All About That Data: Towards a Practical Assessment **Of Attacks on Encrypted Search** Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, **Amos Treiber, and Michael Yonli**

SYSTEMS

Щ

Encrypted Search Algorithms (ESAs) $q = 'crypto' \quad q = [18,39]$ Enc(q)Trusted $i = \frac{Enc(q)}{c_{k}}$ Untrusted Untrusted

Constructions

Attacks & Countermeasures

Attacks & Countermeasures

Attacks & Countermeasures

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 3

TECHNISCHE UNIVERSITÄT

Previous evaluations

New Software: LEAKER

• Re-implementation of **17** major attacks in open-source framework

[IKK12,CGPR15,LMP18,GLMP18,GLMP19,GJW19, BKM20,KPT20,KPT21,RPH21]

Code	⊙ Issues 1 îl Pull requests ⊙ Actions	🔟 Projects 🖽 Wiki 🛈 Security 🗠 Insights	
	🥵 main 👻 🖓 1 branch 💿 0 tags	Go t	o file Code -
	Atreiber94 Merge pull request #14 from	n atreiber94/workflow_file_cleanup	p 345 commits
	.github/workflows	Remove pylint.yml	3 months ago
	data_sources	first commit	7 months ago
	evaluation	Code linting.	4 months ago
	📄 leaker	Add instructions on how to generate the documentation.	3 months ago
	tests	Fix pytest import in test_arr_estimators	4 months ago
	🗅 .gitignore	first commit	7 months ago
	LICENSE	first commit	7 months ago
	C README.md	Fix typo in readme	3 months ago
	🗅 examples.py	first commit	7 months ago
	🗅 requirements.txt	Add pandas as a dependency.	6 months ago
	🗅 setup.py	first commit	7 months ago
	i≡ README.md		
	LEAKER		
		tacK Evaluation on Real-world data	

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 5

New Software: LEAKER

Re-implementation of **17** major attacks in open-source framework

[IKK12,CGPR15,LMP18,GLMP18,GLMP19,GJW19, BKM20,KPT20,KPT21,RPH21]

- Modular design & interoperability
- Easy to implement new attacks & countermeasures
- Easy to pre-process & use new data

https://encrypto.de/code/LEAKER

Code 🤇	Sissues 1 12 Pull requests S Action	ns 🎹 Projects 🖽 Wiki 🛈 Security 🗠 Insights	
	😢 main 👻 🕈 1 branch 💿 0 tags	Go to	file Code -
	etreiber94 Merge pull request #14 fro	m atreiber94/workflow_file_cleanup ✓ ₅51324e on 23 Sep	3 45 commits
	github/workflows	Remove pylint.yml	3 months ago
	data_sources	first commit	7 months ago
	evaluation	Code linting.	4 months ago
	💼 leaker	Add instructions on how to generate the documentation.	3 months ago
	tests	Fix pytest import in test_arr_estimators	4 months ago
	🗅 .gitignore	first commit	7 months ago
	LICENSE	first commit	7 months ago
	README.md	Fix typo in readme	3 months ago
	🗅 examples.py	first commit	7 months ago
	requirements.txt	Add pandas as a dependency.	6 months ago
	🗅 setup.py	first commit	7 months ago
	i≣ README.md		
	LEAKER		
		ttacK Evaluation on Real-world data	

New Data

New Data

New Data

Evaluation: Summary – Keyword Search

(subjective)

Leakage 🖒	Attack Success 🞯	Risk 🞪
Response lengthResponse volume	 High adversarial knowledge 	Low
Co-occurrence	 High adversarial knowledge 	Low
 Response identifiers Response volumes (of individual documents) 	 Low adversarial knowledge 	High

Evaluation: Summary – Keyword Search

(subjective)

Leakage 🖒	Attack Success 🧭	Risk 🛕
Response lengthResponse volume	 High adversarial knowledge 	Low
Co-occurrence	 High adversarial knowledge 	Low
 Response identifiers Response volumes (of individual documents) 	 Low adversarial knowledge 	High

=> Suppression of identifier and volume leakage of responses necessary!

