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● Many natural applications
○ Quantum mechanical simulations
○ Quantum supremacy experiments
○ Quantum machine learning & optimization

● Decision problems ⟹ sampling problems
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Our contributions

Under the QLWE assumption, we construct a Classical Verification of Quantum 
Sampling protocol that is:

● Blind
● Four-message
● Negligible completeness errors
● Computationally sound
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Classical Verification of Quantum Computing

Constant-round Errors Problem type Blindness

[Mah18] ✓ ≈ 3/4 Decision

[GV19] negl. Decision ✓

[CCY20, ACGH20] ✓ negl. Decision

This work ✓ 1/poly(n) Sampling ✓

[Bar21] ✓ negl. Pseudo-deterministic ✓
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Prover

。。。

。。。

X/Z measurements

[MF18]

Verifier Verifier Prover

X/Z
measurement

protocol

No measurement outcomes!
OK for BQP; ½ soundness loss… What about sampling?
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Our strategy

Prover

。。。

。。。

X/Z measurements

[MF18]

Verifier Verifier Prover

X/Z
measurement

protocol

Parallel repetition

Cut and choose

[CCY20]: decompose prover’s internal state

Generalize to handle 
sampling problems
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Achieving Blindness

● Generic Blindness Protocol Compiler
● Use quantum fully homomorphic encryption
● Requires classical-friendly scheme [Bra18, Mah18]
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Future Directions

● Is negligible errors achievable?
○ Achieved in related settings

■ Verifiable quantum FHE [ADSS17]
■ Multiparty quantum computations [CGS02, DNS12]
■ Current constructions require weak quantum client

● Can we construct a general remote state preparation ([GV19]) protocol?
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