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Overview

Isogeny-based cryptography

a candidate for post-quantum cryptography,

small keys and ciphertext,

slow because of isogeny computation.

Radical isogenies

formulas for computing repeating isongenies of the same degree,

proposed by [CDV2020] (Castryck, Decru, and Vercauteren @Asiacrypt 2020),

The original formulas are constructed on Tate normal forms.

This work

constructs radical isogenies of degree 3, 4 on Montgomery curves,

reduce the cost of transforms between curves in some protocols,

prove a conjecture left open by [CDV2020].
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Elliptic curves

Definition 1

An elliptic curve is a smooth algebraic curve of genus one.

An elliptic curve E has an abelian group structure,
i.e., we can define P +Q for P,Q ∈ E.

There are many forms of elliptic curves.

In isogeny-based cryptography, we often use Montgomery curves

y2 = x3 +Ax2 + x,

because of efficient scalar multiplications and isogeny formulas.
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Isogenies (1/2)

Definition 2

An isogeny is a nonzero rational homomorphism between elliptic curves.

Let φ : E → E′ be an isogeny.

We can define the degree of φ, denoted by degφ.

There is the dual isogeny φ̂ : E′ → E (deg φ̂ = degφ).

Example (degree 2)� �
E1 : y

2 = x3 + 6x2 + x, E2 : y
2 = x3 − 12x2 + 32x,

E1 → E2, (x, y) 7→
(
y2

x2
,
y(x2 − 1)

x2

)
.

� �
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Isogenies (2/2)

E: an elliptic curve over K, N : an integer coprime to char(K)

one to one correspondence� �
{subgroups of E of order N} 1:1←→ {isogenies of degree N from E}

G 7−→ φG : E → E/G

s.t. kerφG = G� �
This work considers the case that G is cyclic.
I.e., we consider a subgroup of the form 〈P 〉.

(E;P,Q ∈ E) 7→ (φ⟨P ⟩(Q), E/〈P 〉 can be efficiently computed.
(Vélu’s formula)

(E,E/〈P 〉) 7→ P is consider to be hard.
(the security of isogeny-based cryptography)
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CSIDH and CSURF

CSIDH

isogeny-based key-exchange,

by Castryck, Lange, Martindale, Panny, and Renes @Asiacrypt 2018,

uses elliptic curves /Fp and isogenies /Fp with p ≡ 3 (mod 8),

uses only isogenies of odd degrees.

CSURF

variant of CSIDH by Castryck and Decru @PQCrypto 2020,

uses p ≡ 7 mod 8,

also uses isogenies of degree 2 and 4.
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Radical Isogenies (1/6)

E: an elliptic curve over K,
N : an integer coprime to char(K),
P : a point on E of order N .

A radical isogeny is a formula of a map

(elliptic curve, order-N point) (elliptic curve, order-N point)

(E,P ∈ E) 7−→ (E/〈P 〉, P ′ ∈ E/〈P 〉),

where 〈φ̂(P ′)〉 = 〈P 〉.
Thoery of radical isogenies� �

One can chose a form of E/〈P 〉 such that

E/〈P 〉 and P ′ are defined over K( N
√
ρ),

where ρ is the Tate pairing τN (P,−P ).� �
Hiroshi Onuki, Tomoki Moriya Radical Isogenies on Montgomery Curves 7 / 20



Radical Isogenies (2/6)

Radical Isogenies (2/6)

E
ϕ !! E/〈P 〉
ϕ̂

""
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%%

&&


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with the kernel generated by P’

Radical Isogenies (2/6)

E
ϕ !! E′
ϕ̂
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N isogenies

Radical Isogenies (2/6)

E
ϕ !! E′
ϕ̂
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N choices of

with the kernel generated by P
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Radical Isongenies (3/6)

[CDV2020] uses forms of elliptic curves such that P and P ′ are (0, 0).

N = 3� �
E : y2 + a1xy + a3y = x3.� �

N ≥ 4� �
Tate normal form

E : y2 + (1− c)xy − by = x3 − bx2

(b, c satisfy a relation depending on N).� �
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Radical Isongenies (4/6)

N = 3� �
E : y2 + a1xy + a3y = x3, P = (0, 0),

E/〈P 〉 : y2 + a′1xy + a′3y = x3, P ′ = (0, 0),

a′1 = −6α+ a1, a′3 = 3a1α
2 − a21α+ 9a3,

α is a cube root of −a3.� �
N = 4� �

E : y2 + xy − by = x3 − bx2, P = (0, 0),

E/〈P 〉 : y2 + xy − b′y = x3 − b′x2, P ′ = (0, 0),

b′ =
α(4α2 + 1)

(2α+ 1)4
,

α is a fourth root of −b.� �
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Radical Isogenies (5/6)

Iteration of radical isogenies of degree N = 3:

E
⟨(0,0)⟩ // E′ ⟨(0,0)⟩ // E′′ ⟨(0,0)⟩ //

(a1, a3) (a′1, a
′
3) (a′′1, a

′′
3)

a′1 = −6α+ a1 a′′1 = −6α′ + a′1

a′3 = 3a1α
2 − a21α+ 9a3 a′′3 = 3a′1α

′2 − a′1
2α′ + 9a′3

No computation for the kernels of intermediate isogenies.
⇒ accelerating isogenies of small degrees in CSIDH and CSURF.