Evaluation: Summary – Keyword Search

(subjective)

Leakage 🖒	Attack Success 🞯	Risk 🗟	
Response lengthResponse volume	 High adversarial knowledge 	Low	
Co-occurrence	 High adversarial knowledge 	Low	
 Response identifiers Response volumes (of individual documents) 	 Low adversarial knowledge 	High	Subgraph attacks [BKM20]

=> Suppression of identifier and volume leakage of responses necessary!

[RPH21

Evaluation: Highlights – Keyword Search

Evaluation: Highlights – Keyword Search

1.0

Evaluation: Highlights – Keyword Search

Evaluation: Highlights – Keyword Search

Evaluation: Summary – Range Search

	(subj	ective)	
Leakage 👌	Attack Success 🧭	Risk 🛕	
Response length	None	Very low	
Response lengthQuery equality	 Evenly distributed data 	Medium	
Co-occurrence	Large widthsSkewed values	Medium	
Co-occurrenceOrder	 Most cases 	High	

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 9

Evaluation: Summary – Range Search

		(subj	ective)
Leakage 👌	Attack Success 🧭	Risk 🗟	
Response length	None	Very low	
Response lengthQuery equality	 Evenly distributed data 	Medium	
Co-occurrence	Large widthsSkewed values	Medium	
Co-occurrenceOrder	 Most cases 	High	

=> Leakage suppression for range case!

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 9

• Extensible **open-source** framework LEAKER

- Extensible **open-source** framework LEAKER
- First usage of real-world queries

- Extensible **open-source** framework LEAKER
- **First** usage of real-world queries
- **Systematic** empirical analysis of leakage attacks

- Extensible **open-source** framework LEAKER
- **First** usage of real-world queries
- **Systematic** empirical analysis of leakage attacks
- **Contradict** some previous conclusions

- Extensible **open-source** framework LEAKER
- **First** usage of real-world queries
- Systematic empirical analysis of leakage attacks
- **Contradict** some previous conclusions

- Extensible **open-source** framework LEAKER
- First usage of real-world queries
- **Systematic** empirical analysis of leakage attacks
- **Contradict** some previous conclusions

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 11

RWC'22 | All About That Data: Towards a Practical Assessment Of Attacks on Encrypted Search | Amos Treiber | Slide 12

Resources

- Icons & pics by Flaticons (FreePik, Becris, Darius Dan, Surang, Vectors Market, Becris), FreePNG, PNGItem, https://memegenerator.net/, Futurama "The Lesser of Two Evils", 2011 by 20th Television, Rawpixel.com / Shutterstock
- [BKM20] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. In Network and Distributed System Security Symposium (NDSS), 2020
- [CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against searchable encryption. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.
- [DHP21] Marc Damie, Florian Hahn, and Andreas Peter. A Highly Accurate Query-Recovery Attack against Searchable Encryption using Non-Indexed Documents. In USENIX Security Symposium (USENIX Security), 2021.
- [GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Pump up the volume: Practical database reconstruction from volume leakage on range queries. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2018.
- [GLMP19] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning to reconstruct: Statistical learning theory and encrypted database attacks. In IEEE Symposium on Security and Privacy (S&P), 2019.
- [GJW19] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New volume attacks against range queries. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019.
- [GPP21] Zichen Gui, Kenneth G Paterson, and Sikhar Patranabis. Leakage Perturbation is Not Enough: Breaking Structured Encryption Using Simulated Annealing. In IACR ePrint, 879, 2021
- [IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on searchable encryption: Ramification, attack and mitigation. In Network and Distributed System Security Symposium (NDSS), 2012.
- [KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O'Neill. Generic attacks on secure outsourced databases. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016

