
ECLIPSE*:
Better Commit-and-Prove SNARKs with Universal SRS

Diego F. Aranha1, Emil Madsen Bennedsen2, Matteo Campanelli3, Chaya Ganesh4, Claudio Orlandi1, Akira Takahashi1

https://ia.cr/2021/934

*Enhanced Compiling Method for Pedersen-Committed zkSNARK Engines
1 Aarhus University

2 Concordium
3 Protocol Labs

4 Indian Institute of Science

http://www.apple.com

Our Setting

• Succinct and non-interactive ZK (SNARKs)

• Commit-and-Prove (CP-SNARK)

• Universal Trusted Setup

Succinct and Non-Interactive ZK

SNARK

e.g., x = msg, w = signature

ZK

.

.

.

P V

OK, P must know w such that

R(w) holds.

“Trusting someone else’s

claims on data that you have

not seen”

Commit-and-Prove (CP) ZK

.

.

.

P V

In CP-ZK we prove R

and we open a commitment

“Trusting someone else’s

claims on data that you

have not seen

but that can be pointed

to”

and such that
opens

W

OK, P must know w such that

R(w) holds…

w

First, I’m just going to drop

this here…

Commitment

Motivation for CP

Modular/efficient

composition of proofs
[AGM18,CFQ19]

Compression/

Fingerprinting

Commit-ahead-of-time

commit

Sensitive

DB

Public ML models

Proofs of

correct training

Time

My “credentials”

Some proof

RBool(b,

w)

b

W

RAlg(a,

w)

∧

a

W+ +

Efficient Proof Scheme

Some other proof

e.g.,

Some Applications

• Anonymous Credentials

• Blockchains:

• with privacy properties

• proofs on data posted on blockchains

• Generally: anywhere data need to be referenced

to (privately or succinctly)

Syntax: SNARKs vs CP-SNARKs

Setting on the right is a special case of the other. Then why care?? Efficiency & interoperability

SNARK CP-SNARK

e.g., x = msg, w = signature e.g., c_i commit to DBs

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:

- Efficient ZK opening

- Interoperable commitments (as standard as possible)

Clarifying (our) CP-SNARK Setting

Desiderata ([CFQ18,ZKProof]:

- Efficient ZK opening

- Interoperable commitments (as standard as possible)

Trust Models in SNARKs (and CP-SNARKs)

• Transparent :-))) (Bulletproofs,Hyrax,DARK…)

• no trusted setup

• SRS (Structured Reference String) :-| (Pinocchio,Groth16…)

• Keygen(R) -> srs_R

• Universal SRS (USRS) :-) (GKMM18,LegoSNARK,Sonic,Marlin,PLONK,…)

• Keygen(maxSize) -> srs_gen

• Specialize(srs_gen, R) -> srs_R

• Often also updatable (anyone can rerandomize srs_gen)

Eclipse results from 109 feet:
new ways to construct CP-SNARKs with a

Universal SRS generically

Summary of Our Results

• General Compiler into CP-SNARKs with Universal SRS

• Your favorite SNARK* with USRS -> CP-SNARK

• * in "information-theoretic" form (more on that later)

• CP versions of Marlin, PLONK, and SONIC

• commitment type = Pedersen

• All with small overhead (next slide)

Resulting USRS CP-SNARKs—Efficiency

ECLIPSE [ABC+21]

Time is in group operations. Above, n is roughly # of multiplication gates

gates

d

In practice the two family of systems show a tradeoff in verification time/proof size.

Information-theoretic

Object
Crypto primitive Compilation

Cryptographic

Proof System
+

Compilers from idealized information-theoretic objects

Constructing (USRS) SNARKs

Roughly:

- n: # MUL gates

- a: # ADD gates

- m: # wires

*practical + focus is on O(1) proof size

Practical* SNARKs with Universal SRS

Idealized protocols for USRS SNARKs
Algebraic Holographic Proofs (AHPs)

• Interactive

• Prover holds polynomials "encoding" the witness

• It gives oracle access to their evaluations

A picture of the idealized protocol

Queries Q:

Evaluations of polynomial (e.g. p1(x*) == t*)

Compiling to USRS SNARKs: Ingredients

• (Underlying compiler in Marlin/DARK/Lunar/PLONK)

• Main tool is a Polynomial Commitment PC:

• with compressing commitment to polynomials

• Allows proving efficiently (and succinctly) in ZK:

• p(x) = y (evaluation)

• (plus degree bounds: deg(p) <= Dbound)

Notation (circles for polynomial commitment)

NB: different from these commitments!

Compiling to USRS SNARKs

Compiling to USRS SNARKs

Makes queries Q.

Proves queries Q are satisfied by poly

commitments c1,…,cN

The Resulting USRS SNARKs

• Use Fiat-Shamir for non-interaction

• Why is the SRS Universal?

• Because we can define

SNARK.Setup(maxSize) ->

srs_gen := PC.Setup(maxPolyDeg)

• Where maxPolyDeg depends on

maxSize

Compiling into CP-SNARKs

d

Compiling into CP-SNARKs

d

???

Compiling into CP-SNARKs

says𝑐1, … , 𝑐𝑁

d

It proves "linking", or: knowledge of w s.t:

1) [c] opens to (parts of) w

2) (c_i) opens to p_i, forall i

3) w is "consistent with the execution"

Challenge 1: depending on only part of the witness

It proves "linking", or: knowledge of w s.t:

1) [c] opens to (parts of) w

2) (c_i) opens to p_i, forall i

3) w is "consistent with the execution"

From previous slide

Our solution:

showing that (c_i) can be

additively decomposed in our

SNARKs of interest

Challenge 2: efficient and succinct proof of linking

It proves "linking", or: knowledge of w s.t:

1) [c] opens to (parts of) w

2) (c_i) opens to p_i, forall i

3) w is "consistent with the execution"

From previous slide • Our solution:

• Prove through an (amortized) Sigma-
protocol a “squashing” of the input
commitments

• naively requires O(|w| · #commitments)
communication, but we then compress it
through Compressed-Sigma techniques
[AC20] to O(log(|w| · #commitments))

Comparison with Lunar (CFFQ21)

• Similar blueprint

• Lunar uses a different pairing-based protocol for "linking"

• different tradeoffs in efficiency (see also table in the next
slide)

• Lunar uses a more general formalization (PHP); our work
can be easily formalized in the same framework

Open Questions

• Better asymptotics:

• O(\ell) is inherent in verification
time, but can we achieve constant
proof size?

• Maybe with one-level of
(specialised) recursion?

• Different techniques for “linking”
and/or finding other applications
for those in ECLIPSE?

ECLIPSE

[ABC+21]

Future? 𝑂(1) 𝑂(ℓ)

Thanks!

https://ia.cr/2021/934

For questions/contacts:
matteo@protocol.ai

binarywhales.com

http://www.apple.com
mailto:matteo@protocol.ai
http://binarywhales.com

