given \mathcal{O} -oriented E and $\mathfrak{a} * E$, find \mathfrak{a} . **Theorem 2:** Given the factorisation of disc(\mathcal{O}), the problems \mathcal{O} -Vectorisation and \mathcal{O} -EndRing are equivalent (assuming GRH).

Previous work: subexponential reduction for $\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$ from \mathcal{O} -Vectorisation to *O*-EndRing [Castryck, Panny, Vercauteren 2020]



O-EndRing

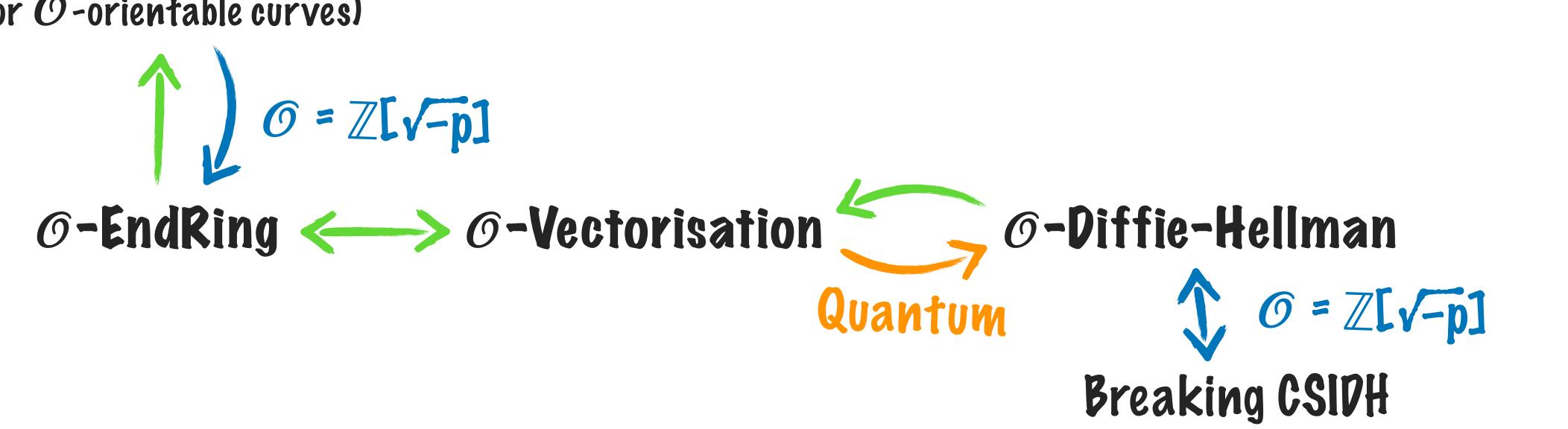


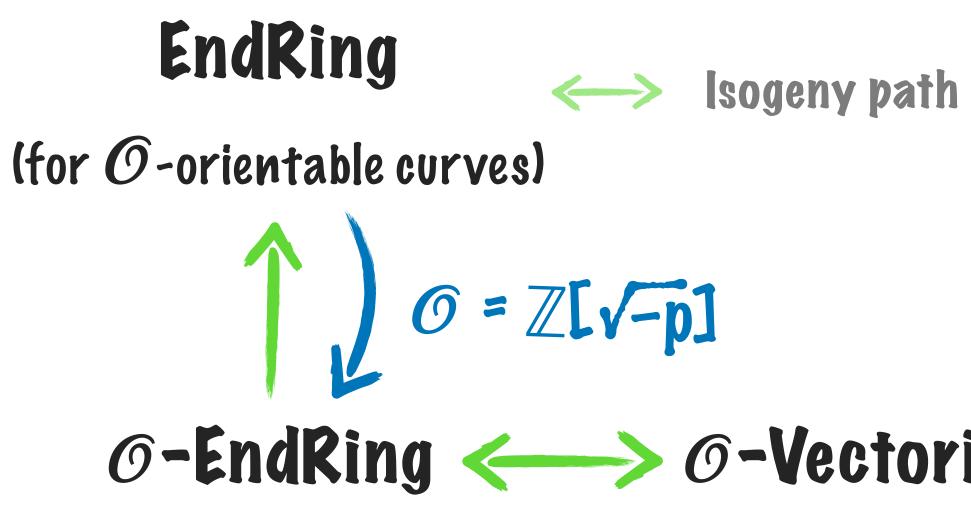
EndRing

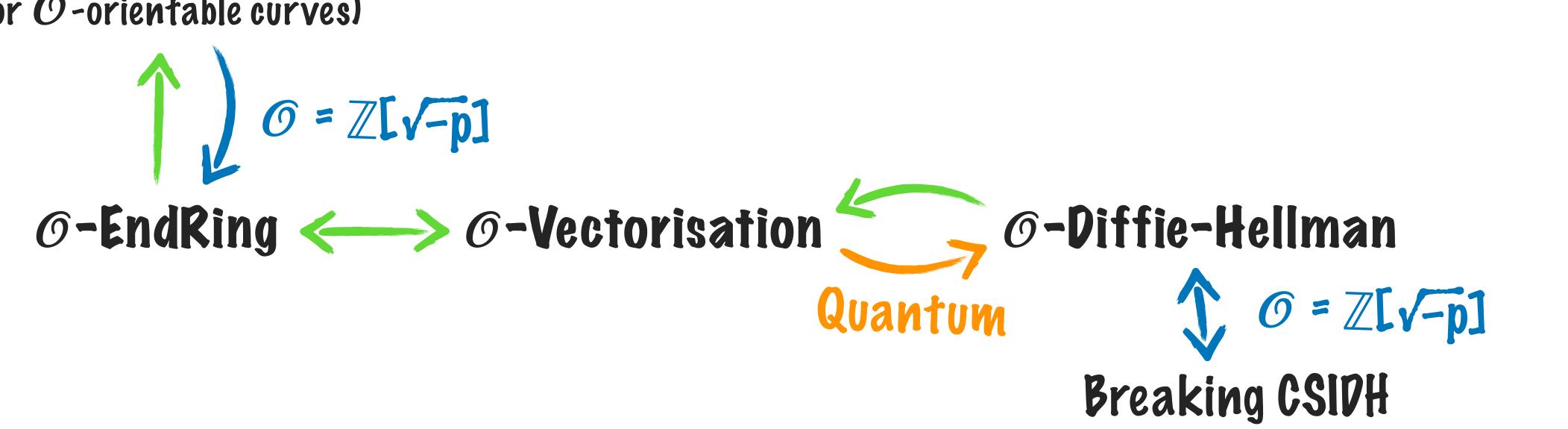
(for \mathcal{O} -orientable curves)

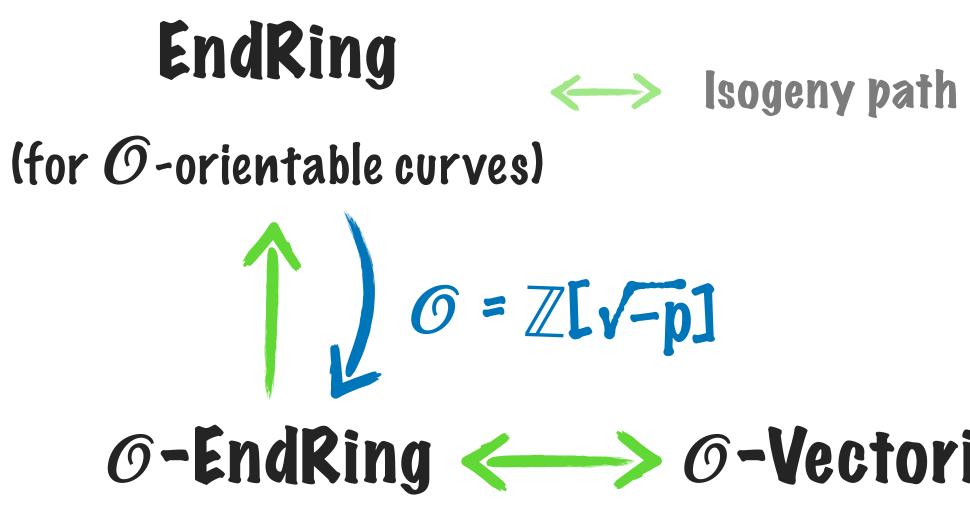
EndRing (for O-orientable curves) O-EndRing -> O-Vectori

EndRing (for \mathcal{O} -orientable curves)



