
Time-Memory tradeoffs for large-weight syndrome decoding

in ternary codes

Pierre Karpman1 Charlotte Lefevre2

PKC 2022

March 9

1Université Grenoble Alpes, Grenoble, France

2Radboud University, Nijmegen, The Netherlands

1 / 26



Definitions, motivation



The fixed-weight syndrome decoding problem (SDP)

• We consider [n, k]-ternary linear codes

• n = length, k = dimension

SDP

Input: H ∈ F(n−k)×n
3 full-rank (parity-check matrix)

s ∈ Fn−k
3 (syndrome)

w ∈ J0, nK (weight)

Output: e ∈ Fn
3 s.t. He = s and wt(e) = w

In our case:

• H �
{
M ∈ F(n−k)×n

3 |M full-rank
}

; s � Fn−k
3

• k/n,w/n fixed

• Number of solutions exponential in n

2 / 26



The fixed-weight syndrome decoding problem (SDP)

• We consider [n, k]-ternary linear codes

• n = length, k = dimension

SDP

Input: H ∈ F(n−k)×n
3 full-rank (parity-check matrix)

s ∈ Fn−k
3 (syndrome)

w ∈ J0, nK (weight)

Output: e ∈ Fn
3 s.t. He = s and wt(e) = w

In our case:

• H �
{
M ∈ F(n−k)×n

3 |M full-rank
}

; s � Fn−k
3

• k/n,w/n fixed

• Number of solutions exponential in n

2 / 26



The fixed-weight syndrome decoding problem (SDP)

• We consider [n, k]-ternary linear codes

• n = length, k = dimension

SDP

Input: H ∈ F(n−k)×n
3 full-rank (parity-check matrix)

s ∈ Fn−k
3 (syndrome)

w ∈ J0, nK (weight)

Output: e ∈ Fn
3 s.t. He = s and wt(e) = w

In our case:

• H �
{
M ∈ F(n−k)×n

3 |M full-rank
}

; s � Fn−k
3

• k/n,w/n fixed

• Number of solutions exponential in n
2 / 26



The Wave signature scheme

• Introducted by Debris-Alazard et al. in 2018

• High-level view:

� Private key: structured parity-check matrix H ∈ F(n−k)×n
3

� Public key: random obfuscation of the latter Hobfs

• Sign(m) = SDP(Hobfs, hash(m),w), where

� hash: M−→ Fn−k
3 hash function

� w fixed by the scheme (w/n ≈ 0.948)

• Decoding is easier with access to H =⇒ trapdoor

• One security requirement: SDP with a random parity-check matrix and syndrome

must be hard

3 / 26



The Wave signature scheme

• Introducted by Debris-Alazard et al. in 2018

• High-level view:

� Private key: structured parity-check matrix H ∈ F(n−k)×n
3

� Public key: random obfuscation of the latter Hobfs

• Sign(m) = SDP(Hobfs, hash(m),w), where

� hash: M−→ Fn−k
3 hash function

� w fixed by the scheme (w/n ≈ 0.948)

• Decoding is easier with access to H =⇒ trapdoor

• One security requirement: SDP with a random parity-check matrix and syndrome

must be hard

3 / 26



The Wave signature scheme

• Introducted by Debris-Alazard et al. in 2018

• High-level view:

� Private key: structured parity-check matrix H ∈ F(n−k)×n
3

� Public key: random obfuscation of the latter Hobfs

• Sign(m) = SDP(Hobfs, hash(m),w), where

� hash: M−→ Fn−k
3 hash function

� w fixed by the scheme (w/n ≈ 0.948)

• Decoding is easier with access to H =⇒ trapdoor

• One security requirement: SDP with a random parity-check matrix and syndrome

must be hard

3 / 26



The Wave signature scheme

• Introducted by Debris-Alazard et al. in 2018

• High-level view:

� Private key: structured parity-check matrix H ∈ F(n−k)×n
3

� Public key: random obfuscation of the latter Hobfs

• Sign(m) = SDP(Hobfs, hash(m),w), where

� hash: M−→ Fn−k
3 hash function

� w fixed by the scheme (w/n ≈ 0.948)

• Decoding is easier with access to H =⇒ trapdoor

• One security requirement: SDP with a random parity-check matrix and syndrome

must be hard

3 / 26



The Wave signature scheme

• Introducted by Debris-Alazard et al. in 2018

• High-level view:

� Private key: structured parity-check matrix H ∈ F(n−k)×n
3

� Public key: random obfuscation of the latter Hobfs

• Sign(m) = SDP(Hobfs, hash(m),w), where

� hash: M−→ Fn−k
3 hash function

� w fixed by the scheme (w/n ≈ 0.948)

• Decoding is easier with access to H =⇒ trapdoor

• One security requirement: SDP with a random parity-check matrix and syndrome

must be hard

3 / 26



The SDP in the Wave regime



Hardness of SDP

• With random parity-check matrix and syndrome, k/n fixed:

nO(1)

(Prange, 1962)
2n·O(1) ? 2n·O(1) ?

0 w−
easy w+

easy
nwwave

• Best known attack (Bricout et al., 2019): based on the PGE+SS framework with

k-tree+representations: O(20.0176n)

in time and memory

• In this work, we investigate tradeoffs for this problem

4 / 26



Hardness of SDP

• With random parity-check matrix and syndrome, k/n fixed:

nO(1)

(Prange, 1962)
2n·O(1) ? 2n·O(1) ?

0 w−
easy w+

easy
nwwave

• Best known attack (Bricout et al., 2019): based on the PGE+SS framework with

k-tree+representations: O(20.0176n)

in time and memory

• In this work, we investigate tradeoffs for this problem

4 / 26



Hardness of SDP

• With random parity-check matrix and syndrome, k/n fixed:

nO(1)

(Prange, 1962)
2n·O(1) ? 2n·O(1) ?

0 w−
easy w+

easy
nwwave

• Best known attack (Bricout et al., 2019): based on the PGE+SS framework with

k-tree+representations: O(20.0176n) in time and memory

• In this work, we investigate tradeoffs for this problem

4 / 26



The PGE+SS framework
SDP(H ∈ F(n−k)×n

3 , s ∈ Fn−k
3 ,w ∈ J0, nK):

e ∈ Fn
3 st., He = s, wt(e) = w• Formalized by Bricout et al.

• Inputs: H ∈ F(n−k)×n
3 , s ∈ Fn−k

3 , ` ∈ J0,w − kK

SHP =

(
I n−k−` H1

0 H2

)
Ss =

(
s1

s2

)
P−1e =

(
e1

e2

)n − k − ` k + `

n − k − `

`

n − k − `

k + `

• Solve the sub-SDP problem H2e2 = s2 with e2 ∈ Fk+`
3 full-weight where many

solutions are required

• Every e2 completes to a unique e1 which gives He = s

• Solution of SDP iff wt(e1) = w − k − `

=⇒ Need to solve efficiently H2e2 = s2

5 / 26



The PGE+SS framework
SDP(H ∈ F(n−k)×n

3 , s ∈ Fn−k
3 ,w ∈ J0, nK):

e ∈ Fn
3 st., He = s, wt(e) = w• Formalized by Bricout et al.

• Inputs: H ∈ F(n−k)×n
3 , s ∈ Fn−k

3 , ` ∈ J0,w − kK

SHP =

(
I n−k−` H1

0 H2

)
Ss =

(
s1

s2

)
P−1e =

(
e1

e2

)n − k − ` k + `

n − k − `

`

n − k − `

k + `

• Solve the sub-SDP problem H2e2 = s2 with e2 ∈ Fk+`
3 full-weight where many

solutions are required

• Every e2 completes to a unique e1 which gives He = s

• Solution of SDP iff wt(e1) = w − k − `

=⇒ Need to solve efficiently H2e2 = s2

5 / 26



The PGE+SS framework
SDP(H ∈ F(n−k)×n

3 , s ∈ Fn−k
3 ,w ∈ J0, nK):

e ∈ Fn
3 st., He = s, wt(e) = w• Formalized by Bricout et al.

• Inputs: H ∈ F(n−k)×n
3 , s ∈ Fn−k

3 , ` ∈ J0,w − kK

SHP =

(
I n−k−` H1

0 H2

)
Ss =

(
s1

s2

)
P−1e =

(
e1

e2

)n − k − ` k + `

n − k − `

`

n − k − `

k + `

• Solve the sub-SDP problem H2e2 = s2 with e2 ∈ Fk+`
3 full-weight where many

solutions are required

• Every e2 completes to a unique e1 which gives He = s

• Solution of SDP iff wt(e1) = w − k − `

=⇒ Need to solve efficiently H2e2 = s2

5 / 26



The PGE+SS framework
SDP(H ∈ F(n−k)×n

3 , s ∈ Fn−k
3 ,w ∈ J0, nK):

e ∈ Fn
3 st., He = s, wt(e) = w• Formalized by Bricout et al.

