Time-Memory tradeoffs for large-weight syndrome decoding in ternary codes

Pierre Karpman¹ <u>Charlotte Lefevre</u>² PKC 2022 March 9

¹Université Grenoble Alpes, Grenoble, France

²Radboud University, Nijmegen, The Netherlands

Definitions, motivation

The fixed-weight syndrome decoding problem (SDP)

- We consider [n, k]-ternary linear codes
- n =length, k =dimension

The fixed-weight syndrome decoding problem (SDP)

- We consider [n, k]-ternary linear codes
- n = length, k = dimension

SDP	
Input:	$\begin{split} \boldsymbol{H} \in \mathbb{F}_3^{(n-k) \times n} \text{ full-rank (parity-check matrix)} \\ \boldsymbol{s} \in \mathbb{F}_3^{n-k} \text{ (syndrome)} \\ \boldsymbol{w} \in \llbracket 0, n \rrbracket \text{ (weight)} \end{split}$
Output:	$oldsymbol{e}\in\mathbb{F}_3^n$ s.t. $oldsymbol{H}oldsymbol{e}=oldsymbol{s}$ and $ extsf{wt}(oldsymbol{e})=w$

The fixed-weight syndrome decoding problem (SDP)

- We consider [n, k]-ternary linear codes
- n =length, k =dimension

SDP	
Input:	$\begin{split} \boldsymbol{H} \in \mathbb{F}_3^{(n-k) \times n} \text{ full-rank (parity-check matrix)} \\ \boldsymbol{s} \in \mathbb{F}_3^{n-k} \text{ (syndrome)} \\ \boldsymbol{w} \in \llbracket 0, n \rrbracket \text{ (weight)} \end{split}$
Output:	$oldsymbol{e} \in \mathbb{F}_3^n ext{ s.t. } oldsymbol{H} oldsymbol{e} = oldsymbol{s} ext{ and } ext{wt}(oldsymbol{e}) = w$

In our case:

•
$$\boldsymbol{H} \twoheadleftarrow \left\{ \boldsymbol{M} \in \mathbb{F}_{3}^{(n-k) \times n} \, | \, \boldsymbol{M} \text{ full-rank} \right\}; \, \boldsymbol{s} \twoheadleftarrow \mathbb{F}_{3}^{n-k}$$

- k/n, w/n fixed
- Number of solutions exponential in *n*

• Introducted by Debris-Alazard et al. in 2018

- Introducted by Debris-Alazard et al. in 2018
- High-level view:
 - $\diamond\,$ Private key: structured parity-check matrix $\boldsymbol{H}\in\mathbb{F}_3^{(n-k)\times n}$
 - $\diamond\,$ Public key: random obfuscation of the latter \pmb{H}_{obfs}

- Introducted by Debris-Alazard et al. in 2018
- High-level view:
 - $\diamond\,$ Private key: structured parity-check matrix $\boldsymbol{H}\in\mathbb{F}_3^{(n-k)\times n}$
 - $\diamond\,$ Public key: random obfuscation of the latter \pmb{H}_{obfs}
- $Sign(m) = SDP(\boldsymbol{H}_{obfs}, hash(m), w)$, where
 - \diamond hash: $\mathcal{M} \longrightarrow \mathbb{F}_3^{n-k}$ hash function
 - $\diamond~w$ fixed by the scheme (w/n pprox 0.948)

- Introducted by Debris-Alazard et al. in 2018
- High-level view:
 - \diamond Private key: structured parity-check matrix $\pmb{H} \in \mathbb{F}_3^{(n-k) \times n}$
 - $\diamond\,$ Public key: random obfuscation of the latter \pmb{H}_{obfs}
- $Sign(m) = SDP(H_{obfs}, hash(m), w)$, where

 \diamond hash: $\mathcal{M} \longrightarrow \mathbb{F}_3^{n-k}$ hash function

 \diamond *w* fixed by the scheme (*w*/*n* \approx 0.948)

• Decoding is easier with access to $oldsymbol{H} \implies$ trapdoor

- Introducted by Debris-Alazard et al. in 2018
- High-level view:
 - $\diamond\,$ Private key: structured parity-check matrix $\boldsymbol{H}\in\mathbb{F}_3^{(n-k)\times n}$
 - $\diamond\,$ Public key: random obfuscation of the latter $\pmb{H}_{\rm obfs}$
- $Sign(m) = SDP(\boldsymbol{H}_{obfs}, hash(m), w)$, where