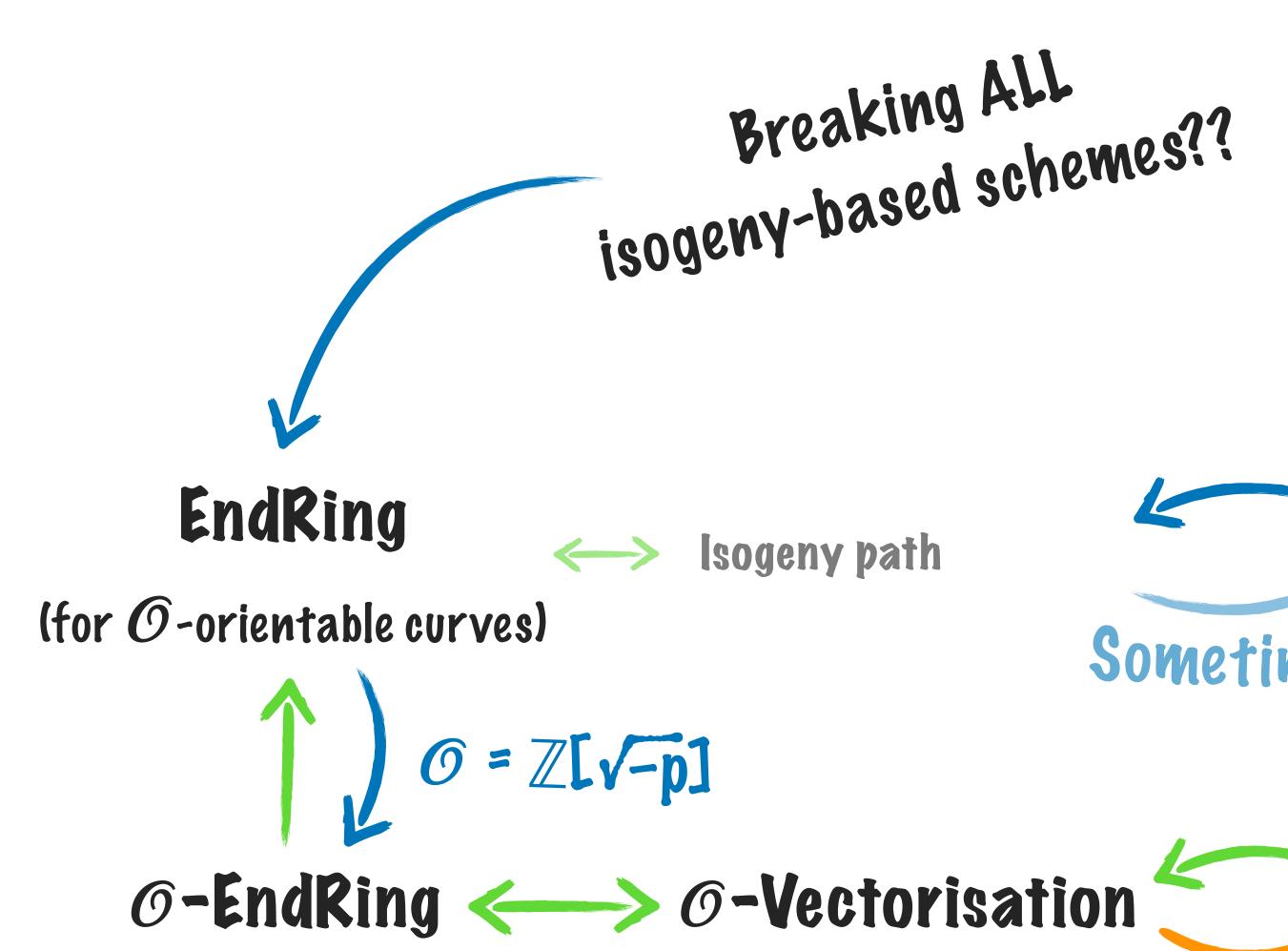








isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH



Breaking a few isogeny-based schemes Sometimes

isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIDH

The Uber isogeny problem And another oriented endomorphism ring problem

Many isogeny-based cryptosystems reduces to: that $\mathfrak{a} * E = F$.

Uber

- **O-Uber:** Given **O**-orient**ed** (E,ι) , and an **O**-orient**able** curve F, find \mathfrak{a} such

Many isogeny-based cryptosystems reduces to: that $\mathbf{a} * E = F$.

Silva, W. 2021] SIDH, CSIDH, OSIDH, Séta reduce to O-Uber

Uber

- **O-Uber:** Given **O**-oriented (E,ι) , and an **O**-orientable curve F, find \mathfrak{a} such

[De Feo, Delpech de Saint Guilhem, Fouotsa, Kutas, Leroux, Petit,

Many isogeny-based cryptosystems reduces to: that $\mathfrak{a} * E = F$.

 \mathcal{O} -EndRing*: Given \mathcal{O} -orientable E, compute End(E) and an \mathcal{O} orientation ι of E.

Uber

- **O-Uber:** Given O-oriented (E,ι) , and an O-orientable curve F, find a such

Many isogeny-based cryptosystems reduces to: that $\mathbf{a} * E = F$.

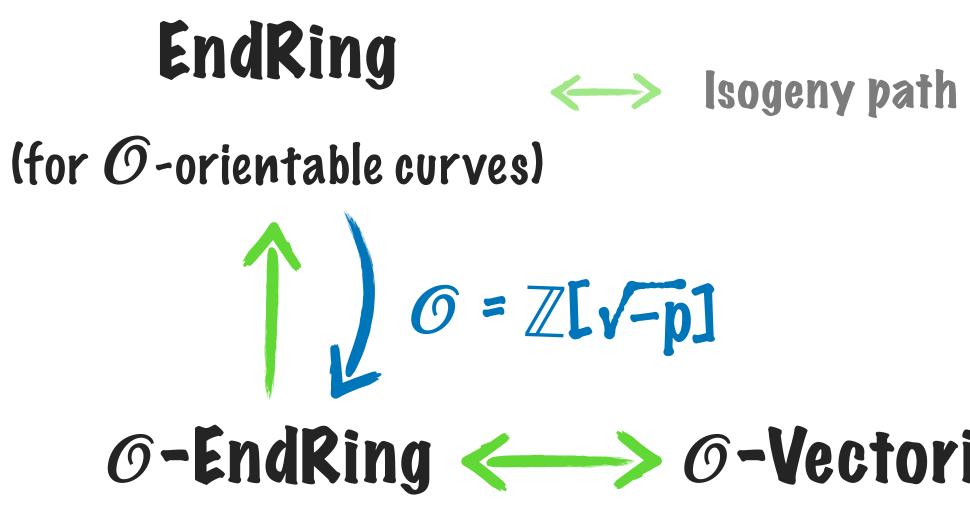
 \mathcal{O} -EndRing*: Given \mathcal{O} -orientable E, compute End(E) and an \mathcal{O} orientation ι of E.

