On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness

Chris Brzuska, Geoffroy Couteau

CMTS | I I I I Université de Paris

Impagliazzo, 1995: what world do we live in?

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Minicrypt: symmetric cryptography exists (but no PKE)

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Minicrypt: symmetric cryptography exists (but no PKE)

Algorithmica: P = NP Algorithmist's wonderland

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Minicrypt: symmetric cryptography exists (but no PKE)

Heuristica: $P \neq NP$, but avP = distNP

Algorithmica: P = NP Algorithmist's wonderland

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Minicrypt: symmetric cryptography exists (but no PKE)

Pessiland: no crypto, no fast algorithms, nothing grows here. *The worst of all possible worlds*

Algorithmica

Heuristica: $P \neq NP$, but avP = distNP

Algorithmica: P = NP Algorithmist's wonderland

Cryptomania: public-key cryptography exists *Cryptographer's wonderland*

Minicrypt: symmetric cryptography exists (but no PKE)

Pessiland: no crypto, no fast algorithms, nothing grows here. The worst of all possible worlds

Heuristica: $P \neq NP$, but avP = distNP

Algorithmica: P = NP Algorithmist's wonderland

Algorithmica

Alas... seems to be a very hard problem.

Ruling out Pessiland would be a win-win result for humanity: either (some form of) cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas... seems to be a very hard problem.

Black-box separations between all these assumptions!

Ruling out Pessiland would be a win-win result for humanity: either (some form of) cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas... seems to be a very hard problem.

- Black-box separations between all these assumptions!
- The real landscape is more subtle :)

Ruling out Pessiland would be a win-win result for humanity: either (some form of) cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas... seems to be a very hard problem.

Black-box separations between all these assumptions!

The real landscape is more subtle :)

We ask:

Could extreme average-case hardness imply very weak one-way functions?

Ruling out Pessiland would be a win-win result for humanity: either (some form of) cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas... seems to be a very hard problem.

Black-box separations between all these assumptions!

The real landscape is more subtle :)

We ask:

Could extreme average-case hardness imply very weak one-way functions?

Ruling out Pessiland would be a win-win result for humanity: either (some form of) cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Could *extreme* average-case hardness imply *very weak* one-way functions?

Very weak OWFs

Extreme averagecase hardness

Could *extreme* average-case hardness imply *very weak* one-way functions?

Fine-grained one-way functions

Very weak OWFs

Extreme averagecase hardness

Could *extreme* average-case hardness imply *very weak* one-way functions?

Fine-grained one-way functions

Block-finding average-case hardness Amplifiable average-case hardness Exponential average-case hardness

Very weak OWFs

Extreme averagecase hardness

Fine-grained one-way functions

- 1) Can be evaluated in time N
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Can we Rule out Extreme-Pessiland?

Fine-grained one-way functions

- 1) Can be evaluated in time N
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Can we Rule out Extreme-Pessiland?

Fine-grained one-way functions

- 1) Can be evaluated in time N
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Our first result: No black-box construction of FGOWF from exp hard av-case languages

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

languages when amortising across many instances.

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

Can we Rule out Extreme-Pessiland?

Win-win result? either \exists non-trivial crypto hardness, or \exists sub- 2^n av-time algo for all NP

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Win-win result? either \exists non-trivial crypto hardness, or \exists sub- 2^n av-time algo for all NP

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

Under dream XOR lemma, exp. OWF imply n^2 -PKE with negligible security error [BGI08] (BB-impossible w/out it) Dream XOR lemma = XORing hard predicates amplifies hardness optimally

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Win-win result? either \exists non-trivial crypto hardness, or \exists sub- 2^n av-time algo for all NP

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

Exp-hard OWFs with *amplifiable hardness* imply CRHFs [HL18]. Without it, it is BB-impossible [Simon98]

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Win-win result? either \exists non-trivial crypto hardness, or \exists sub- 2^n av-time algo for all NP languages when amortising across many instances.

Our second result: No BB construction of FGOWF even from amplifiable av-case hard languages

Very technical

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Win-win (?) result? Either \exists non-trivial crypto hardness, or, for any NP language \mathscr{L} , given many instances, we can decide something about their membership pattern in \mathscr{L} faster than brute-force.

Can we Rule out Extreme-Pessiland?