 \diamond hash: $\mathcal{M} \longrightarrow \mathbb{F}_3^{n-k}$ hash function

 \diamond *w* fixed by the scheme (*w*/*n* \approx 0.948)

- Decoding is easier with access to $oldsymbol{H} \implies$ trapdoor
- One security requirement: SDP with a random parity-check matrix and syndrome must be hard

The SDP in the Wave regime

• With random parity-check matrix and syndrome, k/n fixed:

• With random parity-check matrix and syndrome, k/n fixed:

• Best known attack (Bricout et al., 2019): based on the PGE+SS framework with k-tree+representations: $O(2^{0.0176n})$

• With random parity-check matrix and syndrome, k/n fixed:

- Best known attack (Bricout et al., 2019): based on the PGE+SS framework with k-tree+representations: $\mathcal{O}(2^{0.0176n})$ in time **and** memory
- In this work, we investigate tradeoffs for this problem

• Formalized by Bricout et al.

 $SDP(\boldsymbol{H} \in \mathbb{F}_{3}^{(n-k) imes n}, \boldsymbol{s} \in \mathbb{F}_{3}^{n-k}, w \in \llbracket 0, n
rbracket):$ $\boldsymbol{e} \in \mathbb{F}_{3}^{n} ext{ st., } \boldsymbol{H} \boldsymbol{e} = \boldsymbol{s}, ext{ wt}(\boldsymbol{e}) = w$

- Formalized by Bricout et al.
- Inputs: $\boldsymbol{H} \in \mathbb{F}_3^{(n-k) imes n}, \boldsymbol{s} \in \mathbb{F}_3^{n-k}, \ell \in \llbracket 0, w-k
 rbracket$

$$egin{aligned} & \mathcal{SDP}(oldsymbol{H}\in\mathbb{F}_3^{(n-k) imes n},oldsymbol{s}\in\mathbb{F}_3^{n-k},w\in\llbracket 0,n
rbracket): \ & oldsymbol{e}\in\mathbb{F}_3^n ext{ st., }oldsymbol{H}oldsymbol{e}=oldsymbol{s}, ext{ wt}(e)=w \end{aligned}$$

$$\boldsymbol{SHP} = \begin{pmatrix} \stackrel{n-k-\ell}{\longleftrightarrow} & \stackrel{k+\ell}{\longleftrightarrow} \\ \hline \boldsymbol{I}_{n-k-\ell} & \boldsymbol{H}_1 \\ \hline \boldsymbol{0} & \boldsymbol{H}_2 \end{pmatrix} \qquad \boldsymbol{Ss} = \begin{pmatrix} \boldsymbol{s}_1 \\ \hline \boldsymbol{s}_2 \end{pmatrix} \stackrel{\uparrow}{\downarrow} \stackrel{n-k-\ell}{\ell} \quad \boldsymbol{P}^{-1}\boldsymbol{e} = \begin{pmatrix} \boldsymbol{e}_1 \\ \hline \boldsymbol{e}_2 \end{pmatrix} \stackrel{\uparrow}{\downarrow} \stackrel{n-k-\ell}{k+\ell}$$

- Formalized by Bricout et al.
- Inputs: $oldsymbol{H} \in \mathbb{F}_3^{(n-k) imes n}, oldsymbol{s} \in \mathbb{F}_3^{n-k}, \ell \in \llbracket 0, w-k
 rbracket$

$$egin{aligned} & \mathcal{SDP}(oldsymbol{H}\in\mathbb{F}_3^{(n-k) imes n},oldsymbol{s}\in\mathbb{F}_3^{n-k},w\in\llbracket 0,n
rbracket): \ & oldsymbol{e}\in\mathbb{F}_3^n ext{ st., }oldsymbol{H}oldsymbol{e}=oldsymbol{s}, ext{ wt}(e)=w \end{aligned}$$

$$SHP = \begin{pmatrix} \stackrel{n-k-\ell}{\longleftrightarrow} & \stackrel{k+\ell}{\longleftrightarrow} \\ \hline I_{n-k-\ell} & H_1 \\ \hline 0 & H_2 \end{pmatrix} \qquad Ss = \begin{pmatrix} s_1 \\ \hline s_2 \end{pmatrix} \uparrow_{\ell}^{n-k-\ell} P^{-1}e = \begin{pmatrix} e_1 \\ \hline e_2 \end{pmatrix} \uparrow_{k+\ell}^{n-k-\ell}$$