O-EndRing* are equivalent (assuming GRH).

Uber

- \mathcal{O} -Uber: Given \mathcal{O} -oriented (E,ι) , and an \mathcal{O} -orientable curve F, find \mathfrak{a} such

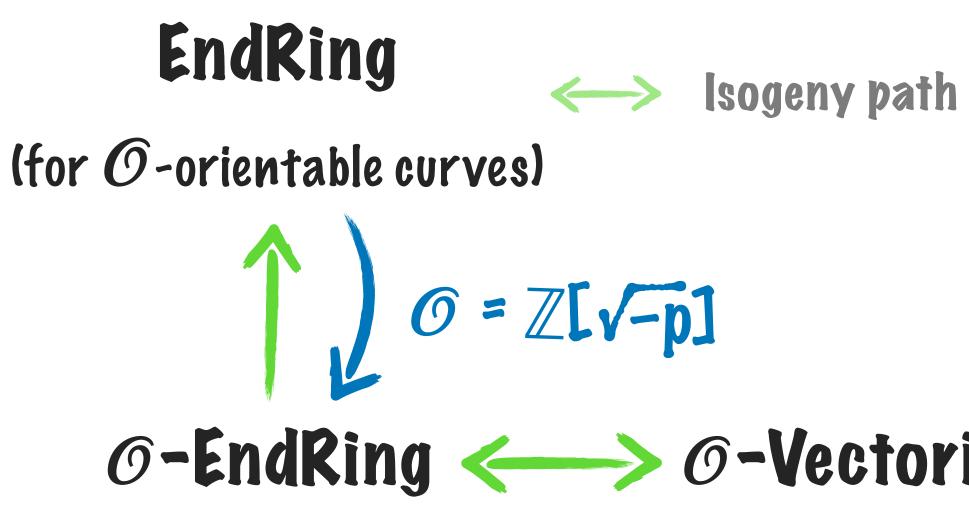
- **Theorem 3:** Given the factorisation of disc(\mathcal{O}), the problems \mathcal{O} -Uber and





isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH

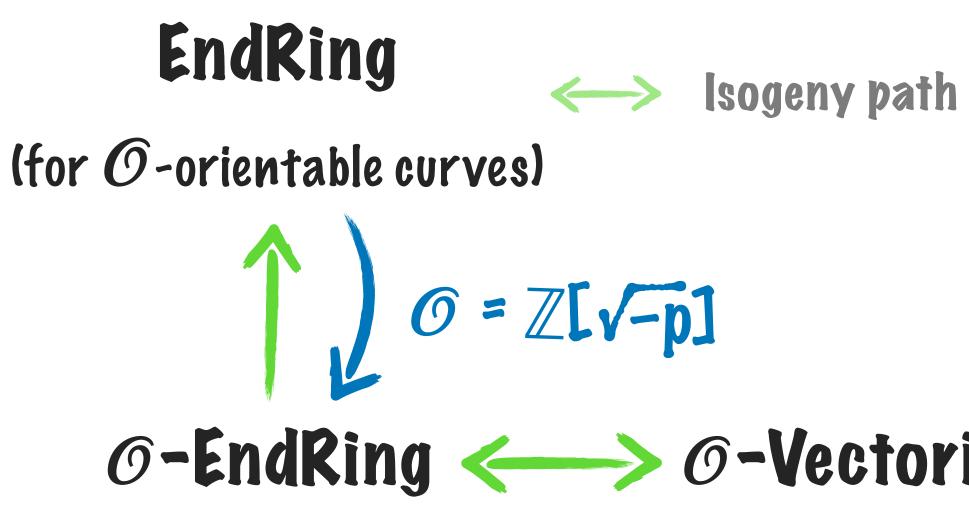
O-Uber

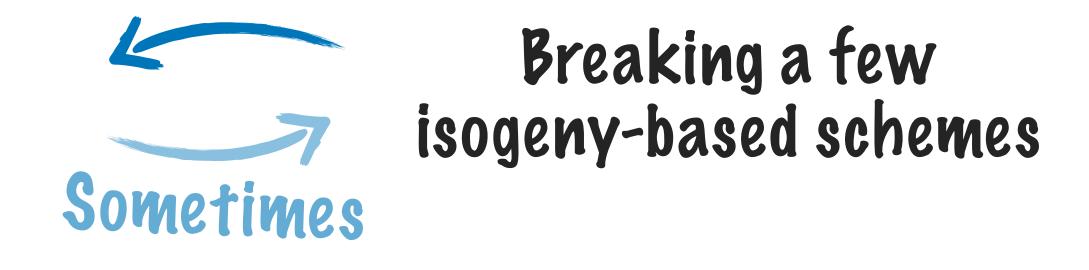


Breaking a few isogeny-based schemes Sometimes

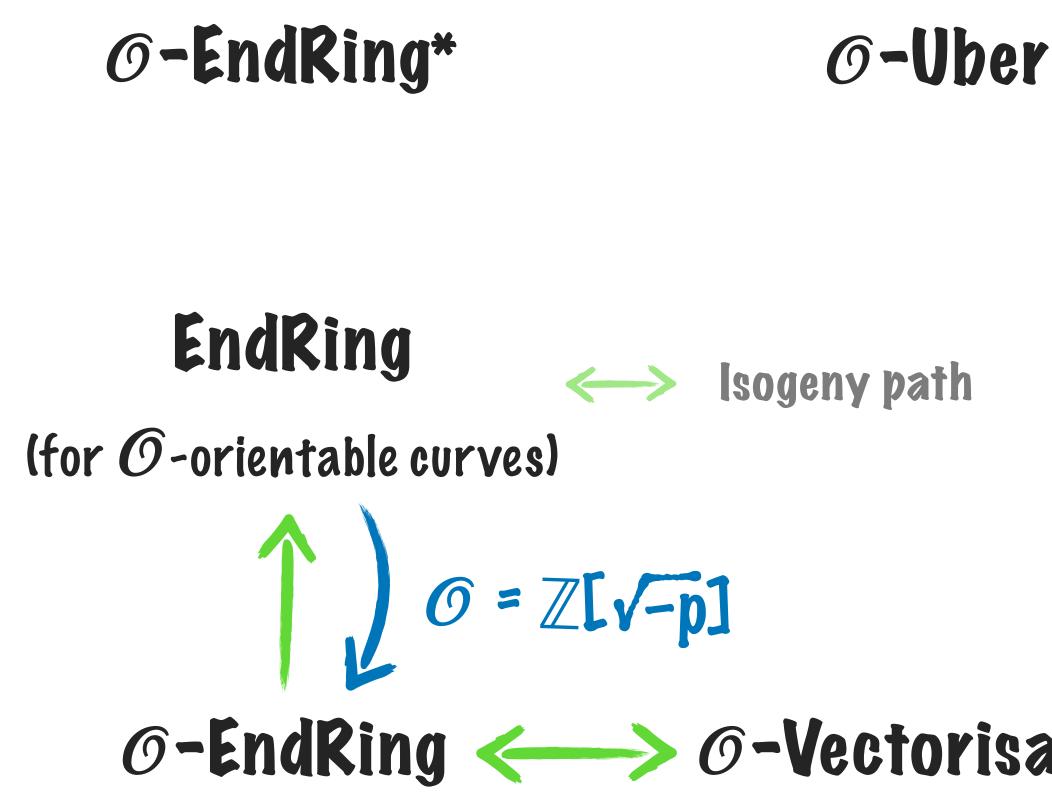
isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc *O* = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH

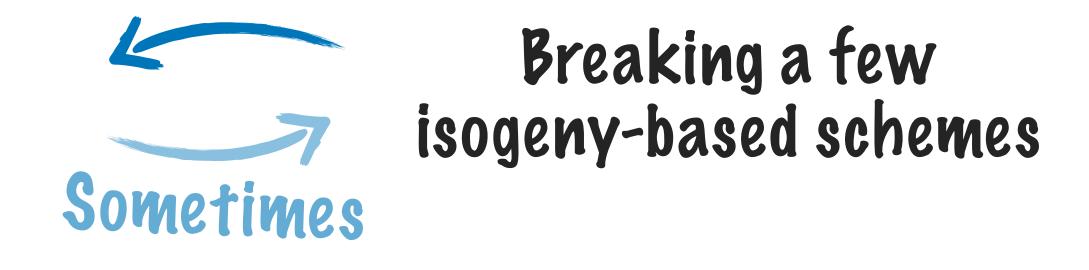
O-Uber



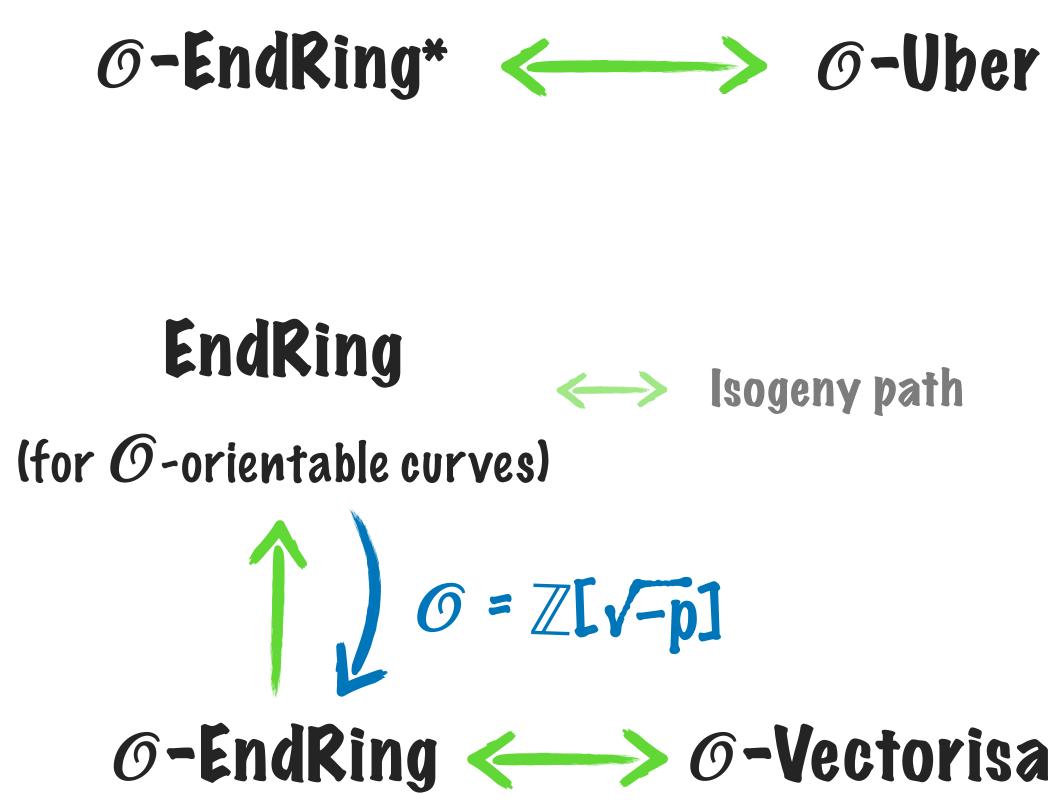


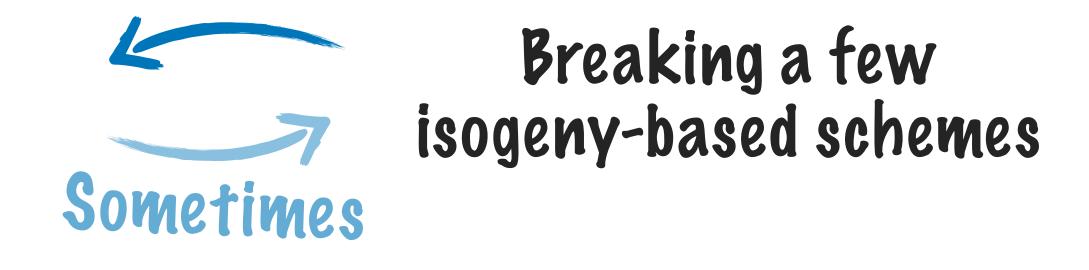
isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH



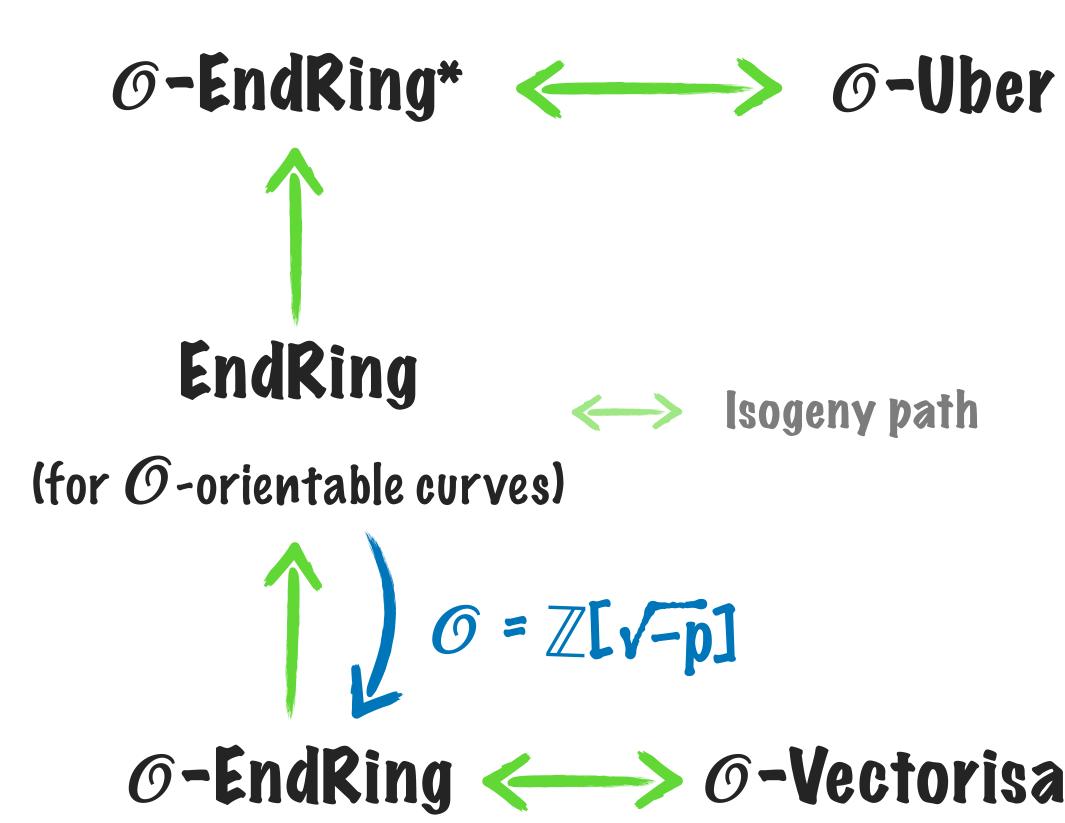


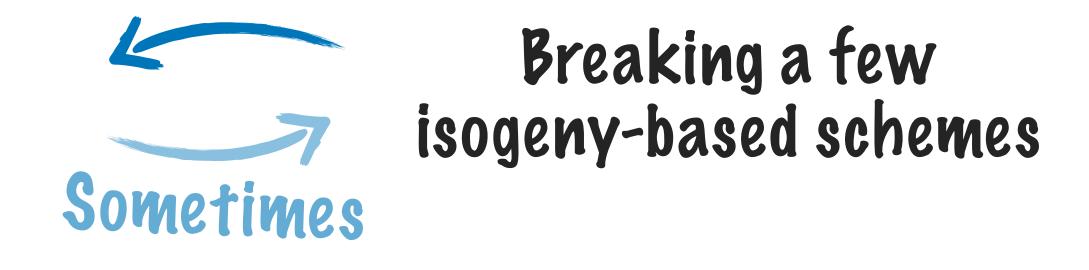
isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH



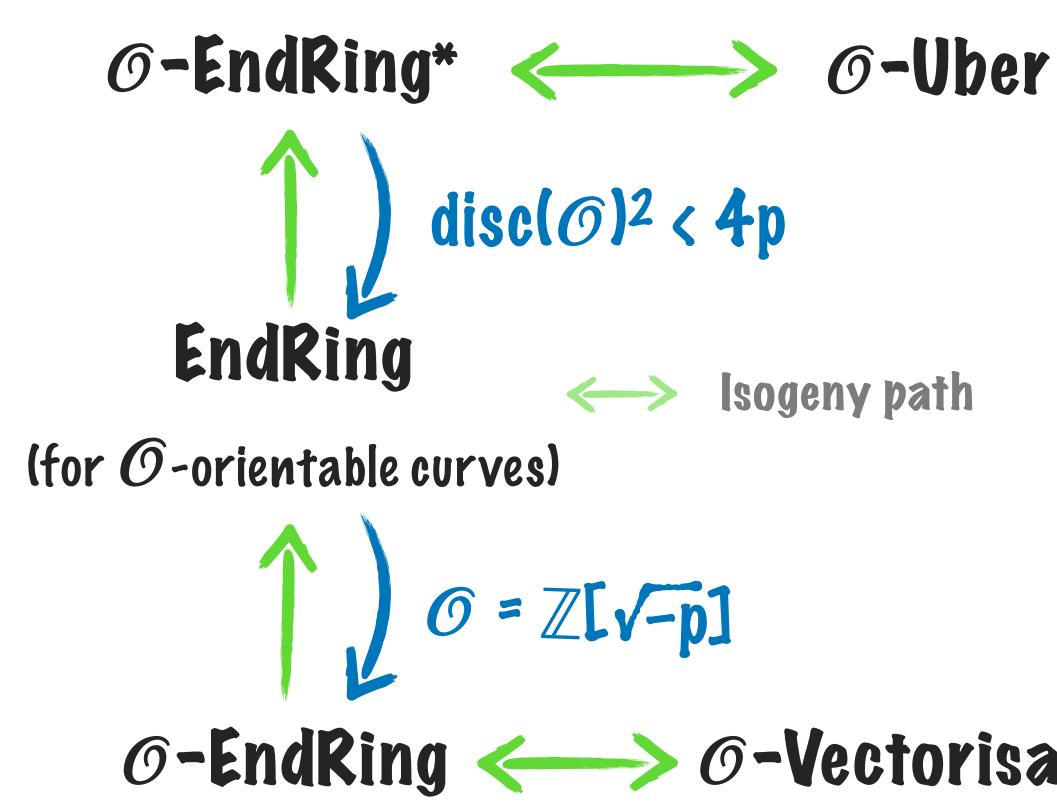


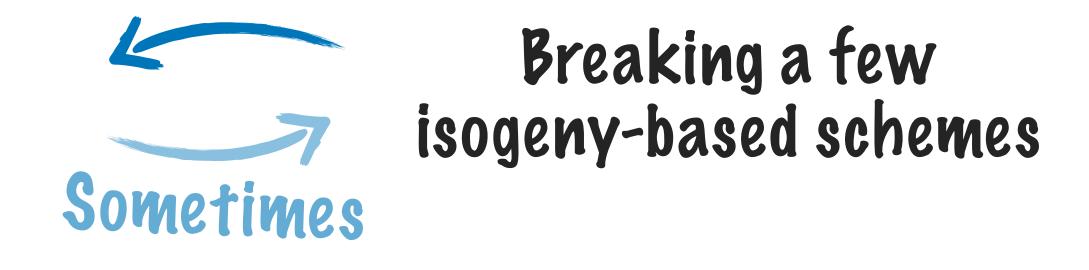
isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH



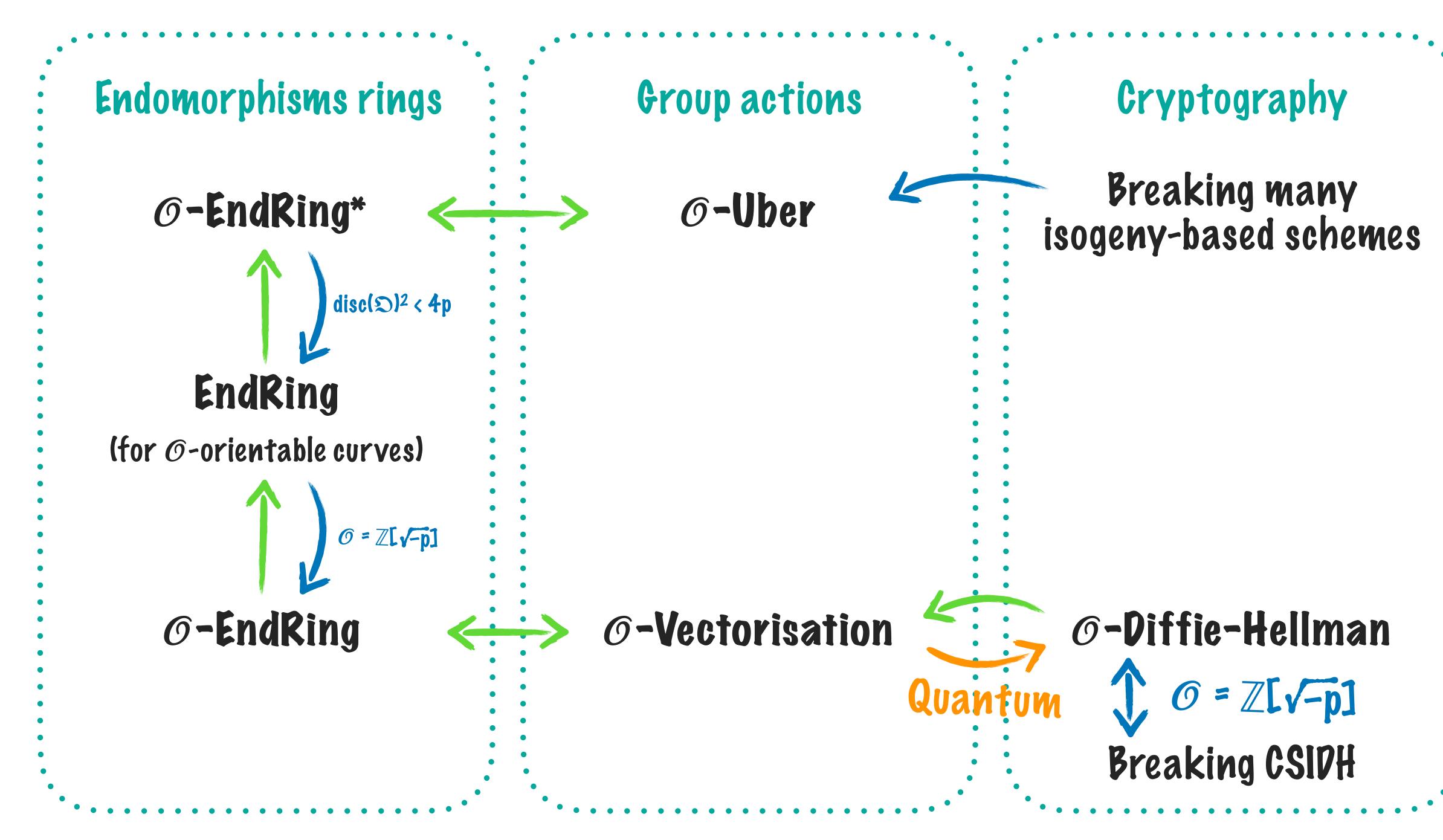


isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH





isation
$$\bigcirc$$
 O-Diffie-Hellman
Quantum \bigcirc \bigcirc = $\mathbb{Z}[\sqrt{-p}]$
Breaking CSIPH



Orientations and the supersingular endomorphism ring problem

