ECLIPSE™:

Better Commit-and-Prove SNARKSs with Universal SRS

Diego F. Aranha’', Emil Madsen Bennedsen?, Matteo Campanelli3, Chaya Ganesh?#, Claudio Orlandi?!, Akira Takahashi’

*Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines

' Aarhus University
2 Concordium
3 Protocol Labs
4 Indian Institute of Science

https://ia.cr/2021/934

http://www.apple.com

Our Setting

® Succinct and non-interactive ZK (SNARKS)
* Commit-and-Prove (CP-SNARK)
® Universal Trusted Setup

Succinct and Non-Interactive ZK

“Trusting someone else’s
» Y, claims on data that you have
not seen”

OK, P must know w such that
R(w) holds.

Commit-and-Prove (CP) ZK

Commitment

First, I'm just going to drop
this here...

In CP-ZK we prove R
and we open a commitment

“Trusting someone else’s
claims on data that you
have not seen
but that can be pointed

J)

o

7

OK, P must know w such that
R(w) holds...

and such that
7 opens W

Compression/
Fingerprinting

+

AEEE
EEEE
AN NEE
ENEE
IR

DB

Sensitive
Proofs c&
correct training

commit

-

Public ML models

Commit-ahead-of-time

Time
v

Motivation for CP

My “credentials”

Some proof

Some other proof

Modular/efficient

composition of proofs
[AGM18,CFQ19]

< Efficient Proof Scheme

Some Applications

®* Anonymous Credentials

® Blockchains:
* with privacy properties @) —u=
® proofs on data posted on blockchains

®* Generally: anywhere data need to be referenced
to (privately or succinctly)

Syntax: SNARKS vs CP-SNARKS

SNARK CP-SNARK
r = Y P %
TN

///m &\\\\,__*

e.g., X = msg, w = signature

Setting on the right is a special case of the other. Then why care?? Efficiency & interoperability

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:
- Efficient ZK opening
- Interoperable commitments (as standard as possible)

ONSAT (vpcTo Ry SoluTioni |

T—

_USs Y(CRK(E TTREES ORPESIRIEN
> COMYM T 3
THen OPER N C|RVYT

@ EXPENR | VE

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:
- Efficient ZK opening
- Interoperable commitments (as standard as possible)

OnSATavpacTo Ry SolvTiong] -
NShH - P %

_uSs Y(ERK(E TREES, ORPESIRSEN VP (x.c0 .
o GOWITv\
TUen OPERN N C\FUNT

(1) EXPERRIVE

_ AL ARovE RJIT VT MR i "
ARNTHHET & /ELePTIS CURVES 772 i
Q-%‘ 2 CASH [_:CONU@I@‘?C@;\ “——"1 =
(Versei) (FARBERS2KY) A
@ 60‘55\?_ S I [h
EOSERT = OP&EMNS o

Trust Models iIn SNARKSs (and CP-SNARKS)

* Transparent :-))) (Bulletproofs,Hyrax,DARK...)
® no trusted setup
* SRS (Structured Reference String) :-| (Pinocchio,Groth16...)
* Keygen(R) ->srs R
* Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,...)
* Keygen(maxSize) -> srs_gen
* Specialize(srs _gen, R) ->srs R

* Often also updatable (anyone can rerandomize srs_gen)

Eclipse results from 10° feet:
new ways to construct CP-SNARIKSs with a
Universal SRS generically

Summary of Our Results

* General Compiler into CP-SNARKSs with Universal SRS
* Your favorite SNARK* with USRS -> CP-SNARK
* *In "Information-theoretic" form (more on that later)

* CP versions of Marlin, PLONK, and SONIC
°* commitment type = Pedersen

* All with small overhead (next slide)

Resulting USRS CP-SNARKs—Efficiency

Prove (time) Verify (time)
Lunar [CFF™20] —E d)
LegoUAC [CFQ19] () Uf log*(n)) O() + - O (d) () Uf log”(n))
Time Is In group operations. Above, n is roughly # of multiplication gates
gates

In practice the two family of systems show a tradeoff in verification time/proof size.

Constructing (USRS) SNARKS

Compilers from idealized information-theoretic objects

o 3

Information-theoretic o
+ Crypto primitive Compilation

Object

Cryptographic
Proof System

Practical* SNARKs with Universal SRS

ASNARK size time |
Ivkr| || Prove Verify
_ G1 — 20 273n .
Sonic 7 pairings
@ Go 3 — —
' F — 16 O(mlogm) O(£+logm)
MARLIN Gy 1213 Ldn+8m 2 pairings
G2 2 — —
F — 8 O(mlogm) O(f+logm)
PLONK G 5 7 Hn+lla 2 pairings
(small proof) (Go 1 — —
F — 7 O((n+a)log(n+a)) O(£+log(n+a))
G 8§ 9 9In—+9a .
PLONK 2
(fast gmver) Go 1 — — PAIIES
F — 7 O((n+a)log(n+a)) O(f+log(n+a))

