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e Decision problems = sampling problems
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Our contributions

Under the QLWE assumption, we construct a Classical Verification of Quantum
Sampling protocol that is:

Blind

Four-message

Negligible completeness errors
Computationally sound
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[Mah18] v = 3/4 Decision
[GV19] negl. Decision v
[CCY20, ACGH20] v negl. Decision
This work v 1/poly(n) Sampling v
[Bar21] v negl. Pseudo-deterministic v




Overview of [Mah18]



Overview of [Mah18]
4 [MF18]

Verifier

\_




Overview of [Mah18]
4 [MF18]

(20)
VON
#
O
(20)
O
(25)
\ S

Verifier

\_




Overview of [Mah18]
4 [MF18]

4 9“
>-
3

Verifier

K X/Z measurements /




Overview of [Mah18]
a [MF18]

B 4B &3 Xz
measurement
AN A ] protocol
oo &SD
Verifier N F FProver

Y

K X/Z measurements /




Overview of [Mah18]

a [MF18] -
4B B BB &R X/Z
measurement
: AN A N protocol _
Verifier - ~ / Verifier
he{X Z}"

K X/Z measurements




Overview of [Mah18]

a [MF18] -
4B B BB &R X/Z
measurement
-» A A A A protocol | )
Verifier - ~ / Verifier
he{X z}y* -«

K X/Z measurements




Overview of [Mah18]
4 [MF18]

@B €3 &3 X/Z
measurement
g /F ﬂk N protocol _ )
Verifier - Verifier

K X/Z measurements j (e {X,72}" < pE BN




Overview of [Mah18]
4 [MF18]

BEBE ... X/Z
measurement
f <
-» A A protocol _ ce (T, H}
Verifier P
G
. Verifier

K X/Z measurements j (6 {X, z}"

(flag,m) <~ V(c=H,...)




Overview of [Mah18]
4 [MF18]

!B !3 23 oo (ON X/Z
measurement
f <
AN oo A J protocol c e {T, H}

A
—

&DProver

Verifier

K X/Z measurements j (6 {X, z}"

(flag,m) < V(c = H,.

Verifier

flag = Accept = [m (% ol



Overview of [Mah18]
4 [MF18]

BEBEB ... ©B XiZ
measurement
_. A A A N protocol _ C ce{T H}
Verifier N o y " Prover Verifier
K X/Z measurements j he{X, Z}"
\

(flag,m) < V(c = H,.

flag = Accept = [m <= p

flag < V(c=T,...)

)
A
h



Overview of [Mah18]
4 [MF18]

!B !3 23 oo (ON X/Z
measurement
f <
AN oo A J protocol c e {T, H}

A
—

&DProver

Verifier

K X/Z measurements j (6 {X, z}"

(flag,m) < V(c = H,.

Verifier

flag = Accept = [m (% ol

Y flag < V(c=T,...)

No measurement outcomes!



Overview of [Mah18]
4 [MF18]

BEBE ... X/Z
measurement
f <
-» A A protocol _ ce (T, H}
Verifier P
G
. Verifier

K X/Z measurements j (6 {X, z}"

(flag,m) < V(c = H,.

flag = Accept = [m (% ol
S flag < V(c=T,...)
No measurement outcomes!
OK for BQP; 2 soundness loss...



Overview of [Mah18]
4 [MF18]

BEBEB ... & X/Z
measurement
.» A A AN 2 protocol _ C ce{T H}
Verifier N o y T Verifier
K X/Z measurements j he{X, Z}" =
N

(flag,m) <~ V(c=H,...)
flag = Accept = [m (% ol
S flag < V(c=T,...)
No measurement outcomes!
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Achieving Blindness

e Generic Blindness Protocol Compiler
e Use quantum fully homomorphic encryption
e Requires classical-friendly scheme [Bra18, Mah18]
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Future Directions

e Is negligible errors achievable?

o Achieved in related settings
m Verifiable quantum FHE [ADSS17]
m  Multiparty quantum computations [CGS02, DNS12]
m  Current constructions require weak quantum client

e Can we construct a general remote state preparation ([GV19]) protocol?
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