Efficient Lattice-Based Inner-Product Functional Encryption

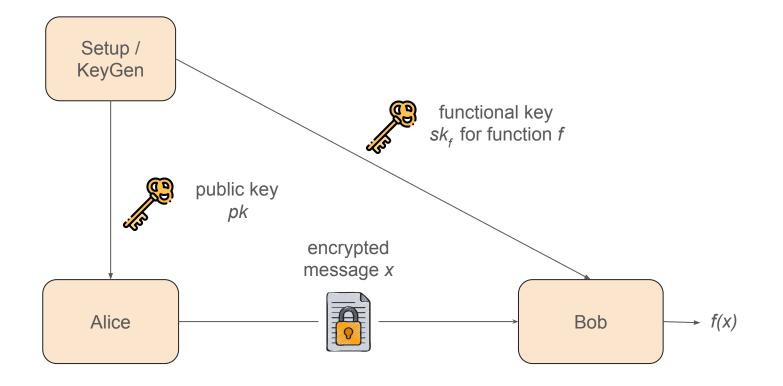
by Jose Maria Bermudo Mera¹, Angshuman Karmakar¹, **Tilen Marc**², and Azam Soleimanian³

¹ imec-COSIC, KU Leuven, Leuven, Belgium

² Faculty of Mathematics and Physics, University of Ljubljana and XLAB d.o.o., Ljubljana, Slovenia

³ Equipe Grace, LIX, École Polytechnique, Palaiseau and INRIA, Saclay, France

Functional encryption



Security Notion (informal)

- An adversary should not be able to distinguish between an encryption of arbitrary two messages x^0 , x^1
- The encryption should remain indistinguishable even if the adversary has access to functional keys sk_f for any function *f* for which $f(x^0) = f(x^1)$
- Selective vs. adaptive security

Generality vs. efficiency

- General designs for arbitrary functions, equivalence to iO
- Limited functions, emphasis on efficiency:
 - **inner-product** (linear) functions and quadratic functions
 - security based on well established assumptions: DDH, DCR, LWE
 - multi-client setting, decentralization, function hiding

Our work: **Efficient** and practical **RLWE** based (quantumly secure) FE schemes for **inner-product** functions with selective and adaptive security.

In addition: new results on lattices, compiler to (decentralized, identity based) multi-client IPFE, optimized implementation

RLWE based IPFE

• Setup:

$$pk = (a, \{pk_i\}), pk_i = as_i + e_i, a \leftarrow R_q, s_i, e_i \leftarrow D_{\sigma_1}$$

• Encrypt(x):

 $ct_0 = ar + f, ct_i = pk_ir + f_i + \lfloor q/K \rfloor x_i 1_R, r, f \leftarrow D_{\sigma_2}, f_i \leftarrow D_{\sigma_3}$

• KeyGen(y):

$$\mathrm{sk}_y = \sum y_i s_i$$

• Decrypt:

$$\langle x, y \rangle \lfloor q/K \rfloor \mathbf{1}_R + \text{noise} = (\sum y_i \text{ct}_i) - \text{ct}_0 \text{sk}_y$$

Security challenges

- Adversary should not be able to distinguish an encryption of x^0 , x^1 even knowing functional keys for functions with $f(x^0) = f(x^1)$
- Functional keys reveal more information about the underlying RLWE problem than desired

Recall, RLWE problem asks for $a, u \leftarrow \mathcal{R}_q, s \leftarrow \chi, e \leftarrow \chi$ to distinguish

(a, as + e) and (a, u)

A stronger, **multi-hint extended RLWE** is needed, asking to distinguish

 $(a, as + e, (r_i, f_i, r_is + g_i, f_ie + h_i)_{i \in [l]})$ and $(a, u, (r_i, f_i, r_is + g_i, f_ie + h_i)_{i \in [l]})$ where r_i, f_i, g_i, h_i are sampled from a small distribution

Security challenges

• a simple modification of the scheme for the **adaptive** security

$$pk_i = \sum_{j=1}^m a_j s_{ij}, a_j \leftarrow R_q, s_{ij} \leftarrow D_\sigma$$

 mhe-RLWE not sufficient, need for Leftover-Hash lemma in rings and Complexity Leveraging