Fine-grained one-way functions

- Can be evaluated in time N1)
- Inverting requires time $N^{1+\varepsilon}$ (1 + ε = hardness 2) gap, typically $\varepsilon > 0$ is constant).

Win-win (?) result? Either \exists non-trivial crypto hardness, or, for any NP language \mathscr{L} , given many instances, we can decide something about their membership pattern in \mathscr{L} faster than brute-force.

Our third result: if \exists block-finding hard languages, there are n^2 -hard FGOWFs

Can we Rule out Extreme-Pessiland?

Associate to each element of \mathscr{U} a uniformly random witness in \mathscr{W}

Notation: the witness of $x \in \mathcal{U}$ is denoted w_x , and b_x is set to 1 iff $x \in \mathcal{L}$

Associate to each element of \mathscr{U} a uniformly random witness in \mathscr{W}

Notation: the witness of $x \in \mathcal{U}$ is denoted w_x , and b_x is set to 1 iff $x \in \mathcal{L}$

Associate to each element of \mathscr{U} a uniformly random witness in \mathscr{W}

Notation: the witness of $x \in \mathcal{U}$ is denoted w_x , and b_x is set to 1 iff $x \in \mathcal{L}$

We call this a hit

Associate to each element of \mathscr{U} a uniformly random witness in \mathscr{W}

Notation: the witness of $x \in \mathcal{U}$ is denoted w_x , and b_x is set to 1 iff $x \in \mathcal{L}$

We call this a hit

Two goals

- Checking that block-finding hardness is plausible
- Basis for all black-box separations

We prove three key results:

- 1. A random language satisfies *block-finding hardness*
- circuit C^{Check}), a random language is still amplifiable average-case hard
- 3. Relative to Check, Inv, there exists no fine-grained OWF

2. Even given a (weakened) FG-OWF inverter Inv (that samples sufficiently likely preimages to any oracle

Oracles:

$$Inv(C^{Check}, y):$$

Removes heavy paths, i.e., path where the number of *hits* is higher than expected, and return a random light path
Shaves the circuit (removing *useless on average* gates)
Derandomizes the oracle with a universal hash function

Removing heavy paths is necessary to avoid solving \mathscr{L} by inverting circuits on *lucky* outputs. **Example:** $C^{\text{Check}}(x, w)$ queries $b \leftarrow \text{Check}(x, w)$ and returns (x, b)**Solver:** on input *x*, queries $Inv(C^{Check}, (x, 1))$

Later, we will use Inv to invert a OWF F. Hence, we need that even after removing all heavy paths for all Check gates, Inv still gives a valid preimage of F(x). Due to the union bound over all gates, we need to set Light_k = Avg_k + $\log^2 |C|$.

Problem: for a large k, Avg_k is tiny, hence $\log^2 |C| \gg Avg_k$: we are still allowing too many hits! **Solution:** before answering, Inv shaves the circuit to remove all Check_k with large k, and replace them with a dummy \perp -gate (this is fine since with high probability, these gates never hit!)

$$Inv(C^{Check}, y):$$

- Removes heavy paths, i.e., path where the number of hits is higher than expected, and return a random light path - Shaves the circuit (removing useless on average gates) - Derandomizes the oracle with a universal hash function

Proof intuition (\mathscr{L} is amplifiable average-case hard relative to (Check, Inv)):

 $\forall \mathscr{A}$, construct an emulation procedure $E_{\mathscr{A}}$ with access to Check and some carefully crafted advice about \mathscr{L} . Show that (1) this advice allows $E_{\mathcal{A}}$ to correctly emulate all answers of Inv, and (2) the size of the advice is not too large.

access to Check and a not-too-long advice string.

