
On Building Fine-Grained One-Way Functions
from Strong Average-Case Hardness

Chris Brzuska, Geoffroy Couteau

The Five Worlds of Impagliazzo
Impagliazzo, 1995: what world do we live in?

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Minicrypt: symmetric cryptography exists (but no PKE)

Minicrypt

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Minicrypt: symmetric cryptography exists (but no PKE)

Algorithmica:
Algorithmist’s wonderland

𝖯 = 𝖭𝖯

Algorithmica

Minicrypt

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Minicrypt: symmetric cryptography exists (but no PKE)

Algorithmica:
Algorithmist’s wonderland

𝖯 = 𝖭𝖯

Heuristica: , but 𝖯 ≠ 𝖭𝖯 𝖺𝗏𝖯 = 𝖽𝗂𝗌𝗍𝖭𝖯

Heuristica

Algorithmica

Minicrypt

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Minicrypt: symmetric cryptography exists (but no PKE)

Algorithmica:
Algorithmist’s wonderland

𝖯 = 𝖭𝖯

Heuristica: , but 𝖯 ≠ 𝖭𝖯 𝖺𝗏𝖯 = 𝖽𝗂𝗌𝗍𝖭𝖯

Pessiland

Pessiland: no crypto, no fast algorithms, nothing grows here.

The worst of all possible worlds

Heuristica

Algorithmica

Minicrypt

Cryptomania

The Five Worlds of Impagliazzo
Cryptomania: public-key cryptography exists

Cryptographer’s wonderland

Minicrypt: symmetric cryptography exists (but no PKE)

Algorithmica:
Algorithmist’s wonderland

𝖯 = 𝖭𝖯

Heuristica: , but 𝖯 ≠ 𝖭𝖯 𝖺𝗏𝖯 = 𝖽𝗂𝗌𝗍𝖭𝖯

Pessiland

Pessiland: no crypto, no fast algorithms, nothing grows here.

The worst of all possible worlds

Impagliazzo’s program:
ruling out Pessiland

Heuristica

Algorithmica

Minicrypt

The Five Worlds of Impagliazzo
Ruling out Pessiland would be a win-win result for humanity: either (some form of)
cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas… seems to be a very hard problem.

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

The Five Worlds of Impagliazzo
Ruling out Pessiland would be a win-win result for humanity: either (some form of)
cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas… seems to be a very hard problem.

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

: black-box impossibility result

Black-box separations between all these
assumptions!

The Five Worlds of Impagliazzo
Ruling out Pessiland would be a win-win result for humanity: either (some form of)
cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas… seems to be a very hard problem.

Black-box separations between all these
assumptions!
The real landscape is more subtle :)

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

: black-box impossibility result

Exp. worst-case hardness
 av-case hardness 

[WB86,Sud97]
⟹

Exp. OWF -hard
PKE [Mer78,BGI08]

⟹ n2

The Five Worlds of Impagliazzo
Ruling out Pessiland would be a win-win result for humanity: either (some form of)
cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas… seems to be a very hard problem.

Black-box separations between all these
assumptions!
The real landscape is more subtle :)

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

: black-box impossibility result

Could extreme average-case hardness
imply very weak one-way functions?

We ask:

Exp. worst-case hardness
 av-case hardness 

[WB86,Sud97]
⟹

Exp. OWF -hard
PKE [Mer78,BGI08]

⟹ n2

The Five Worlds of Impagliazzo
Ruling out Pessiland would be a win-win result for humanity: either (some form of)
cryptography exists, or there exists fast algorithms (on average) for all NP problems.

Alas… seems to be a very hard problem.

Black-box separations between all these
assumptions!
The real landscape is more subtle :)

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

: black-box impossibility result

Could extreme average-case hardness
imply very weak one-way functions?

We ask:

Exp. worst-case hardness
 av-case hardness 

[WB86,Sud97]
⟹

Exp. OWF -hard
PKE [Mer78,BGI08]

⟹ n2

Can we Rule out Extreme-Pessiland?

Could extreme average-case hardness
imply very weak one-way functions?

Extreme average-
case hardness

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖮𝖶𝖥

}
} Very weak OWFs

Can we Rule out Extreme-Pessiland?

Could extreme average-case hardness
imply very weak one-way functions?

Extreme average-
case hardness

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖮𝖶𝖥

}
} Very weak OWFsFine-grained one-way functions

Can we Rule out Extreme-Pessiland?

Could extreme average-case hardness
imply very weak one-way functions?

Extreme average-
case hardness

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖮𝖶𝖥

}
} Very weak OWFsFine-grained one-way functions

Can we Rule out Extreme-Pessiland?

