ECLIPSE*: Better Commit-and-Prove SNARKs with Universal SRS

Diego F. Aranha¹, Emil Madsen Bennedsen², Matteo Campanelli³, Chaya Ganesh⁴, Claudio Orlandi¹, Akira Takahashi¹

*Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines

https://ia.cr/2021/934

¹ Aarhus University
² Concordium
³ Protocol Labs
⁴ Indian Institute of Science
Our Setting

• Succinct and non-interactive ZK (SNARKs)
• Commit-and-Prove (CP-SNARK)
• Universal Trusted Setup
Succinct and Non-Interactive ZK

e.g., $x = \text{msg}$, $w = \text{signature}$
OK, P must know w such that $R(w)$ holds.

“Trusting someone else’s claims on data that you have not seen”
In CP-ZK we prove R and we open a commitment.
Motivation for CP

Compression/Fingerprinting

Commit-ahead-of-time

Modular/efficient composition of proofs

[e.g., $SHA(g^x) = y$]

Efficient Proof Scheme

Some proof

Some other proof

My “credentials”

[Public ML models]

[Time]

[Sensitive DB]

[Proofs of correct training]
Some Applications

• Anonymous Credentials

• Blockchains:
 • with privacy properties
 • proofs on data posted on blockchains

• Generally: anywhere data need to be referenced to (privately or succinctly)
Syntax: SNARKs vs CP-SNARKs

Setting on the right is a special case of the other. Then why care??

Efficiency & interoperability

e.g., $x = \text{msg}$, $w = \text{signature}$
e.g., $c_i \text{ commit to DBs}$
Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:
- Efficient ZK opening
- Interoperable commitments (as standard as possible)

Unsatisfactory Solutions:
- Use Merkle trees or Pedersen to commit, then open in circuit
- ⭕ Standard commitments ✖ Expensive

$$P \xrightarrow{\mathsf{a}} \mathcal{R}, \mathcal{R} \rightarrow \mathcal{V} \rho_j (x, c_1, \ldots, c_k)$$
Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18, ZKProof]):
- Efficient ZK opening
- Interoperable commitments (as standard as possible)

UNSATISFACTORY SOLUTIONS:
- Use Merkle trees or Pedersen to commit, then open in circuit

STANDARD COMMITMENTS
- AS ABOVE BUT WITH SMART ARITHMETIC/ECCLEPTIC CURVES
 (e.g., ZCash [IJPJ16], [COCO], [VCS16], [JABBERWOCKY])

EXPENSIVE
- More expansive

EFFICIENT
- Curve dependent

\[P \xrightarrow{\gamma} y \]
\[f_y(x, e_1, \ldots, e_k) \]
Trust Models in SNARKs (and CP-SNARKs)

- **Transparent :-))** (Bulletproofs, Hyrax, DARK…)
 - no trusted setup

- **SRS (Structured Reference String) :-|** (Pinocchio, Groth16…)
 - Keygen(R) -> srs_R

- **Universal SRS (USRS) :-)** (GKMM18, LegoSNARK, Sonic, Marlin, PLONK,…)
 - Keygen(maxSize) -> srs_gen
 - Specialize(srs_gen, R) -> srs_R
 - Often also **updatable** (anyone can rerandomize srs_gen)
Eclipse results from 10^9 feet:
new ways to construct CP-SNARKs with a Universal SRS generically
Summary of Our Results

- General Compiler into CP-SNARKs with Universal SRS
 - Your favorite SNARK* with USRS -> CP-SNARK
 - * in "information-theoretic" form (more on that later)
- CP versions of Marlin, PLONK, and SONIC
 - commitment type = Pedersen
- All with small overhead (next slide)
Resulting USRS CP-SNARKs—Efficiency

| | $|\pi|$ | Prove (time) | Verify (time) |
|------------------|------------|---------------------------|-----------------------|
| ECLIPSE [ABC+21] | $O(\log(\ell \cdot d))$ | $O(n + \ell \cdot d)$ | $O(\ell \cdot d)$ |
| Lunar [CFF+20] | $O(\ell)$ | $O(n + \ell \cdot d)$ | $O(\ell)$ |
| LegoUAC [CFQ19] | $O(\ell \log^2(n))$ | $O(n) + \ell \cdot \tilde{O}(d)$ | $O(\ell \log^2(n))$ |

Time is in group operations. Above, n is roughly # of multiplication gates.

In practice the two family of systems show a tradeoff in verification time/proof size.
Constructing (USRS) SNARKs
Compilers from idealized information-theoretic objects

Information-theoretic Object + Crypto primitive → Cryptographic Proof System

Compilation
Practical* SNARKs with Universal SRS

| zkSNARK | size $|\mathcal{vk}_R|, |\pi|$ | time | Prove | Verify |
|------------------|------------------|------|----------------|------------------|
| Sonic | G_1 | 20 | 273n | 7 pairings |
| | G_2 | 3 | $O(m \log m)$ | $O(\ell + \log m)$ |
| | \mathbb{F} | 16 | | |
| MARLIN | G_1 | 12 | 14$n + 8m$ | 2 pairings |
| | G_2 | 2 | | |
| | \mathbb{F} | 8 | | |
| PLONK (small proof) | G_1 | 8 | 11$n + 11a$ | 2 pairings |
| | G_2 | 1 | | |
| | \mathbb{F} | 7 | | |
| PLONK (fast prover) | G_1 | 8 | $O((n + a)\log(n + a))$ | $O(\ell + \log(n + a))$ |
| | G_2 | 9 | | |
| | \mathbb{F} | 1 | | |
| | | 7 | | |