(especially in CSURF. ∵ one can use N = 4.)

Q. How to choose a radical α = 3
√
−a3 ?

A. Choose α ∈ Fp in CSIDH and CSURF.

∵ There is the unique N -th root in Fp if #F×
p = p− 1 is coprime to N .
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Radical Isogenies (6/6)

Radical isogenies in CSURF

One needs to transform to a Montgomery curve
∵ generating the first kernel and computing higher degree isogenies.

In the case N = 4, there are two fourth roots in Fp.
⇒ The choice is conjectured but not proven.

This work

constructs radical isogenies of degree 3 and 4 on Montgomery curves.

proves the conjecture on N = 4.
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Montgomery Curves

Montgomery Curves� �
A Montgomery curve is an elliptic curve defined by

y3 = x3 +Ax2 + x, A2 6= 4.

We call A the Montgomery coefficient.� �
The order of the point (0, 0) is 2.

[2](1,−) = [2](−1,−) = (0, 0).

C
(4)
E := 〈(1,−)〉.

If (t,−) is a point of order 3 then

A =
−3t4 − 6t2 + 1

4t3
.

I.e., t determines the Montgomery coefficient.
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Our Contribution 1-1: A Formula of Degree 3

A pair (E, (t,−)) of a Montgomery curve and a point of order 3 is
represented by t.

⇒ There exists a radical isogeny: t 7→ t′.

Theorem 1

(E, (t,−)) : a pair of a Montgomery curve and a point order 3,

φ : E → E/〈(t,−)〉 : an isogeny with kernel 〈(t,−)〉.
(t′,−) : a point on E/〈(t,−)〉 of order 3 such that 〈φ̂((t′,−))〉 = 〈(t,−)〉.
Then

t′ = 3tα2 + (3t2 − 1)α+ 3t3 − 2t,

where α is a cube root of t(t2 − 1).
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Our Contribution 1-2: A Formula of Degree 4

A pair (E,C
(4)
E ) of a Montgomery curve and a point of order 4 is

represented by A.

⇒ There exists a radical isogeny: A 7→ A′.

Theorem 2

E : a Montgomery curve with coefficient A,

φ : E → E′ : an isogeny of kernel C
(4)
E such that φ̂(C

(4)
E′ ) = C

(4)
E ,

A′ : the Montgomery coefficient of E′, a := 4(A+ 2), a′ := 4(A′ + 2).
Then

a′ =
(α+ 2)4

α(α2 + 4)
.

where α is a fourth root of a.
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Comparison (1/2)
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Comparison (2/2)

Number of operations in Fp in CSURF

Degree 3 Degree 4

[CDV2020] Our formula [CDV2020] Our formula

Isogeny E+ 3M+ 12A E+ 5M+ 12A E+ 3M+ 5A+ I E+ 3M+ 4A+ I

To
radial form

> E 0 2A+ I 3A

From
radical form

> 3E 3M+ 9A+ I 2A+ I M+ 3A

E: exponentiation, M: multiplication, A: addition, I: inversion.

Radicals are computed by exponentiation. E ≈ 1.5 log pM.
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Our Contribution 2: Fourth Root in Fp (1/2)

Theorem 3

Let p be a prime satisfying p ≡ 7 (mod 8). Consider a radical isogeny of
degree 4 on Montgomery curves:

a 7→ a′ =
(α+ 2)4

α(α2 + 4)
.

We can compute the isogeny used in CSURF by taking

α = (−a)(p+1)/8.
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Our Contribution 2: Fourth Root in Fp (2/2)

Corollary 1 (Conjecture by [CDV2020])

Let p be a prime satisfying p ≡ 7 (mod 8). Consider a radical isogeny of
degree 4 on Tate normal forms:

b 7→ b′ =
α(4α2 + 1)

(2α+ 1)4
.

We can compute the isogeny used in CSURF by taking

α = b(p+1)/8.
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Conclusion

Our contribution:

We constructed radical isogenies of degree 3 and 4 on Montgomery
curves.

Our formulas slightly improve the efficiency of CSURF using radical
isogenies.

We proved a conjecture left as open by [CDV2020].

Future work:

Other applications; e.g., random walks in isogeny graphs
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