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

Exponential average-case hardness
Amplifiable average-case hardness

Block-finding average-case hardness

weaker

stronger

𝖮𝖶𝖥
Av. case hardness

Can we Rule out Extreme-Pessiland?

Exponential average-case hardness
 -time and large enough ,
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n

Pr
x←{0,1}n

[𝒜(x) = ℒ(x)] ≤
1
2

+
T
2n

Predicate, iff ℒ(x) = 1 x ∈ ℒ

Win-win result? Either non-trivial crypto hardness, or sub- av-time algo for all NP languages∃ ∃ 2n

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Can we Rule out Extreme-Pessiland?

Exponential average-case hardness
 -time and large enough ,
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n

Pr
x←{0,1}n

[𝒜(x) = ℒ(x)] ≤
1
2

+
T
2n

Predicate, iff ℒ(x) = 1 x ∈ ℒ

Our first result: No black-box construction of FGOWF from exp hard av-case languages
Not too hard

Win-win result? Either non-trivial crypto hardness, or sub- av-time algo for all NP languages∃ ∃ 2n

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Can we Rule out Extreme-Pessiland?

Amplifiable average-case hardness
 -time , large enough , :
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n ℓ(n)

Pr
⃗x ←{0,1}ℓ⋅n

[𝒜(⃗x) = ℒ(⃗x)] ≤ 2 T
2n −ℓ(n)

(Simplified definition)

 can be much larger than here!T 2n

Win-win result? either non-trivial crypto hardness, or sub- av-time algo for all NP
languages when amortising across many instances.

∃ ∃ 2n

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Can we Rule out Extreme-Pessiland?

Amplifiable average-case hardness
 -time , large enough , :
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n ℓ(n)

Pr
⃗x ←{0,1}ℓ⋅n

[𝒜(⃗x) = ℒ(⃗x)] ≤ 2 T
2n −ℓ(n)

(Simplified definition)

 can be much larger than here!T 2n

Win-win result? either non-trivial crypto hardness, or sub- av-time algo for all NP
languages when amortising across many instances.

∃ ∃ 2n

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Under dream XOR lemma, exp. OWF imply -PKE with negligible security error [BGI08] (BB-impossible w/out it)

Dream XOR lemma = XORing hard predicates amplifies hardness optimally

n2
1

Can we Rule out Extreme-Pessiland?

Amplifiable average-case hardness
 -time , large enough , :
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n ℓ(n)

Pr
⃗x ←{0,1}ℓ⋅n

[𝒜(⃗x) = ℒ(⃗x)] ≤ 2 T
2n −ℓ(n)

(Simplified definition)

 can be much larger than here!T 2n

Exp-hard OWFs with amplifiable hardness imply CRHFs [HL18]. Without it, it is BB-impossible [Simon98]

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Further motivation: in the past, non-amortizability helped circumventing impossibilities! Examples:

Win-win result? either non-trivial crypto hardness, or sub- av-time algo for all NP
languages when amortising across many instances.

∃ ∃ 2n

2

Can we Rule out Extreme-Pessiland?

Amplifiable average-case hardness
 -time , large enough , :
∃ℒ ∈ 𝖭𝖯, ∀ T 𝒜 n ℓ(n)

Pr
⃗x ←{0,1}ℓ⋅n

[𝒜(⃗x) = ℒ(⃗x)] ≤ 2 T
2n −ℓ(n)

(Simplified definition)

 can be much larger than here!T 2n

Our second result: No BB construction of FGOWF even from amplifiable av-case hard languages

Very technical

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Win-win result? either non-trivial crypto hardness, or sub- av-time algo for all NP
languages when amortising across many instances.

∃ ∃ 2n

Block-finding average-case hardness

Can we Rule out Extreme-Pessiland?

Sample

Question: given a pattern , are there consecutive
words such that ?

Assumption: finding the answer requires time

x1 ∈ ℒ, x2 ∉ ℒ, x3 ∈ ℒ, ⋯, xm ∉ ℒ

p ∈ {0,1}t t
xi+1, ⋯, xi+t ℒ(xi+1, ⋯, xi+t) = s

Ω(m ⋅ 2n)

Win-win (?) result? Either non-trivial crypto hardness, or, for any language , given many
instances, we can decide something about their membership pattern in faster than brute-force.

∃ 𝖭𝖯 ℒ
ℒ

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Block-finding average-case hardness

Can we Rule out Extreme-Pessiland?

Sample

Question: given a pattern , are there consecutive
words such that ?