Roughly:
- n: # MUL gates
- a: # ADD gates
- m: # wires

*practical + focus is on $O(1)$ proof size
Idealized protocols for USRS SNARKs

Algebraic Holographic Proofs (AHPs)

- Interactive
- Prover holds polynomials "encoding" the witness
- It gives oracle access to their evaluations
A picture of the idealized protocol

Queries Q:
Evaluations of polynomial (e.g. $p_1(x^*) = t^*$)
Compiling to USRS SNARKs: Ingredients

- Underlying compiler in Marlin/DARK/Lunar/PLONK

Main tool is a **Polynomial Commitment** PC:

- with *compressing* commitment to polynomials
- Allows proving efficiently (and succinctly) in ZK:
 - \(p(x) = y \) (evaluation)
 - (plus degree bounds: \(\deg(p) \leq D\text{bound} \))

Notation (circles for polynomial commitment)

NB: different from these commitments!
Compiling to USRS SNARKs
Compiling to USRS SNARKs

Proves queries Q are satisfied by poly commitments c_1, \ldots, c_N
The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS *Universal*?
 • Because we can define

 \[\text{SNARK.Setup(maxSize)} \rightarrow \text{srs_gen := PC.Setup(maxPolyDeg)} \]

 • Where maxPolyDeg depends on maxSize
Compiling into CP-SNARKs
Compiling into CP-SNARKs
Compiling into CP-SNARKs

It proves "linking", or: knowledge of \(w \) s.t:

1) \([c]\) opens to (parts of) \(w \)
2) \([c_i]\) opens to \(p_i \), forall \(i \)
3) \(w \) is "consistent with the execution"
Challenge 1: depending on only part of the witness

It proves "linking", or: knowledge of \(w \) s.t:
1) \([c]\) opens to (parts of) \(w \)
2) \((c_i)\) opens to \(p_i\), forall \(i \)
3) \(w \) is "consistent with the execution"

Our solution:
showing that \((c_i)\) can be additively decomposed in our SNARKs of interest

Definition 9 (Decomposable witness-carrying polynomials). Let \(W \) be an index set of witness-carrying polynomials of AHP. We say that polynomials \((p_{i,j}(X))_{(i,j) \in W}\) of AHP are decomposable if there exists an efficient function \(\text{Decomp}((p_{i,j}(X))_{(i,j) \in W}, I) \rightarrow (p_{i,j}^{(1)}(X), p_{i,j}^{(2)}(X))_{(i,j) \in W} \) such that it satisfies the following properties for any \(I \subset [n] \):
- Additive decomposition: \(p_{i,j}(X) = p_{i,j}^{(1)}(X) + p_{i,j}^{(2)}(X) \) for \((i,j) \in W\).
- Degree preserving: \(\deg(p_{i,j}^{(1)}(X)) \) and \(\deg(p_{i,j}^{(2)}(X)) \) are at most \(\deg(p_{i,j}(X)) \) for \((i,j) \in W\).
- Non-overlapping: Let \(w = \text{WitExt}((p_{i,j}(X))_{(i,j) \in W}), w^{(1)} = \text{WitExt}((p_{i,j}^{(1)}(X))_{(i,j) \in W}), \) and \(w^{(2)} = \text{WitExt}((p_{i,j}^{(2)}(X))_{(i,j) \in W}). \) Then
 \[(w_i)_{i \in I} = (w_i^{(1)})_{i \in I}, \] \[(w_i)_{i \notin I} = (w_i^{(2)})_{i \notin I}, \] \[(w_i^{(1)})_{i \notin I} = 0, \] \[(w_i^{(2)})_{i \in I} = 0. \]
Challenge 2: efficient and succinct proof of linking

It proves "linking", or: knowledge of \(w \) s.t:
1) [c] opens to (parts of) \(w \)
2) (c_i) opens to p_i, forall i
3) \(w \) is "consistent with the execution"

From previous slide

- Our solution:
 - Prove through an (amortized) Sigma-protocol a “squashing” of the input commitments
 \[
 C = g^{wh^\alpha}, \hat{C}_i = G^{w_i}H^{\beta_i}, \ w = [w_1, \ldots, w_\ell]
 \]
 - naively requires \(O(|w| \cdot \#\text{commitments}) \) communication, but we then compress it through Compressed-Sigma techniques [AC20] to \(O(\log(|w| \cdot \#\text{commitments})) \)
Comparison with Lunar (CFFQ21)

- Similar blueprint
- Lunar uses a different pairing-based protocol for "linking"
- Different tradeoffs in efficiency (see also table in the next slide)
- Lunar uses a more general formalization (PHP); our work can be easily formalized in the same framework
Open Questions

- Better asymptotics:
 - $O(\ell)$ is inherent in verification time, but can we achieve constant proof size?

- Maybe with one-level of (specialised) recursion?

- Different techniques for “linking” and/or finding other applications for those in ECLIPSE?

| | $|\pi|$ | Prove (time) | Verify (time) |
|----------|------------|---------------|---------------|
| ECLIPSE | $O(\log(\ell \cdot d))$ | $O(n + \ell \cdot d)$ | $O(\ell \cdot d)$ |
| Lunar | $O(\ell)$ | $O(n + \ell \cdot d)$ | $O(\ell)$ |
| Future? | $O(1)$ | $O(\ell)$ | $O(\ell)$ |
https://ia.cr/2021/934

Thanks!

For questions/contacts:
matteo@protocol.ai
binarywhales.com