• Inputs: H ∈ F(n−k)×n
3 , s ∈ Fn−k

3 , ` ∈ J0,w − kK

SHP =

(
I n−k−` H1

0 H2

)
Ss =

(
s1

s2

)
P−1e =

(
e1

e2

)n − k − ` k + `

n − k − `

`

n − k − `

k + `

• Solve the sub-SDP problem H2e2 = s2 with e2 ∈ Fk+`
3 full-weight where many

solutions are required

• Every e2 completes to a unique e1 which gives He = s

• Solution of SDP iff wt(e1) = w − k − `

=⇒ Need to solve efficiently H2e2 = s2

5 / 26



The PGE+SS framework
SDP(H ∈ F(n−k)×n

3 , s ∈ Fn−k
3 ,w ∈ J0, nK):

e ∈ Fn
3 st., He = s, wt(e) = w• Formalized by Bricout et al.

• Inputs: H ∈ F(n−k)×n
3 , s ∈ Fn−k

3 , ` ∈ J0,w − kK

SHP =

(
I n−k−` H1

0 H2

)
Ss =

(
s1

s2

)
P−1e =

(
e1

e2

)n − k − ` k + `

n − k − `

`

n − k − `

k + `

• Solve the sub-SDP problem H2e2 = s2 with e2 ∈ Fk+`
3 full-weight where many

solutions are required

• Every e2 completes to a unique e1 which gives He = s

• Solution of SDP iff wt(e1) = w − k − `

=⇒ Need to solve efficiently H2e2 = s2

5 / 26



` parameter

• Let S` be the number of required e2 full weight solutions to H2e2 = s2

• Large ` =⇒ hard sub-problem, but smaller S`
• One ` parameter can provide one tradeoff

