A privacy attack on the Swiss Post e-voting system

Véronique Cortier, Alexandre Debant, and Pierrick Gaudry

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

RWC'22 Amsterdam, April 13th 2022

Strategy of the Chancellerie

1.discuss with experts to:

- define a very precise threat model
- obtain audits the system
- obtain formal proofs (symbolic and computational)

2. push for public scrutiny: (especially since 2019)

- public release of the specification and the code
- organise public intrusion tests
- prod companies to organise a bug bounty program

5.1.1 Examination criteria: The protocol must meet the security objective according to the trust assumptions in the abstract model in accordance with Section 4. In addition, a cryptographic and a symbolic proof must be provided. The proofs relating to cryptographic basic components may be provided according to generally accepted security assumptions (for example, the "random oracle model", "decisional Diffie-Hellman assumption", "Fiat-Shamir heuristic"). The protocol should be based if possible on existing and proven protocols.

- Art. 7a⁴ Publication of the source code

¹ The source code for the system software must be made public.

Strategy of the Chancellerie

1.discuss with experts to:

- define a very precise threat model
- obtain audits the system
- obtain formal proofs (symbolic and computational)
- 2. push for public scrutiny: (especially since 2019)
 - public release of the specification and the code
 - organise public intrusion tests
 - prod companies to organise a bug bounty program

Examination criteria: The protocol must meet the security objective according to the trust assumptions in the abstract model in accordance with Section 4. In addition, a cryptographic and a symbolic proof must be provided. The proofs relating to cryptographic basic components may be provided according to generally accepted security assumptions (for example, the "random oracle model", "decisional Diffie-Hellman assumption", "Fiat-Shamir heuristic"). The protocol should be based if possible on existing and proven protocols.

- Mart. 7a⁴ Publication of the source code

¹ The source code for the system software must be made public.

Target: re-introduce e-voting in September 2022

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2020
- Fixed vulnerabilities
- Improved the code and the specification

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2020
- Fixed vulnerabilities
- Improved the code and the specification

We have been contacted to update the symbolic proofs of the systems.

Swiss-Post system

Context:

- Swiss Post bought Scytl's solution in 2020
- Fixed vulnerabilities
- Improved the code and the specification

We have been contacted to update the symbolic proofs of the systems.

There is a vote secrecy attack: an attacker can learn the vote of everyone!

Setup component

4 Control Components (CCRs)

Voting Server

Vote secrecy - no one is able to learn who I voted for!

Vote secrecy - no one is able to learn who I voted for!

Federal chancellerie requirements:

- 2.9.3.1 The following system participants are regarded as untrustworthy:
 - UT system
 - three of four control components per group, leaving open which three they are
 - a significant proportion of voters
- 2.9.3.2 The following system participants may be considered trustworthy:
 - set-up component
 - print component
 - user device
 - one of four control components per group, leaving open which one it is
 - one auditor in any group, leaving open which auditor it is; Number 2.7.2 takes precedence

Vote secrecy - no one is able to learn who I voted for!

Federal chancellerie requirements:

- 2.9.3.1 The following system participants are regarded as untrustworthy:
 - UT system
 - three of four control components per group, leaving open which three they are
 - a significant proportion of voters
- 2.9.3.2 The following system participants may be considered trustworthy:
 - set-up component
 - print component
 - user device
 - one of four control components per group, leaving open which one it is
 - one auditor in any group, leaving open which auditor it is; Number 2.7.2 takes precedence

Vote secrecy - no one is able to learn who I voted for!

Federal chancellerie requirements:

In theory: the attacker can learn the vote of all the voters

In theory: the attacker can learn the vote of all the voters

it would introduce a detectable overhead in the computation time

In practice:

- he cannot add too many fake ballot-boxes
- ightharpoonup can learn the vote of at most k voters (k might be relatively large because fake ballot-boxes are very small, only one ballot)
- many variants of the attack exist

In theory: the attacker can learn the vote of all the voters

it would introduce a detectable overhead in the computation time

In practice:

- he cannot add too many fake ballot-boxes
- ► can learn the vote of at most k voters
 (k might be relatively large because fake ballot-boxes are very small, only one ballot)
- many variants of the attack exist

According to Swiss Post and the Chancellerie: it is a critical flaw that must be fixed!

In theory: the attacker can learn the vote of all the voters

it would introduce a detectable overhead in the computation time

In practice:

- he cannot add too many fake ballot-boxes
- can learn the vote of at most k voters (k might be relatively large because fake ballot-boxes are very small, only one ballot)
- many variants of the attack exist

We got a generous bounty

According to Swiss Post and the Chancellerie: it is a critical flaw that must be fixed!

How to fix the attack?

- 1. A weak counter-measure to detect attacks
- ightharpoonup set the number n_B of ballot-boxes
- the CCMs decrypt exactly n_B ballot-boxes
- the auditor verifies exactly n_B proofs

How to fix the attack?

1. A weak counter-measure to detect attacks

- ightharpoonup set the number n_B of ballot-boxes
- the CCMs decrypt exactly n_R ballot-boxes
- the auditor verifies exactly n_B proofs

2. Better safe than sorry:

- ► implement 1.
- require that each CCM recomputes the initial payloads (i.e. the content of the initial ballot-box)
- require that each CCM verifies all the previous proofs of correct mixing/decryption

How to fix the attack?

1. A weak counter-measure to detect attacks

- ightharpoonup set the number n_B of ballot-boxes
- the CCMs decrypt exactly n_B ballot-boxes
- the auditor verifies exactly n_B proofs

2. Better safe than sorry:

- implement 1.
- require that each CCM recomputes the initial payloads (i.e. the content of the initial ballot-box)
- require that each CCM verifies all the previous proofs of correct mixing/decryption
- modify the infrastructure to let the CCMs compute the initial payloads
- these two requirements are quite expensive...
- add a delay before publishing the results

Conclusion

This attack will be fixed in a future release of the specification/implementation

Switzerland provides a solution with a high level of transparency and many audits by experts

(compared to other systems/countries)

Lesson learned

It is important to model all the specificities of the system when we do formal proofs (symbolic or computational ones)

e.g. multi ballot-boxes or elections scenarios

What about other e-voting protocols?

See you next year?

Since June 2021: a new requirement for vote secrecy!

2.9.3.3 If an entire group of control components is used by a private system operator, none of these control components is considered trustworthy.

In practice

Swiss Post operates the 4 Control Components, they mut be assumed untrustworthy

it is difficult to externalize a component...

In theory

All the vote secrecy definitions (implicitly) assume verifiability

the system is not verifiable with this requirement...

How can we make both meet? again...

a new definition, a (major) improvement of the system, a step in-between...?