ECLIPSE*: Better Commit-and-Prove SNARKs with Universal SRS

Diego F. Aranha¹, Emil Madsen Bennedsen², Matteo Campanelli³, Chaya Ganesh⁴, Claudio Orlandi¹, Akira Takahashi¹

*Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines

https://ia.cr/2021/934

¹ Aarhus University
 ² Concordium
 ³ Protocol Labs
 ⁴ Indian Institute of Science

Our Setting

- Succinct and non-interactive ZK (SNARKs)
- Commit-and-Prove (CP-SNARK)
- Universal Trusted Setup

ive ZK (SNARKs) NARK)

Succinct and Non-Interactive ZK

e.g., x = msg, w = signature

"Trusting someone else's claims on data that you have not seen"

V

OK, P must know w such that R(w) holds.

Commit-and-Prove (CP) ZK

In CP-ZK we prove R and we open a commitment

"Trusting someone else's claims on data that you have not seen but that can be pointed *to*"

V

OK, P must know w such that *R(w)* holds...

and such that

opens→ W

Motivation for CP

Compression/ Fingerprinting

Time

Commit-ahead-of-time

Modular/efficient composition of proofs

[AGM18, **C**FQ19]

Some proof

Some other proof

Some Applications

Anonymous Credentials

• **Blockchains**:

- with privacy properties $\bigcirc \longrightarrow$
- proofs on data posted on blockchains
- to (privately or succinctly)

Generally: anywhere data need to be referenced

Syntax: SNARKs vs CP-SNARKs

SNARK

e.g., x = msg, w = signature

Setting on the right is a special case of the other. Then why care?? **Efficiency & interoperability**

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:

- Efficient ZK opening
- Interoperable commitments (as standard as possible)

UNSATISFACTORY SOLUTIONS:

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:

- Efficient ZK opening
- Interoperable commitments (as standard as possible)

UNSATISFACTORY SOLUTIONS:

Trust Models in SNARKs (and CP-SNARKs)

- **Transparent :-)))** (Bulletproofs,Hyrax,DARK...)
 - no trusted setup
- SRS (Structured Reference String) :- (Pinocchio, Groth16...)
 - Keygen(R) -> srs_R
- **Universal SRS (USRS) :-)** (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,...)
 - Keygen(maxSize) -> srs_gen
 - Specialize(srs_gen, R) -> srs_R
 - Often also **updatable** (anyone can rerandomize srs_gen)

Eclipse results from 10⁹ feet: new ways to construct CP-SNARKs with a Universal SRS generically

Summary of Our Results

- General Compiler into CP-SNARKs with Universal SRS
 - Your favorite SNARK* with USRS -> CP-SNARK
 - * in "information-theoretic" form (more on that later)
- CP versions of Marlin, PLONK, and SONIC
 - commitment type = Pedersen
- All with small overhead (next slide)

Resulting USRS CP-SNARKs—Efficiency

In practice the two family of systems show a tradeoff in verification time/proof size.

Constructing (USRS) SNARKs Compilers from idealized information-theoretic objects

Practical* SNARKs with Universal SRS

zkSNARK		size		
			$ vk_R \pi $	
Sonic [46]	\mathbb{G}_1		- 20	
	\mathbb{G}_2		3 -	
	\mathbb{F}		- 16	
Marlin 20	\mathbb{G}_1		12 13	
	\mathbb{G}_2		2 -	
	\mathbb{F}		— 8	
PLONK (small proof) [28]	\mathbb{G}_1		8 7	
	\mathbb{G}_2		1 —	
	\mathbb{F}		— 7	
PLONK (fast prover)	\mathbb{G}_1		8 9	
	\mathbb{G}_2		1 —	
[28]	\mathbb{F}		— 7	

Roughly: - n: # MUL gates - a: # ADD gates - m: # wires

*practical + focus is on O(1) proof size

time	
Prove	Verify
273n	7 pairings
$O(m \log m)$	$O(\ell \! + \! \log m)$
14n + 8m	2 pairings
$O(m \log m)$	$O(\ell \! + \! \log m)$
11n + 11a	2 pairings
$O((n\!+\!a)\log(n\!+\!a)$	$O(\ell + \log(n+a))$
9n+9a	2 pairings
$O((n\!+\!a)\log(n\!+\!a)$	$O(\ell + \log(n+a))$

- Interactive
- Prover holds polynomials "encoding" the witness
- It gives oracle access to their evaluations

A picture of the idealized protocol

Queries Q: Evaluations of polynomial (e.g. $p1(x^*) == t^*$)

Compiling to USRS SNARKs: Ingredients

- (Underlying compiler in Marlin/DARK/Lunar/PLONK)
- Main tool is a Polynomial Commitment PC:
 - with *compressing* commitment to polynomials
 - Allows proving efficiently (and succinctly) in ZK:
 - p(x) = y (evaluation)
 - (plus degree bounds: deg(p) <= Dbound)

NB: different from these commitments!