Efficiency and implementation

- We carefully craft the parameters to not lose efficiency
- Ring setting leads to smaller keys, faster operations
- Batching: multiple vectors can be encrypted in parallel allowing SIMD type of calculations on encrypted data

	mpk	msk	ct	$ sk_f $
ALS16 [7]	$O(n^2 \log^2 q + \ell n \log q)$	$O(\ell n \log^2 q)$	$O(n\log q^2 + \ell\log q)$	$O(n\log^2 q)$
ABDP15 [4]	$O((n+\ell)n\log^2 q)$	$O(\ell n \log q)$	$O((n+\ell)\log q)$	$O(n \log q)$
RLWE-FE	$O(\ell n \log q)$	$O(\ell n \log q)$	$O(\ell n \log q)$	$O(n \log q)$
	Setup	Encryption	KeyGen	Decryption
ALS16 [7]	$O(\ell n^2 \log q)$	$O(n^2 \log q + \ell n)$	$O(\ell n \log q)$	$O(n\log q + \ell)$
ABDP15 [4]	$O(\ell n^2 \log q)$	$O((\ell + n)n\log q)$	$O(\ell n)$	$O(\ell + n)$
RLWE-FE	$O(\ell n \log n)$	$O(\ell n \log n)$	$O(\ell n)$	$O(\ell n + n\log n)$

Efficiency and implementation

- The primes are chosen to support NTT multiplication and fast modular reduction
- For correctness the primes are required to be very large
 - We provided a CRT based RNS implementation
- Further, we combine Cooley-Tukey and Gentleman-Sande NTT
 - Removes the requirement of rearrangement between NTT and INTT steps
- The Gaussian sampling is implemented in two steps
 - First, samples are generated from a small Gaussian distribution
 - Second, these samples are combined to generate samples from Gaussian distributions of arbitrary standard deviation
 - Both of these steps are performed in constant-time to eliminate timing attacks.

Efficiency and implementation

An optimized implementation: <u>https://github.com/fentec-project/IPFE-RLWE</u>

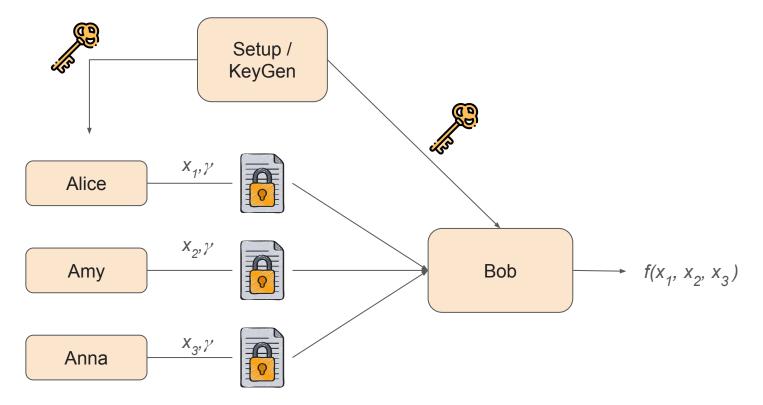
Security	\mathbf{PQ}	FE	Gaussian	Ring	CRT	Time
level	Security	Bounds	Parameters	Parameters	moduli	(ms)
Low	76.3	0	$\sigma_1: 33$ $\sigma_2: 59473921$ $\sigma_3: 118947840$	$n:2048$ $\lceil \log q \rceil:66$	$q_1 : 2^{14} - 2^{12} + 1$ $q_2 : 2^{23} - 2^{17} + 1$ $q_3 : 2^{29} - 2^{18} + 1$	Setup:26 Enc:16 KG:0.27 Dec:1
Medium		$B_y : 16$	σ_1 : 225.14 σ_2 : 258376412.19 σ_3 : 516752822.39		$q_1 : 2^{24} - 2^{14} + 1$ $q_2 : 2^{31} - 2^{17} + 1$ $q_3 : 2^{31} - 2^{24} + 1$	Enc:381 KG:22
High	246.2	$B_y:32$	$\sigma_1: 2049$ $\sigma_2: 5371330561$ $\sigma_3: 10742661120$	$n:8192$ $\lceil \log q \rceil:101$	$q_1 : 2^{17} - 2^{14} + 1$ $q_2 : 2^{20} - 2^{14} + 1$ $q_3 : 2^{32} - 2^{20} + 1$ $q_4 : 2^{32} - 2^{30} + 1$	Enc:1388 KG:70

Machine learning on encrypted data

• encrypted images (785-dimensional pixels vectors)

- classifying the content (digit) using logistic regression
- encryption 381ms, model (10 inner-product functions) evaluation 170ms
- batching 4092 images in parallel

(Bonus) Identity based (Decentralized) Multi-Client IPFE



Conclusion

- Efficient RLWE based inner product functional encryption schemes with selective and adaptive security
- Multi-hint extended RLWE problem, Leftover-Hash Lemma for rings
- Compiler to identity-based (decentralized) multi-client scheme
- Optimized implementation in showcase