Assumption: finding the answer requires time

x1 ∈ ℒ, x2 ∉ ℒ, x3 ∈ ℒ, ⋯, xm ∉ ℒ

p ∈ {0,1}t t
xi+1, ⋯, xi+t ℒ(xi+1, ⋯, xi+t) = s

Ω(m ⋅ 2n)

Win-win (?) result? Either non-trivial crypto hardness, or, for any language , given many
instances, we can decide something about their membership pattern in faster than brute-force.

∃ 𝖭𝖯 ℒ
ℒ

Our third result: if block-finding hard languages, there are -hard FGOWFs∃ n2

1) Can be evaluated in time

2) Inverting requires time (= hardness

gap, typically is constant).

N
N1+ε 1 + ε

ε > 0

Fine-grained one-way functions

𝖮𝖶𝖥
Av. case hardness

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

ℒ

𝒰∖ℒ

Flip coins, put
half of in

∼
𝒰 ℒ

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

ℒ

𝒰∖ℒ

Flip coins, put
half of in

∼
𝒰 ℒ

⋅
⋅⋅ ⋅⋅ ⋅⋅ ⋅ ⋅

Associate to each
element of a
uniformly random
witness in

𝒰

𝒲

Notation: the witness of
 is denoted , and

 is set to iff
x ∈ 𝒰 wx
bx 1 x ∈ ℒ

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

ℒ

𝒰∖ℒ

Flip coins, put
half of in

∼
𝒰 ℒ

⋅
⋅⋅ ⋅⋅ ⋅⋅ ⋅ ⋅

𝖢𝗁𝖾𝖼𝗄ℒ
Add a oracle: on input

, check if . If yes,
return , else, return .

𝖢𝗁𝖾𝖼𝗄
(x, w) w = wx

bx ⊥

Associate to each
element of a
uniformly random
witness in

𝒰

𝒲

Notation: the witness of
 is denoted , and

 is set to iff
x ∈ 𝒰 wx
bx 1 x ∈ ℒ

(x, w) or bx ⊥

= random language in 𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

ℒ

𝒰∖ℒ

Flip coins, put
half of in

∼
𝒰 ℒ

⋅
⋅⋅ ⋅⋅ ⋅⋅ ⋅ ⋅

𝖢𝗁𝖾𝖼𝗄ℒ
Add a oracle: on input

, check if . If yes,
return , else, return .

𝖢𝗁𝖾𝖼𝗄
(x, w) w = wx

bx ⊥

Associate to each
element of a
uniformly random
witness in

𝒰

𝒲

Notation: the witness of
 is denoted , and

 is set to iff
x ∈ 𝒰 wx
bx 1 x ∈ ℒ

(x, w) or bx ⊥

= random language in 𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

We call this a hit

Useful Tool: Random Languages

Set (universe)𝒰 Set (witness set)𝒲

ℒ

𝒰∖ℒ

Flip coins, put
half of in

∼
𝒰 ℒ

⋅
⋅⋅ ⋅⋅ ⋅⋅ ⋅ ⋅

𝖢𝗁𝖾𝖼𝗄ℒ
Add a oracle: on input

, check if . If yes,
return , else, return .

𝖢𝗁𝖾𝖼𝗄
(x, w) w = wx

bx ⊥

Associate to each
element of a
uniformly random
witness in

𝒰

𝒲

Notation: the witness of
 is denoted , and

 is set to iff
x ∈ 𝒰 wx
bx 1 x ∈ ℒ

(x, w) or bx ⊥ Two goals

- Checking that block-finding
hardness is plausible

- Basis for all black-box separations

= random language in 𝖭𝖯 ∩ 𝖼𝗈𝖭𝖯

We call this a hit

Useful Tool: Random Languages

We prove three key results:

1. A random language satisfies block-finding hardness 

2. Even given a (weakened) FG-OWF inverter (that samples sufficiently likely preimages to any oracle
circuit), a random language is still amplifiable average-case hard 

3. Relative to , there exists no fine-grained OWF

𝖨𝗇𝗏
C𝖢𝗁𝖾𝖼𝗄

𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏

Useful Tool: Random Languages

We prove three key results:

Provides support for the plausibility of the
notion of block-finding hardness (similar to
when we prove that an assumption about

hash functions holds in the ROM)

1. A random language satisfies block-finding hardness 

2. Even given a (weakened) FG-OWF inverter (that samples sufficiently likely preimages to any oracle
circuit), a random language is still amplifiable average-case hard 

3. Relative to , there exists no fine-grained OWF

𝖨𝗇𝗏
C𝖢𝗁𝖾𝖼𝗄

𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏

Useful Tool: Random Languages

We prove three key results:

Provides support for the plausibility of the
notion of block-finding hardness (similar to
when we prove that an assumption about

hash functions holds in the ROM)

Together, 2 and 3 prove our second result:
FGOWF and amplifiable hardness are BB-

separated

1. A random language satisfies block-finding hardness 

2. Even given a (weakened) FG-OWF inverter (that samples sufficiently likely preimages to any oracle
circuit), a random language is still amplifiable average-case hard 

3. Relative to , there exists no fine-grained OWF

𝖨𝗇𝗏
C𝖢𝗁𝖾𝖼𝗄

𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
:

- Removes heavy paths, i.e., path where the number of hits is higher
than expected, and return a random light path

- Shaves the circuit (removing useless on average gates)
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
:

- Removes heavy paths, i.e., path where the number of hits is higher
than expected, and return a random light path

- Shaves the circuit (removing useless on average gates)
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Removing heavy paths is necessary to avoid solving by inverting circuits on lucky outputs.

Example: queries and returns

Solver: on input , queries

Later, we will use to invert a OWF . Hence, we need that even after removing all heavy paths for all gates,
still gives a valid preimage of . Due to the union bound over all gates, we need to set .

Problem: for a large , is tiny, hence : we are still allowing too many hits!

Solution: before answering, shaves the circuit to remove all with large , and replace them with a dummy
-gate (this is fine since with high probability, these gates never hit!)

ℒ
C𝖢𝗁𝖾𝖼𝗄(x, w) b ← 𝖢𝗁𝖾𝖼𝗄(x, w) (x, b)

x 𝖨𝗇𝗏(C𝖢𝗁𝖾𝖼𝗄, (x,1))

𝖨𝗇𝗏 F 𝖢𝗁𝖾𝖼𝗄 𝖨𝗇𝗏
F(x) 𝖫𝗂𝗀𝗁𝗍k = 𝖠𝗏𝗀k + log2 |C |

k 𝖠𝗏𝗀k log2 |C | ≫ 𝖠𝗏𝗀k
𝖨𝗇𝗏 𝖢𝗁𝖾𝖼𝗄k k ⊥

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
:

- Removes heavy paths, i.e., path where the number of hits is higher
than expected, and return a random light path

- Shaves the circuit (removing useless on average gates)
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Proof intuition (is amplifiable average-case hard relative to):

, construct an emulation procedure with access to and some carefully crafted advice about . Show that (1)
this advice allows to correctly emulate all answers of , and (2) the size of the advice is not too large.

If can break amplifiable hardness (= make too many hits), then can make too many hits given only oracle
access to and a not-too-long advice string.

We prove that the latter is impossible using a new technical lemma: the Hitting Lemma with advice

ℒ (𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)

∀𝒜 E𝒜 𝖢𝗁𝖾𝖼𝗄 ℒ
E𝒜 𝖨𝗇𝗏

𝒜 𝒜′ = (𝒜, E𝒜)
𝖢𝗁𝖾𝖼𝗄

Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
:

- Removes heavy paths, i.e., path where the number of hits is higher
than expected, and return a random light path

- Shaves the circuit (removing useless on average gates)
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Proof intuition (there are no FG-OWF relative to):

Given a candidate FGOWF and , feed to and get a random preimage . Now, we must prove that with
high proba, returns an inverse.

This boils down to showing (1) and agree on a random input with high proba, and (2) the path from to is a light
path (remember:). Then:

(1) Not too hard, follows from the definition of shaving.

(2) Need to show that the path from to cannot contain too many hits: follows again from the Hitting Lemma

(𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)

F y = F(x) (F, y) 𝖨𝗇𝗏 x
𝖨𝗇𝗏

F F𝗌𝗁𝖺𝗏𝖾𝖽 x y
𝖫𝗂𝗀𝗁𝗍k = 𝖠𝗏𝗀k + log2 |C |

x y

Main Technical Tool: the Hitting Lemma

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as
possible after asking questions.Q

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as
possible after asking questions.Q

Hitting Lemma: for all sets of size at most , all -query adversary, any integer , there

exists such that ,

Where

V1⋯Vℓ 2n Q c ≥ 1

α > 0, γ > 1 Pr
r←V1×⋯×Vℓ

[𝖭𝗎𝗆𝖧𝗂𝗍𝗌(Q) ≥
16Q + q

2n
+ c] ≤

α
2γc

q = ℓ ⋅ 2n − ∑ |Vi | .

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as
possible after asking questions.Q

Hitting Lemma (informally): best strategy = querying 1-by-1 all elements in the smallest set until we hit , then
querying the next smallest set, and so on. Furthermore, this makes hits on average, where = largest integer such
that (in increasing order), and hits , with .