Resources

- [KPT20] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. The state of the uniform: Attacks on encrypted databases beyond the uniform query distribution. In IEEE Symposium on Security and Privacy (S&P), 2020.
- [KPT21] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. Response-hiding encrypted ranges: Revisiting security via parametrized leakage-abuse attacks. In IEEE Symposium on Security and Privacy (S&P), 2021.
- [LMP18] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Improved reconstruction attacks on encrypted data using range query leakage. In IEEE Symposium on Security and Privacy (S&P), 2018.
- [LZWT14] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. Search pattern leakage in searchable encryption: Attacks and new construction. Information Sciences, 265, 2014.
- [NKW15] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on property-preserving encrypted databases. In ACM SIGSAC Conference on Computer and Communications Security (CCS), 2015.
- [OK21a] Simon Oya and Florian Kerschbaum. Hiding the access pattern is not enough: Exploiting search pattern leakage in searchable encryption. In USENIX Security Symposium (USENIX Security), 2021.
- [OK21b] Simon Oya and Florian Kerschbaum. IHOP: Improved Statistical Query Recovery against Searchable Symmetric Encryption through Quadratic Optimization. In arXiv 2110.04180, 2021.
- [PWLP20] Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. Practical volume-based attacks on encrypted databases. In IEEE European Symposium on Security and Privacy (EuroS&P), 2020.
- [RPH21] Ruben Groot Roessink, Andreas Peter, and Florian Hahn. Experimental review of the IKK query recovery attack: Assumptions, recovery rate and improvements. In International Conference on Applied Cryptography and Network Security (ACNS), 2021.
- [ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: The power of file-injection attacks on searchable encryption. In USENIX Security Symposium (USENIX Security), 2016.

Leakage Patterns

Leakage 🖒	Information			
Response Length	D(q)			
Query Equality	$q_i = q_j$			
Co-Occurrence	$ D(q_i) \cap D(q_j) $			
Response Identifiers	$\{i: D_i \in q(D)\}$			
Response Volumes	$\{ D_i _b: D_i \in q(D)\}$			
(Simplified)				

Leakage Attacks Types

Known-data: Adversary knows subset of D No a

No auxiliary knowledge

Overview of Leakage Attacks on ESAs

Overview of Techniques for ESAs (Extremely informal)

• Usual evaluations for range attacks:

1. Subset of HCUP or $H \cdot CUP$ artificial Data collection

2. Pick Artificial query distribution (Uniform/Zipf/...)

3. Evaluate for different amounts of queries

- **9** new data sources for more realistic evaluations
- Keyword setting:
- Use Case: Email/Cloud Web AOL ()> My Google activity The activity that you keep helps Google make services more useful for you, like helping you rediscover the things that you've searched for, read and watched WikipediA You can see and delete your activity using the controls on this page The Free Encyclopedia GMail and Google Drive AOL and Wikipedia 7 Query Logs & Data Collections • 1 Query Log & 1 Data Collection 7 Users 656k Users ٠ ٠
 - 16-100 Queries
 - 200-47k Documents
 - 19k-895k Keywords ٠

- 2.9M Queries
- 151k Documents ٠
- 268k Keywords ٠

The Arabidopsis Information Resource

Genetic

- 1 Query Log & 1 Data Collection
- 1.3k Users
- 54k Queries
- 115k Documents
- 690k Keywords

• Range setting:

Evaluation: Highlights – Range Search

Table 5: Normalized mean errors on the entire SDSS query logs. For feasibility, the collection is sampled $25 \times$ uniformly at random with size $n = 10^4$ ($n = 10^3$ for APA and ARR).

Instance	GKKNO	AVALUE	ARR	ARR-OR	$APA-OR^{BT}$	$APA-OR^{ABT}$
SDSS-S	0.413	0.432	0.473	0.249	0.242	0.239
SDSS-M	0.408	0.435	0.287	0.128	0.242	0.240
SDSS-L	0.417	0.456	0.286	0.141	0.241	0.242