Solve the sub-SDP problem *H*₂*e*₂ = *s*₂ with *e*₂ ∈ 𝔽^{k+ℓ}₃ full-weight where many solutions are required

- Formalized by Bricout et al.
- Inputs: $oldsymbol{H} \in \mathbb{F}_3^{(n-k) imes n}, oldsymbol{s} \in \mathbb{F}_3^{n-k}, \ell \in \llbracket 0, w-k
 rbracket$

$$egin{aligned} & \mathcal{SDP}(oldsymbol{H}\in\mathbb{F}_3^{(n-k) imes n},oldsymbol{s}\in\mathbb{F}_3^{n-k},w\in\llbracket 0,n
rbracket): \ & oldsymbol{e}\in\mathbb{F}_3^n ext{ st., }oldsymbol{H}oldsymbol{e}=oldsymbol{s}, ext{ wt}(e)=w \end{aligned}$$

$$\boldsymbol{SHP} = \begin{pmatrix} \stackrel{n-k-\ell}{\longleftrightarrow} & \stackrel{k+\ell}{\longleftrightarrow} \\ \hline \boldsymbol{I}_{n-k-\ell} & | \boldsymbol{H}_1 \\ \hline \boldsymbol{0} & | \boldsymbol{H}_2 \end{pmatrix} \qquad \boldsymbol{Ss} = \begin{pmatrix} \boldsymbol{s}_1 \\ \hline \boldsymbol{s}_2 \end{pmatrix} \stackrel{\uparrow}{\uparrow} \stackrel{n-k-\ell}{\ell} \quad \boldsymbol{P}^{-1}\boldsymbol{e} = \begin{pmatrix} \boldsymbol{e}_1 \\ \hline \boldsymbol{e}_2 \end{pmatrix} \stackrel{\uparrow}{\uparrow} \stackrel{n-k-\ell}{k+\ell}$$

- Solve the sub-SDP problem $H_2e_2 = s_2$ with $e_2 \in \mathbb{F}_3^{k+\ell}$ full-weight where many solutions are required
- Every \boldsymbol{e}_2 completes to a unique \boldsymbol{e}_1 which gives $\boldsymbol{H} \boldsymbol{e} = \boldsymbol{s}$
- Solution of SDP iff $wt(e_1) = w k \ell$

- Formalized by Bricout et al.
- Inputs: $\boldsymbol{H} \in \mathbb{F}_3^{(n-k) imes n}, \boldsymbol{s} \in \mathbb{F}_3^{n-k}, \ell \in \llbracket 0, w-k
 rbracket$

$$SDP(oldsymbol{H} \in \mathbb{F}_3^{(n-k) imes n}, oldsymbol{s} \in \mathbb{F}_3^{n-k}, w \in \llbracket 0, n
rbracket):$$
 $oldsymbol{e} \in \mathbb{F}_3^n$ st., $oldsymbol{H} oldsymbol{e} = oldsymbol{s}$, wt $(oldsymbol{e}) = w$

$$\boldsymbol{SHP} = \begin{pmatrix} \stackrel{n-k-\ell}{\longleftrightarrow} & \stackrel{k+\ell}{\longleftrightarrow} \\ \hline \boldsymbol{I}_{n-k-\ell} & \boldsymbol{H}_1 \\ \hline \boldsymbol{0} & \boldsymbol{H}_2 \end{pmatrix} \qquad \boldsymbol{Ss} = \begin{pmatrix} \boldsymbol{s}_1 \\ \hline \boldsymbol{s}_2 \end{pmatrix} \stackrel{n-k-\ell}{\downarrow} \boldsymbol{P}^{-1} \boldsymbol{e} = \begin{pmatrix} \boldsymbol{e}_1 \\ \hline \boldsymbol{e}_2 \end{pmatrix} \stackrel{n-k-\ell}{\downarrow} \stackrel{n-k-\ell}{k+\ell}$$

