Financially Backed Covert Security

Sebastian Faust¹, Carmit Hazay², David Kretzler¹, and Benjamin Schlosser¹

Multi-Party Computation

• security guarantees: correctness & privacy

Adversary Models

Semi-honest adversary:

follows protocol description

Covert adversary [AL07]:

• willing to cheat only if they are not caught

Malicious adversary:

• behaves arbitrarily

Covert Security

Publicly Verifiable Covert Security (PVC) [AO12]

08.03.2022

Shortcomings of PVC

Intention of PVC:

• increase deterrent effect if every party can verify misbehavior

Problem:

 party can hide behind digital identity in Internet-like settings (e.g. IP addresses)

Our goal:

add financial punishment if cheating was detected

Contribution

- 1. Definition
- new notion financially backed covert security (FBC)

2. Constructions of FBC protocols

- FBC protocols for three classes of protocols
- efficient verification of misbehavior

3. Evaluation

• benchmarking our constructions

Financially Backed Covert Security

Financially Backed Covert Security - Malicious

FBC Security Guarantees

Financial accountability:

• If any **honest** party detects cheating, then there exists a **corrupted** party that loses its deposits.

Financial defamation freeness:

• No corrupted party can force any honest party to lose its deposits.

We present formal security games for both properties in our paper!

How to instantiate the Judge **Z**?

- Blockchain technologies provide a convenient way to handle money
- Smart Contracts are programs that enable transfer of assets based on predefined rules

Construction 1

Input-independent protocol, e.g. offline phase of SPDZ, authenticated garbling

Construction 1 – Starting Point

Key features:

- 1. cut-and-choose
- 2. deterministic behavior
- 3. public transcript
- 4. publicly verifiable initial states
- provided by all known input-independent
 PVC protocols

08.03.2022

r₄^B

 $\pi^{\rm SH-off}_{4}$

transcript 📀

Π

Verification

Detour: PVC in a Nutshell – Verification

 $state_0^A \coloneqq r_1^A$ $(state_1^A, msg_1^{(A,B)}) \coloneqq compRound(state_0^A, \emptyset)$ $msg_1^{(A,B)}$ deterministic $msg_1^{(B,A)}$ function $(state_2^A, msg_2^{(A,B)}) \coloneqq compRound(state_1^A, msg_1^{(B,A)})$

Verification:

- given *state*^A and all messages received by A
- recompute all messages sent by A
 - compare recomputed with real messages

Why not using PVC?

- most known PVC protocols require the third party to recompute the whole protocol
- not plausible for smart contracts

Construction 1 - Blame

Bob knows:

- $\forall i \in Rounds: msg_i^{(A,B)}, \left\{H\left(msg_i^{(A,X)}\right)\right\}_{X \in \mathcal{P}}, H(state_i^A)$
- publicly verifiable

MTroot(msgHashes), MTroot(states) Africe

• publicly verifiable *state*^A₀

Bob recomputes:

- all messages that should have been sent by Alice
- intermediate states of Alice

If malicious behavior detected:

• e.g. incorrect message sent from Alice to party *M* in round *k*

08.03.2022

Construction 2

Input-dependent protocol

All PVC protocols as well as our construction 1 and 2 require consensus about the protocol transcript.

Construction 3 – Starting Point

21

What's more

1. Security proofs

2. Single gate verification

• Judge needs to recompute only a single gate of an arithmetic circuit

3. Evaluation

- Solidity smart contract implementation
- gas cost measurements for efficiency evaluation

Conclusion

Advantages of FBC over PVC:

- effectiveness of deterrence: detected cheating is directly financially punished
- computation cost of judge: reduced from whole protocol reexecution to single step/gate validation
- communication cost in honest execution: relaxing on requirement of public transcript

Thank you for your attention! Any questions?

David Kretzler: david.kretzler@tu-darmstadt.de Benjamin Schlosser: benjamin.schlosser@tu-darmstadt.de