Notation (circles for polynomial commitment)

(E1) & PC. Commit (P1(X))

Compiling to USRS SNARKs

 $P^{AA9}(\mathbf{k},\mathbf{k})$

(E1 & PC. Commit (P1(X))

Compiling to USRS SNARKs

P (*, 11/2)

(e1 & PC. Commit (P1(X))

CN a- PC. Commit (PN(X)

Makes queries Q.

Proves queries Q are satisfied by poly commitments c1,...,cN

The Resulting USRS SNARKs

- Use Fiat-Shamir for non-interaction
- Why is the SRS Universal?
 - Because we can define
 SNARK.Setup(maxSize) ->
 srs_gen := PC.Setup(maxPolyDeg)
 - Where maxPolyDeg depends on maxSize

Compiling into CP-SNARKs

1C ARG

Compiling into CP-SNARKs

$(\overline{[c]}, \mathcal{O}_{c})$
$\overline{P}^{ARG}(\mathbf{x},\mathbf{w})$
$(C_1) \leftarrow PC.Commit(P_1(X))$
CN a- PC. Commit (P
۸

Compiling into CP-SNARKs

It proves "linking", or: knowledge of **w** s.t: 1) [c] opens to (parts of) w 2) (c_i) opens to p_i, forall i 3) w is "consistent with the execution"

Challenge 1: depending on only part of the witness

From previous slide

It proves "linking", or: knowledge of **w** s.t: 1) [c] opens to (parts of) w 2) (c_i) opens to p_i, forall i 3) w is "consistent with the execution"

Our solution:

showing that (c_i) can be additively decomposed in our SNARKs of interest

Definition 9 (Decomposable witness-carrying polynomials). Let W be an index set of witness-carrying polynomials of AHP. We say that polynomials $(p_{i,j}(X))_{(i,j)\in W}$ of AHP are decomposable if there exists an efficient function $\mathsf{Decomp}((p_{i,j}(X))_{(i,j)\in W}, I) \to (p_{i,j}^{(1)}(X), p_{i,j}^{(2)}(X))_{(i,j)\in W}$ such that it satisfies the following properties for any $I \subset [n]$.

- Additive decomposition: $p_{i,j}(X) = p_{i,j}^{(1)}(X) + p_{i,j}^{(2)}(X)$ for $(i,j) \in W$.
- Degree preserving: deg $(p_{i,j}^{(1)}(X))$ and deg $(p_{i,j}^{(2)}(X))$ are at most deg $(p_{i,j}(X))$ for $(i, j) \in W$.
- Non-overlapping: Let $w = WitExt((p_{i,j}(X))_{(i,j)\in W}), w^{(1)} = WitExt((p_{i,j}^{(1)}(X))_{(i,j)\in W}),$ and $w^{(2)} = WitExt((p_{i,j}^{(2)}(X))_{(i,j)\in W})$. Then

$$(\mathsf{w}_i)_{i \in I} = (\mathsf{w}_i^{(1)})_{i \in I} \quad (\mathsf{w}_i)_{i \notin I} = (\mathsf{w}_i^{(2)})_{i \notin I} \quad (\mathsf{w}_i^{(1)})_{i \notin I} = 0 \quad (\mathsf{w}_i^{(2)})_{i \in I} = 0$$

Challenge 2: efficient and succinct proof of linking

From previous slide

It proves "linking", or: knowledge of w s.t: 1) [c] opens to (parts of) w 2) (c_i) opens to p_i, forall i 3) w is "consistent with the execution"

Our solution:

 Prove through an (amortized) Sigmaprotocol a "squashing" of the input commitments

 $C = \boldsymbol{q}^{\mathbf{w}} \mathbf{h}^{\boldsymbol{\alpha}}, \hat{C}_i = \mathbf{G}^{\mathbf{w}_i} \mathbf{H}^{\boldsymbol{\beta}_i}, \ \mathbf{w} = [\mathbf{w}_1, \dots, \mathbf{w}_\ell]$

 naively requires O(|w| - #commitments) communication, but we then compress it through Compressed-Sigma techniques [AC20] to O(log(|w| · #commitments))

Comparison with Lunar (CFFQ21)

- Similar blueprint
- Lunar uses a different pairing-based protocol for "linking"
- different tradeoffs in efficiency (see also table in the next slide)
- Lunar uses a more general formalization (PHP); our work can be easily formalized in the same framework

Open Questions

• Better asymptotics:

- O(\ell) is inherent in verification time, but can we achieve constant proof size?
- Maybe with one-level of (specialised) recursion?
- Different techniques for "linking" and/or finding other applications for those in ECLIPSE?

	$ \pi $	Prove $(time)$	Verify
ECLIPSE [ABC+21] Lunar [CFF ⁺ 20]	$O\left(\log(\ell \cdot d) ight) O\left(\ell ight)$	$O\left(n+\ell\cdot d ight) \ O\left(n+\ell\cdot d ight)$	$O\left(\ell \cdot O\left(\ell ight) ight)$
Future?	0(1)		$O(\ell)$

https://ia.cr/2021/934

Thanks!

For questions/contacts: <u>matteo@protocol.ai</u> <u>binarywhales.com</u>