We prove that the latter is impossible using a new technical lemma: the **Hitting Lemma with advice**

$$Inv(C^{Check}, y):$$

- Removes heavy paths, i.e., path where the number of *hits* is higher than expected, and return a random light path - Shaves the circuit (removing useless on average gates) - Derandomizes the oracle with a universal hash function

If \mathscr{A} can break amplifiable hardness (= make too many *hits*), then $\mathscr{A}' = (\mathscr{A}, E_{\mathscr{A}})$ can make too many hits given only oracle

Proof intuition (there are no FG-OWF relative to (Check, Inv)):

high proba, Inv returns an inverse.

path (remember: Light_k = Avg_k + $\log^2 |C|$). Then:

(1) Not too hard, follows from the definition of shaving. (2) Need to show that the path from x to y cannot contain too many hits: follows again from the **Hitting Lemma**

$$Inv(C^{Check}, y):$$

- Removes heavy paths, i.e., path where the number of *hits* is higher than expected, and return a random light path - Shaves the circuit (removing useless on average gates) - Derandomizes the oracle with a universal hash function

Given a candidate FGOWF F and y = F(x), feed (F, y) to Inv and get a random preimage x. Now, we must prove that with

This boils down to showing (1) F and F_{shaved} agree on a random input with high proba, and (2) the path from x to y is a light

Goal: getting as many hits as possible after asking Q questions.

exists $\alpha > 0, \gamma > 1$ such that $\Pr_{r \leftarrow V_1 \times \cdots \times V_{\ell}} \left[\mathsf{NumHits}(Q) \ge \frac{16Q + q}{2^n} + c \right] \le \frac{\alpha}{2^{\gamma c}},$ Where $q = \ell \cdot 2^n - \sum |V_i|$.

Hitting Lemma: for all sets $V_1 \cdots V_{\ell}$ of size at most 2^n , all Q-query adversary, any integer $c \ge 1$, there

that $\sum |V_i| \le Q$ ($|V_i|$ in increasing order), and $\Pr[h + c \text{ hits}] = 2^{-\gamma \cdot c}$, with $\gamma > 1$. i=1

Hitting Lemma (informally): best strategy = querying 1-by-1 all elements in the smallest set V_i until we hit r_i , then querying the next smallest set, and so on. Furthermore, this makes h hits on average, where h = largest integer such

Hitting Lemma (sketch): Induction over the query number Q to prove that naive strategy = best strategy, then Bernstein's concentration bound (+ tedious calculations) to bound the naive strategy

The Hitting Lemma with Advice

Goal: getting as many hits as possible after asking Q questions.

advice, any integer $c \ge 1$, there exists $\alpha > 0$, $\gamma > 1$ such that $\Pr_{r \leftarrow V_1 \times \cdots \times V_\ell} \left[\text{NumHits}(Q) \ge \frac{16Q + q}{2^n} + c \right] \le \frac{\alpha \cdot 2^k}{2^{\gamma c}}$, Where $q = \ell \cdot 2^n - \sum |V_i|$.

Hitting Lemma with advice: for all sets $V_1 \cdots V_{\ell}$ of size at most 2^n , all Q-query adversary, size-k

The Hitting Lemma with Advice

Goal: getting as many hits as possible after asking Q questions.

Hitting Lemma with advice: for all sets $V_1 \cdots V_{\ell}$ of size at most 2^n , all Q-query adversary, size-k advice, any integer $c \ge 1$, there exists $\alpha > 0$, $\gamma > 1$ such that $\Pr_{r \leftarrow V_1 \times \cdots \times V_\ell} \left[\text{NumHits}(Q) \ge \frac{16Q + q}{2^n} + c \right] \le \frac{\alpha \cdot 2^k}{2^{\gamma c}}$, Where $q = \ell \cdot 2^n - \sum |V_i|$. **Sketch:** immediate since $\gamma > 1$, just guess k!

Block-finding hard language

PuzzleSolve(
$$III \mapsto s \in \mathbb{N}$$

Evaluating F: $\left(\int_{a_{7}}^{b_{1}} \int_{a_{7}}^{c_{1}} \right) O(n) (n \times \text{PuzzleGen}) + n (1 \times \text{PuzzleSolve})$

Inverting F: $O(n^2)$ $O(n^2)$ $(n \times \text{PuzzleSolve})$ if the language is block-finding hard

- Obtains the pattern as *advice* about \mathscr{L} , and
- Uses lazy sampling to guarantee that membership of a word is undefined before a hit happens Then, finding the pattern position implies making too many hits given a small advice, contradicting the HL

PuzzleSolve(
$$III \mapsto s \in \mathbb{N}$$

 $\int_{9^{10}}^{11^{12}} \int_{3^{12}}^{12^{12}} n$

- Note : A random language is provably block-finding hard by the Hitting Lemma with advice. The reduction

Thank You for Your Attention!