6 / 26



r-list sum problem



Transform the SDP into a r-list problem

• Want to solve He = s,H ∈ F`×(k+`)
3 , e full-weight

• We use algorithms solving the r -list problem

The r -list sum problem

Input: r lists L1, L2, . . . , Lr

Output: x1 ∈ L1, . . . , xr ∈ Lr st x1 + · · ·+ xr = 0

Decompose H =

 H1 H2 · · · H r

 e =


e1

e2

· · ·
er


• He = s ⇐⇒ H1e1︸ ︷︷ ︸

L1

+ H2e2︸ ︷︷ ︸
L2

· · ·+ H rer − s︸ ︷︷ ︸
Lr

= 0

• Do not need to add all possible e ′i s in Li

• 4! Constraint: ∀i ,#Li ≤ 2
k+`
r

7 / 26



Transform the SDP into a r-list problem

• Want to solve He = s,H ∈ F`×(k+`)
3 , e full-weight

• We use algorithms solving the r -list problem

The r -list sum problem

Input: r lists L1, L2, . . . , Lr

Output: x1 ∈ L1, . . . , xr ∈ Lr st x1 + · · ·+ xr = 0

Decompose H =

 H1 H2 · · · H r

 e =


e1

e2

· · ·
er


• He = s ⇐⇒ H1e1︸ ︷︷ ︸

L1

+ H2e2︸ ︷︷ ︸
L2

· · ·+ H rer − s︸ ︷︷ ︸
Lr

= 0

• Do not need to add all possible e ′i s in Li

• 4! Constraint: ∀i ,#Li ≤ 2
k+`
r

7 / 26



Transform the SDP into a r-list problem

• Want to solve He = s,H ∈ F`×(k+`)
3 , e full-weight

• We use algorithms solving the r -list problem

The r -list sum problem

Input: r lists L1, L2, . . . , Lr

Output: x1 ∈ L1, . . . , xr ∈ Lr st x1 + · · ·+ xr = 0

Decompose H =

 H1 H2 · · · H r

 e =


e1

e2

· · ·
er


• He = s ⇐⇒ H1e1︸ ︷︷ ︸

L1

+ H2e2︸ ︷︷ ︸
L2

· · ·+ H rer − s︸ ︷︷ ︸
Lr

= 0

• Do not need to add all possible e ′i s in Li

• 4! Constraint: ∀i ,#Li ≤ 2
k+`
r

7 / 26



Transform the SDP into a r-list problem

• Want to solve He = s,H ∈ F`×(k+`)
3 , e full-weight

• We use algorithms solving the r -list problem

The r -list sum problem

Input: r lists L1, L2, . . . , Lr

Output: x1 ∈ L1, . . . , xr ∈ Lr st x1 + · · ·+ xr = 0

Decompose H =

 H1 H2 · · · H r

 e =


e1

e2

· · ·
er


• He = s ⇐⇒ H1e1︸ ︷︷ ︸

L1

+ H2e2︸ ︷︷ ︸
L2

· · ·+ H rer − s︸ ︷︷ ︸
Lr

= 0

• Do not need to add all possible e ′i s in Li

• 4! Constraint: ∀i ,#Li ≤ 2
k+`
r

7 / 26



The algorithms used

• Freedom on r , `, #Li parameter

• Generalizations of the meet-in-the-middle algorithm:

Meet-in-the-middle

Dissection

k-tree

Dissection in tree

8 / 26



The granularity

• The algorithms presented can provide solutions in constant amortized time

• Problem: sometimes these algorithms return too much solutions

Definition

The granularity of an algorithm is the minimal number of solutions that can be

returned by one iteration without changing its amortized cost

• Some algorithms are very memory friendly, but have a granularity too coarse

9 / 26



The granularity

• The algorithms presented can provide solutions in constant amortized time

• Problem: sometimes these algorithms return too much solutions

Definition

The granularity of an algorithm is the minimal number of solutions that can be

returned by one iteration without changing its amortized cost

• Some algorithms are very memory friendly, but have a granularity too coarse

9 / 26



The granularity

• The algorithms presented can provide solutions in constant amortized time

• Problem: sometimes these algorithms return too much solutions

Definition

The granularity of an algorithm is the minimal number of solutions that can be

returned by one iteration without changing its amortized cost

• Some algorithms are very memory friendly, but have a granularity too coarse

9 / 26



The granularity

• The algorithms presented can provide solutions in constant amortized time

• Problem: sometimes these algorithms return too much solutions

Definition

The granularity of an algorithm is the minimal number of solutions that can be

returned by one iteration without changing its amortized cost

• Some algorithms are very memory friendly, but have a granularity too coarse

9 / 26



The k-tree algorithm



The k-tree algorithm (Wagner, 2002)

• Need r = 2a

• Key idea: apply the meet-in-the-middle pairwise on small constraints

L1 L2 L3 L4 L5 L6 L7 L8

0 0 0 0 `/3

0

0

0

0

`/3

0

`/3

• Decimates solutions, but efficient

• Minimal list cardinal and granularity: 3`/a

=⇒ Want a as large as possible

• 4! Constraint:

3`/a < 2
k+`
2a

10 / 26



The k-tree algorithm (Wagner, 2002)

• Need r = 2a

• Key idea: apply the meet-in-the-middle pairwise on small constraints

L1 L2 L3 L4 L5 L6 L7 L8

0 0 0 0 `/3

0

0

0

0

`/3

0

`/3

• Decimates solutions, but efficient

• Minimal list cardinal and granularity: 3`/a

=⇒ Want a as large as possible

• 4! Constraint:

3`/a < 2
k+`
2a

10 / 26



The k-tree algorithm (Wagner, 2002)

• Need r = 2a

• Key idea: apply the meet-in-the-middle pairwise on small constraints

L1 L2 L3 L4 L5 L6 L7 L8

0 0 0 0 `/3

0

0

0

0

`/3

0

`/3

• Decimates solutions, but efficient

• Minimal list cardinal and granularity: 3`/a

=⇒ Want a as large as possible

• 4! Constraint:

3`/a < 2
k+`
2a

10 / 26



The k-tree algorithm (Wagner, 2002)

• Need r = 2a

• Key idea: apply the meet-in-the-middle pairwise on small constraints

L1 L2 L3 L4 L5 L6 L7 L8

0 0 0 0 `/3

0

0

0

0

`/3

0

`/3

• Decimates solutions, but efficient

• Minimal list cardinal and granularity: 3`/a

=⇒ Want a as large as possible

• 4! Constraint:

3`/a < 2
k+`
2a

10 / 26



Time-Memory tradeoffs using the k-tree algorithm

11 / 26



The smoothing technique

• The extended k-tree algorithm (Minder and Sinclair, 2011), adapted in ternary

high-weight SDP as smoothing technique (Bricout et al., 2019)

• Relax the constraint: enables to add one level

12 / 26



The smoothing technique

• The extended k-tree algorithm (Minder and Sinclair, 2011), adapted in ternary

high-weight SDP as smoothing technique (Bricout et al., 2019)

• Relax the constraint: enables to add one level

12 / 26



The dissection framework



Dissection features

• The dissection framework (Dinur et al., 2012) is a generalization of the

meet-in-the-middle

• Memory-friendly family of exhaustive algorithms

• Proposes Time-Memory tradeoffs with initial list size 3m

• Splits the r -list problem in an asymmetric way

13 / 26



r-dissection TM tradeoffs, r < 400

Fixed ` parameter (` = 0.04n)

Black dot = too many returned solutions =⇒ granularity problems
14 / 26



Dissection: obtain the best tradeoffs

The best tradeoffs are provided by a range of ` parameters

15 / 26



Dissection: obtain the best tradeoffs

The best tradeoffs are provided by a range of ` parameters

16 / 26



Dissection: obtain the best tradeoffs

17 / 26



Dissection and k-tree

The dissection is better than the k-tree for small memory

18 / 26



Dissection in tree



Principle

Combine dissection in a tree structure (Dinur, 2019)

Example: 4-dissection with 3 levels (X = 4, h = 3)

3m

3m

l − 6m

#L = 3m

• Each dissection done is exhaustive

• Solutions are returned in constant amortized time

• 4! Again same constraint:

3m < 2
k+`

Xh

19 / 26



Principle

Combine dissection in a tree structure (Dinur, 2019)

Example: 4-dissection with 3 levels (X = 4, h = 3)

3m

3m

l − 6m

#L = 3m

• Each dissection done is exhaustive

• Solutions are returned in constant amortized time

• 4! Again same constraint:

3m < 2
k+`

Xh

19 / 26



4-dissection with three levels versus k-tree

Both have the same number of lists, but different merging strategies

• Dissection in tree needs less memory =⇒ it is applicable for more ` parameters

• The curve rebounds ⇒ granularity problems

20 / 26



4-dissection with three levels versus k-tree

Both have the same number of lists, but different merging strategies

• Dissection in tree needs less memory =⇒ it is applicable for more ` parameters

• The curve rebounds ⇒ granularity problems
20 / 26



Granularity improvement

Idea: be not exhaustive in the dissection

=⇒ solutions are more quickly decimated

=⇒ memory efficiency decreases

21 / 26



Combination of smoothing and granularity improvement

When the previous improvement can not be applied because of the constraint

22 / 26



Results



Numerical results

Time Memory Time × Memory Tradeoff Algorithm

20.0176n 20.0176n 20.0352n T = M
k-tree + representations

(Bricout et al.)

20.02014n 20.01007n 20.03021n T = M2 4,4-dissection

20.02256n 20.007521n 20.03008n T = M3 2,11-dissection

20.02335n 20.005838n 20.02919n T = M4 3,11-dissection

23 / 26



Time/Memory plots

24 / 26



Time/Memory plot with Wave parameters

n = 7236, k = 4892,w = 6862 25 / 26



Conclusion

• We investigated Time-Memory tradeoffs for the ternary syndrome decoding

problem in the Wave regime

• The studied algorithms are k-tree, dissection and dissection in tree, embedded

within the PGE+SS framework

• Some tweaks were necessary to decrease the granularity of the building blocks

Thank you for your attention!

26 / 26



Conclusion

• We investigated Time-Memory tradeoffs for the ternary syndrome decoding

problem in the Wave regime

• The studied algorithms are k-tree, dissection and dissection in tree, embedded

within the PGE+SS framework

• Some tweaks were necessary to decrease the granularity of the building blocks

Thank you for your attention!

26 / 26


	Introduction, context
	Definitions, motivation
	The SDP in the Wave regime

	How to solve the full-weight sub-SDP
	r-list sum problem
	The k-tree algorithm
	The dissection framework
	Dissection in tree
	Results