Vi ri
h h

h

∑
i=1

|Vi | ≤ Q |Vi | Pr[h + c] = 2−γ⋅c γ > 1

Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as
possible after asking questions.Q

Hitting Lemma (sketch): Induction over the query number to prove that naive strategy = best strategy,
then Bernstein’s concentration bound (+ tedious calculations) to bound the naive strategy

Q

The Hitting Lemma with Advice

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*

Goal: getting as many hits as
possible after asking questions.Q

Hitting Lemma with advice: for all sets of size at most , all -query adversary, size-
advice, any integer , there exists such that ,

Where

V1⋯Vℓ 2n Q k
c ≥ 1 α > 0, γ > 1 Pr

r←V1×⋯×Vℓ
[𝖭𝗎𝗆𝖧𝗂𝗍𝗌(Q) ≥

16Q + q
2n

+ c] ≤
α ⋅ 2k

2γc

q = ℓ ⋅ 2n − ∑ |Vi | .

Yes: that’s a hit

No: that’s a fail

 bits of arbitrary advicek

The Hitting Lemma with Advice

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is equal to ?ri r*

Goal: getting as many hits as
possible after asking questions.Q

Hitting Lemma with advice: for all sets of size at most , all -query adversary, size-
advice, any integer , there exists such that ,

Where

V1⋯Vℓ 2n Q k
c ≥ 1 α > 0, γ > 1 Pr

r←V1×⋯×Vℓ
[𝖭𝗎𝗆𝖧𝗂𝗍𝗌(Q) ≥

16Q + q
2n

+ c] ≤
α ⋅ 2k

2γc

q = ℓ ⋅ 2n − ∑ |Vi | .

Yes: that’s a hit

No: that’s a fail

 bits of arbitrary advicek

Sketch: immediate since , just guess !γ > 1 k

Fine-Grained One-Way Functions from (Very) Hard Languages

Fine-Grained One-Way Functions from (Very) Hard Languages

Block-finding hard language

Fine-Grained One-Way Functions from (Very) Hard Languages

Block-finding hard language

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾() ↦ s ∈ ℕ

: O(1) : n

Puzzle

Fine-Grained One-Way Functions from (Very) Hard Languages

Block-finding hard language

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾() ↦ s ∈ ℕ

: O(1) : n

Puzzle

Sample ,

 iff

x1, ⋯, xlog|s|

si = 1 xi ∈ ℒ

Fine-Grained One-Way Functions from (Very) Hard Languages

Block-finding hard language

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾() ↦ s ∈ ℕ

: O(1) : n

Puzzle

Sample ,

 iff

x1, ⋯, xlog|s|

si = 1 xi ∈ ℒ

Generate puzzles:n

Pick a random
puzzle , solve iti

s

Fine-grained OWF: F(𝖯𝗎𝗓𝗓𝗅𝖾𝖱𝖺𝗇𝖽𝗈𝗆𝖾𝗌𝗌, 𝗂) ↦ , s)(

Fine-Grained One-Way Functions from (Very) Hard Languages

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾() ↦ s ∈ ℕ

: O(1) : n

Puzzle

Fine-grained OWF: F(𝖯𝗎𝗓𝗓𝗅𝖾𝖱𝖺𝗇𝖽𝗈𝗆𝖾𝗌𝗌, 𝗂) ↦ , s)(

Fine-Grained One-Way Functions from (Very) Hard Languages

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾() ↦ s ∈ ℕ

: O(1) : n

Puzzle

Fine-grained OWF: F(𝖯𝗎𝗓𝗓𝗅𝖾𝖱𝖺𝗇𝖽𝗈𝗆𝖾𝗌𝗌, 𝗂) ↦ , s)(

Evaluating : () + ()F O(n) n × 𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 n 1 × 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾

Inverting : () if the language is block-finding hardF O(n2) n × 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾

Note : A random language is provably block-finding hard by the Hitting Lemma with advice. The reduction

- Obtains the pattern as advice about , and

- Uses lazy sampling to guarantee that membership of a word is undefined before a hit happens

- Then, finding the pattern position implies making too many hits given a small advice, contradicting the HL

ℒ

Thank You for Your Attention!

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

We ask whether strong average-
case hardness implies weak OWFs

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖮𝖶𝖥

We focus on fine-grained OWFs and study
various notions of extreme average-case
hardness

We use a random language model as a tool to
study extreme average-case hardness notions
and devise black-box separations

We introduce the hitting lemma, and get
One positive result from
block-finding hardness

Two black-box separations
from weaker hardness

(𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)

