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Notation: the witness of 
 is denoted , and 

 is set to  iff 
x ∈ 𝒰 wx
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We prove three key results:

Provides support for the plausibility of the 
notion of block-finding hardness (similar to 
when we prove that an assumption about 

hash functions holds in the ROM)

Together, 2 and 3 prove our second result: 
FGOWF and amplifiable hardness are BB-

separated
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than expected, and return a random light path 

- Shaves the circuit (removing useless on average gates) 
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)



Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
: 

- Removes heavy paths, i.e., path where the number of hits is higher 
than expected, and return a random light path 

- Shaves the circuit (removing useless on average gates) 
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Removing heavy paths is necessary to avoid solving  by inverting circuits on lucky outputs.

Example:  queries  and returns 

Solver: on input , queries  


Later, we will use  to invert a OWF . Hence, we need that even after removing all heavy paths for all  gates,  
still gives a valid preimage of . Due to the union bound over all gates, we need to set .


Problem: for a large ,  is tiny, hence : we are still allowing too many hits!

Solution: before answering,  shaves the circuit to remove all  with large , and replace them with a dummy 
-gate (this is fine since with high probability, these gates never hit!)

ℒ
C𝖢𝗁𝖾𝖼𝗄(x, w) b ← 𝖢𝗁𝖾𝖼𝗄(x, w) (x, b)

x 𝖨𝗇𝗏(C𝖢𝗁𝖾𝖼𝗄, (x,1))

𝖨𝗇𝗏 F 𝖢𝗁𝖾𝖼𝗄 𝖨𝗇𝗏
F(x) 𝖫𝗂𝗀𝗁𝗍k = 𝖠𝗏𝗀k + log2 |C |

k 𝖠𝗏𝗀k log2 |C | ≫ 𝖠𝗏𝗀k
𝖨𝗇𝗏 𝖢𝗁𝖾𝖼𝗄k k ⊥
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- Shaves the circuit (removing useless on average gates) 
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Proof intuition (  is amplifiable average-case hard relative to ): 

, construct an emulation procedure  with access to  and some carefully crafted advice about . Show that (1) 
this advice allows  to correctly emulate all answers of , and (2) the size of the advice is not too large. 

If  can break amplifiable hardness ( = make too many hits), then  can make too many hits given only oracle 
access to  and a not-too-long advice string.


We prove that the latter is impossible using a new technical lemma: the Hitting Lemma with advice

ℒ (𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)

∀𝒜 E𝒜 𝖢𝗁𝖾𝖼𝗄 ℒ
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Separating Fine-Grained OWF and Amplifiable Hardness

Oracles:
: 

- Removes heavy paths, i.e., path where the number of hits is higher 
than expected, and return a random light path 

- Shaves the circuit (removing useless on average gates) 
- Derandomizes the oracle with a universal hash function

𝖨𝗇𝗏 (C𝖢𝗁𝖾𝖼𝗄, y)

Proof intuition (there are no FG-OWF relative to ): 

Given a candidate FGOWF  and , feed  to  and get a random preimage . Now, we must prove that with 
high proba,  returns an inverse.


This boils down to showing (1)  and  agree on a random input with high proba, and (2) the path from  to  is a light 
path (remember: ). Then:


(1) Not too hard, follows from the definition of shaving.

(2) Need to show that the path from  to  cannot contain too many hits: follows again from the Hitting Lemma

(𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)

F y = F(x) (F, y) 𝖨𝗇𝗏 x
𝖨𝗇𝗏

F F𝗌𝗁𝖺𝗏𝖾𝖽 x y
𝖫𝗂𝗀𝗁𝗍k = 𝖠𝗏𝗀k + log2 |C |

x y
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⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is  equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as 
possible after asking  questions.Q

Hitting Lemma (informally): best strategy = querying 1-by-1 all elements in the smallest set  until we hit , then 
querying the next smallest set, and so on. Furthermore, this makes  hits on average, where  = largest integer such 
that  (  in increasing order), and  hits , with .

Vi ri
h h

h

∑
i=1

|Vi | ≤ Q |Vi | Pr[h + c ] = 2−γ⋅c γ > 1



Main Technical Tool: the Hitting Lemma

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is  equal to ?ri r*
Yes: that’s a hit

No: that’s a failGoal: getting as many hits as 
possible after asking  questions.Q

Hitting Lemma (sketch): Induction over the query number  to prove that naive strategy = best strategy, 
then Bernstein’s concentration bound (+ tedious calculations) to bound the naive strategy

Q



The Hitting Lemma with Advice
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Is  equal to ?ri r*

Goal: getting as many hits as 
possible after asking  questions.Q

Hitting Lemma with advice: for all sets  of size at most , all -query adversary, size-  
advice, any integer , there exists  such that ,
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The Hitting Lemma with Advice

V1 V2 V3 ⋯ Vℓ

⋅ ⋅ ⋅ ⋅ ⋅
r1 r2 r3 ⋯ rℓ

Is  equal to ?ri r*

Goal: getting as many hits as 
possible after asking  questions.Q

Hitting Lemma with advice: for all sets  of size at most , all -query adversary, size-  
advice, any integer , there exists  such that ,


Where 

V1⋯Vℓ 2n Q k
c ≥ 1 α > 0, γ > 1 Pr

r←V1×⋯×Vℓ
[𝖭𝗎𝗆𝖧𝗂𝗍𝗌(Q) ≥

16Q + q
2n

+ c] ≤
α ⋅ 2k

2γc

q = ℓ ⋅ 2n − ∑ |Vi | .

Yes: that’s a hit

No: that’s a fail

 bits of arbitrary advicek

Sketch: immediate since , just guess !γ > 1 k
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Block-finding hard language

:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾( ) ↦ s ∈ ℕ

: O(1) : n

Puzzle

Sample ,

 iff 

x1, ⋯, xlog|s|

si = 1 xi ∈ ℒ

Generate  puzzles:n

Pick a random 
puzzle , solve iti

s
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:𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾( ) ↦ s ∈ ℕ

: O(1) : n

Puzzle

Fine-grained OWF:   F(𝖯𝗎𝗓𝗓𝗅𝖾𝖱𝖺𝗇𝖽𝗈𝗆𝖾𝗌𝗌, 𝗂) ↦ , s)(

Evaluating :           ( ) +  ( )F O(n) n × 𝖯𝗎𝗓𝗓𝗅𝖾𝖦𝖾𝗇 n 1 × 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾

Inverting :           ( ) if the language is block-finding hardF O(n2) n × 𝖯𝗎𝗓𝗓𝗅𝖾𝖲𝗈𝗅𝗏𝖾

Note : A random language is provably block-finding hard by the Hitting Lemma with advice. The reduction

- Obtains the pattern as advice about , and

- Uses lazy sampling to guarantee that membership of a word is undefined before a hit happens

- Then, finding the pattern position implies making too many hits given a small advice, contradicting the HL

ℒ



Thank You for Your Attention!

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖯 ≠ 𝖭𝖯

𝖮𝖶𝖥

𝖯𝖪𝖤

We ask whether strong average-
case hardness implies weak OWFs

𝖺𝗏𝖯 ≠ 𝖽𝗂𝗌𝗍𝖭𝖯

𝖮𝖶𝖥

We focus on fine-grained OWFs and study 
various notions of extreme average-case 
hardness

We use a random language model as a tool to 
study extreme average-case hardness notions 
and devise black-box separations

We introduce the hitting lemma, and get
One positive result from 
block-finding hardness

Two black-box separations 
from weaker hardness

(𝖢𝗁𝖾𝖼𝗄, 𝖨𝗇𝗏)