- Solve the sub-SDP problem *H*₂*e*₂ = *s*₂ with *e*₂ ∈ 𝔽^{k+ℓ}₃ full-weight where many solutions are required
- Every \boldsymbol{e}_2 completes to a unique \boldsymbol{e}_1 which gives $\boldsymbol{H} \boldsymbol{e} = \boldsymbol{s}$
- Solution of SDP iff $wt(e_1) = w k \ell$
- \implies Need to solve efficiently $H_2 e_2 = s_2$

ℓ parameter

- Let \mathcal{S}_ℓ be the number of required \boldsymbol{e}_2 full weight solutions to $\boldsymbol{H}_2 \boldsymbol{e}_2 = \boldsymbol{s}_2$
- Large $\ell \implies$ hard sub-problem, but smaller \mathcal{S}_ℓ
- One ℓ parameter can provide one tradeoff

r-list sum problem

- Want to solve $Hm{e}=m{s}, m{H}\in\mathbb{F}_3^{\ell imes(k+\ell)}$, $m{e}$ full-weight
- We use algorithms solving the *r*-list problem

- Want to solve $oldsymbol{H}oldsymbol{e}=oldsymbol{s},oldsymbol{H}\in\mathbb{F}_3^{\ell imes(k+\ell)}$, $oldsymbol{e}$ full-weight
- We use algorithms solving the *r*-list problem

The r-list sum problem

Input: r lists L_1, L_2, \ldots, L_r

Output: $x_1 \in L_1, \ldots, x_r \in L_r$ st $x_1 + \cdots + x_r = 0$

- Want to solve $oldsymbol{H}oldsymbol{e}=oldsymbol{s},oldsymbol{H}\in\mathbb{F}_3^{\ell imes(k+\ell)}$, $oldsymbol{e}$ full-weight
- We use algorithms solving the *r*-list problem

The r-list sum problem

Input: r lists L_1, L_2, \ldots, L_r

$$\mathsf{Output:} \quad x_1 \in L_1, \dots, x_r \in L_r \text{ st } x_1 + \dots + x_r = 0$$

Decompose

pose
$$H = \begin{pmatrix} H_1 & H_2 & \cdots & H_r \end{pmatrix}$$
 $e = \begin{pmatrix} \frac{e_1}{e_2} & \cdots & H_r \end{pmatrix}$
 $e = s \iff H_1 e_1 + H_2 e_2 \cdots + H_r e_r = s = 0$

•
$$He = s \iff \underbrace{H_1e_1}_{L_1} + \underbrace{H_2e_2}_{L_2} \cdots + \underbrace{H_re_r - s}_{L_r} = 0$$

- Want to solve $He = s, H \in \mathbb{F}_3^{\ell imes (k+\ell)}$, e full-weight
- We use algorithms solving the *r*-list problem

The r-list sum problem

Input: r lists L_1, L_2, \ldots, L_r

Output:
$$x_1 \in L_1, \ldots, x_r \in L_r$$
 st $x_1 + \cdots + x_r = 0$

Decompose

^{se}
$$H = \begin{pmatrix} H_1 & H_2 & \cdots & H_r \end{pmatrix}$$
 $e = \begin{pmatrix} \frac{e_1}{e_2} \\ \frac{\cdots}{e_r} \end{pmatrix}$

•
$$He = s \iff \underbrace{H_1e_1}_{L_1} + \underbrace{H_2e_2}_{L_2} \cdots + \underbrace{H_re_r - s}_{L_r} = 0$$

- Do not need to add **all** possible $e'_i s$ in L_i
- \triangle Constraint: $\forall i, \#L_i \leq 2^{\frac{k+\ell}{r}}$

- Freedom on $r, \ell, \#L_i$ parameter
- Generalizations of the meet-in-the-middle algorithm:

• The algorithms presented can provide solutions in constant amortized time

- The algorithms presented can provide solutions in constant amortized time
- Problem: sometimes these algorithms return too much solutions

- The algorithms presented can provide solutions in constant amortized time
- Problem: sometimes these algorithms return too much solutions

Definition

The **granularity** of an algorithm is the minimal number of solutions that can be returned by one iteration without changing its amortized cost

- The algorithms presented can provide solutions in constant amortized time
- Problem: sometimes these algorithms return too much solutions

Definition

The **granularity** of an algorithm is the minimal number of solutions that can be returned by one iteration without changing its amortized cost

• Some algorithms are very memory friendly, but have a granularity too coarse

The k-tree algorithm

- Need $r = 2^a$
- Key idea: apply the meet-in-the-middle pairwise on small constraints