Roughly:

- n: # MUL gates
- a: # ADD gates
- m: # wires

*practical + focus is on O(1) proof size

_ Idealized protocols for USRS SNARKS

~Algebraic Holographic Proofs (AHPs)

* Interactive
* Prover holds polynomials "encoding” the witness

* |t gives oracle access to their evaluations

A picture of the idealized protocol

W 1, T

A

’;&&)] \)WG‘\
= J '- l Queries Q:

- , / Evaluations of polynomial (e.g. p1(x*) == t*)

Compiling to USRS SNARKS: Ingredients\é

* (Underlying compiler in Marlin/DARK/Lunar/PLONK)

* Main tool iIs a Polynomial Commitment PC. e
* with compressing commitment to polynomials ’__ R
* Allows proving efficiently (and succinctly) in ZK: ’;/7///‘_k{\,_,§
* p(x) =y (evaluation) = <
* (plus degree bounds: deg(p) <= Dbound) NB: different from these commitments!

Notation (circles for polynomial commitment)

(¢

\
y

=

.::l .-H"\."'\-\x] 'i-.ll
— A <1—

/

Compiling to USRS SNARKS

. - AM@B

Compiling to USRS SNARKS
P (v 06

Makes queries Q.

“’TF”J% —

&) > Proves queries Q are satisfied by poly

commitments ci1,...,.cN

The Resulting USRS SNARKS

* Use Fiat-Shamir for non-interaction 7’@7 v ow) DA“'@)
* Why Is the SRS Universal? (€0) +- R Lammt (/Fi@ @D

* Because we can define
SNARK.Setup(maxSize) -> ¢—FC- Compmit @N (X)\
srs_gen := PC.Setup(maxPolyDeg) L ()

* Where maxPolyDeg depends on
maxSize 'a

Compiling into CP-SNARKS

£l o)

%

Compiling into CP-SNARKS

Compiling into CP-SNARKS

(2] 0.

— %
_i7
“Tpgﬂj

It proves "linking", or: knowledge of w s.t:
1) [c] opens to (parts of) w
2) (c_1) opens to p I, forall |

3) w Is "consistent with the execution-

Challenge 1: depending on only part of the withess

From previous slide

Definition 9 (Decomposable witness-carrying polynomials). Let W be

It Proves "Ilnklng", or. knOWIGdge of w s.t: an index set of witness-carrying polynomials of AHP. We say that polynomials
1) [C] opens to (DartS of) w (ps,; (X))@ j)ew of AHP are decomposable if there exists an efficient function

2) (c_i) opens to p_i, forall Decomp((pe, (X))pew D) (p[éiﬂj? (X),p% (X)) ipew such that it satisfies the
. " C |
3) w is "consistent with the execution oilowing properties jor any I C [n

— Additive decomposition: p; ;(X) = pg}j) (X) + pgi,) (X) for (i,5) e W.

— Degree preserving: deg(p&-? (X)) and deg(pz(-i-)(X)) are at most deg(p; ;(X))
for (i,7) e W.

Our solution: | | 1 | o
ShOWing that (C |) can be — Non-overlapping: Let w = WitExt((ps,; (X)) . j)ew) wl) = WitExt((p; ; (X))(i.5)ew),
. — . and w® = WitExt((p*)(X))i.iew). Then
additively decomposed in our J ,

SNARKS of interest (widier = (W)ier Woigr = W)ier W)igr =0 (W)ier =0

1

Challenge 2: efficient and succinct proof of linking

From previous slide * Our solution:

It proves "linking", or: knowledge of w s.t: _ |
1) [c] opens to (parts of) w * Prove through an (amortized) Sigma-

2 (c_i) opens to p_i, forall i protocol a "squashing” of the input
3) w is "consistent with the execution” commitments

C = gwha:é’i — GﬁiHﬁi: W= [wlﬂ s ?wf]

* naively requires O(|w| - #commitments)
communication, but we then compress it
through Compressed-Sigma techniques
[AC20] to O(log(|w| - #commitments))

Comparison with Lunar (CFFQ21)

* Similar blueprint
* Lunar uses a different pairing-based protocol for "linking"

* different tradeoffs In efficiency (see also table in the next
slide)

* Lunar uses a more general formalization (PHP); our work
can be easily formalized in the same framework

Open Questions

_ |7 Prove (time) Verify (time) I
* Better asymptotics: =CLIPSE 0 (oa(e-d) ottt d 0. '
o | - Amar [CFEF+20] 0 (0) O(n+¢-d O (0)
* O(\ell) Is Inherent in verification Future? 0(1) 0(#)
time, but can we achieve constant
proof size?

* Maybe with one-level of
(specialised) recursion?

* Different techniques for “linking”
and/or finding other applications
for those in ECLIPSE?

https://ia.cr/2021/934

Thanks!

For questions/contacts:
matteo@protocol.ai
binarywhales.com

http://www.apple.com
mailto:matteo@protocol.ai
http://binarywhales.com