- Need $r = 2^a$
- Key idea: apply the meet-in-the-middle pairwise on small constraints

• Decimates solutions, but efficient

- Need $r = 2^a$
- Key idea: apply the meet-in-the-middle pairwise on small constraints

- Decimates solutions, but efficient
- Minimal list cardinal and granularity: $3^{\ell/a}$

- Need $r = 2^a$
- Key idea: apply the meet-in-the-middle pairwise on small constraints

- Decimates solutions, but efficient
- Minimal list cardinal and granularity: $3^{\ell/a}$
 - \implies Want *a* as large as possible
- 🛆 Constraint:

$$3^{\ell/a} < 2^{\frac{k+\ell}{2^a}}$$

Time-Memory tradeoffs using the k-tree algorithm

The smoothing technique

- The extended k-tree algorithm (Minder and Sinclair, 2011), adapted in ternary high-weight SDP as smoothing technique (Bricout et al., 2019)
- Relax the constraint: enables to add one level

The smoothing technique

- The extended k-tree algorithm (Minder and Sinclair, 2011), adapted in ternary high-weight SDP as smoothing technique (Bricout et al., 2019)
- Relax the constraint: enables to add one level

The dissection framework

- The dissection framework (Dinur et al., 2012) is a generalization of the meet-in-the-middle
- Memory-friendly family of exhaustive algorithms
- Proposes Time-Memory tradeoffs with initial list size 3^m
- Splits the *r*-list problem in an asymmetric way

r-dissection TM tradeoffs, r < 400

Fixed ℓ parameter ($\ell = 0.04n$)

Black dot = too many returned solutions \implies granularity problems

Dissection: obtain the best tradeoffs

The best tradeoffs are provided by a range of ℓ parameters

Dissection: obtain the best tradeoffs

The best tradeoffs are provided by a range of ℓ parameters

Dissection: obtain the best tradeoffs

The dissection is better than the k-tree for small memory

Dissection in tree

Principle

Combine dissection in a tree structure (Dinur, 2019) Example: 4-dissection with 3 levels (X = 4, h = 3)

Principle

Combine dissection in a tree structure (Dinur, 2019) Example: 4-dissection with 3 levels (X = 4, h = 3)

- Each dissection done is exhaustive
- Solutions are returned in constant amortized time
- Again same constraint:

$$3^m < 2^{\frac{k+\ell}{x^h}}$$

4-dissection with three levels versus k-tree

Both have the same number of lists, but different merging strategies

• Dissection in tree needs less memory \implies it is applicable for more ℓ parameters

4-dissection with three levels versus k-tree

Both have the same number of lists, but different merging strategies

- Dissection in tree needs less memory \implies it is applicable for more ℓ parameters
- The curve rebounds \Rightarrow granularity problems

Granularity improvement

Idea: be not exhaustive in the dissection

- \implies solutions are more quickly decimated
- \implies memory efficiency decreases

Combination of smoothing and granularity improvement

When the previous improvement can not be applied because of the constraint

22/26

Results

Time	Memory	$Time\timesMemory$	Tradeoff	Algorithm
2 ^{0.0176}	2 ^{0.0176} n	2 ^{0.0352} n	T = M	k-tree + representations
				(Bricout et al.)
$2^{0.02014n}$	$2^{0.01007n}$	$2^{0.03021n}$	$T = M^2$	4,4-dissection
$2^{0.02256n}$	$2^{0.007521n}$	$2^{0.03008n}$	$T = M^3$	2,11-dissection
$2^{0.02335n}$	2 ^{0.005838} n	$2^{0.02919n}$	$T = M^4$	3,11-dissection

Time/Memory plot with Wave parameters

$$n = 7236, k = 4892, w = 6862$$

25 / 26

- We investigated Time-Memory tradeoffs for the ternary syndrome decoding problem in the Wave regime
- The studied algorithms are k-tree, dissection and dissection in tree, embedded within the PGE+SS framework
- Some tweaks were necessary to decrease the granularity of the building blocks

- We investigated Time-Memory tradeoffs for the ternary syndrome decoding problem in the Wave regime
- The studied algorithms are k-tree, dissection and dissection in tree, embedded within the PGE+SS framework
- Some tweaks were necessary to decrease the granularity of the building blocks

Thank you for your attention!