Oblivious Message Retrieval

Zeyu Liu Eran Tromer

Columbia University

RWC 2022

13 April 2022

Motivation - anonymous message delivery systems

Monero [Noe15....]

metadata?

- Signal's Sealed Sender [Lun18]
- + improvement [MKARW21]
- ² Alpenhorn [LZ16] (uses Mixnet + IBE to establish "mailbox" bulletins)

•

Message retrieval via full scan

Too expensive in bandwidth, computation

Message retrieval using a detector

Message retrieval using a detector - prior work

Distilled full scan [ZIP-307]

Digest size linear to N

Fuzzy Message Detection [BLMG21]

Decoy-based →weak privacy [Lew21][SPB21]

Honest senders & recipients

Message retrieval using a detector - prior work (cont.)

Private Signaling 1 [MSSSV21]

Trusted hardware (e.g., Intel SGX)

Honest senders & recipients

Private Signaling 2 [MSSSV21]

Two communicating but non-colluding servers

Honest senders & recipients

Our results

Oblivious Message Retrieval (and Detection) that is

- fully private
- under strong, hitherto-unachieved security notions
- based on Fully Homomorphic Encryption
- + bespoke application-driven optimizations
- practical for Bitcoin-scale private messaging

System Model & Goals

Functionality:

Oblivious Message Detection (OMD)

Oblivious Message Retrieval (OMR)

Goals:

- Detector learns nothing about a recipient
 - Which messages are pertinent and which are not
 - Who is doing the retrieval
- Digest size is much smaller than the bulletin size (ideally: proportional only to the number of <u>pertinent</u> messages)

Generic Approach using Fully Homomorphic Encryption

Sender:

- Use recipient's clue key
- Generate { FHE.Enc(1)

Detector:

- Recrypt all l ciphertexts for each clue (totally N clues)
- Use AND gate to compress *l* ciphertexts into one ciphertext
 |PV| linear in N

Compressing the Pertivency Vector to o(N) a la Private Stream Search [OS05]

Collisions (counter>1) possible, handled by repetitions and deduction

From detection to retrieval

- Detector
- Compute (PV, ⇔Payload) •
- Multiply it by a pseudorandom weights matrix of width m •
 - Yields m encrypted linear combinations of the pertinent payloads.
 - If at least k are linearly independent, recipient can solve and obtain all pertinent payloads

Thus far

- Generic FHE-based
 - Oblivious Message Detection
 - Oblivious Message Retrieval
 - Asymptotically efficient and succinct
 - o(N) communication cost
 - Õ(N) computational cost
 - Impractical
 - FHE has high computational cost and communication cost
 - Take milliseconds to do an AND gate (TFHE [CGGI20])
 - One ciphertext can be kilobytes (TFHE [CGGI20]) or more

Key optimization: reduce clue size, lightweight recryption

PVW

PV

b₁

ciphertext

secret key

PVW Encryption for *l* bits [PVW07]

PVW decryption:

BFV Homomorphic Encryption [Bra12][FV12] supports packed SIMD field operations

BFV ciphertext

SIMD PVW decryption under BFV

Putting it together: hybrid PVW+BFV OMR/OMD

Additional techniques

- FHE tailoring
 - Optimized ladder of moduli
 - Homomorphic operation scheduling (e.g., multiplication vs. rotation)
 - Symmetric BFV encryption
 - Level-specific homomorphic rotation keys
- Scheme optimizations
 - Deterministic bitwise index retrieval
- Application tailoring
 - Memory footprint reduction
 - Streaming updates with low-latency finalization

Denial of Service Attacks

Denial of Service Attacks (mitigated)

Key unlinkability (defined and attained) FMD and PS are vulnerable.

Detection-key to detection-key 18 unlinkability

Clue-key to clue-key unlinkability

Clue Key 2

Clue-key to detection-key unlinkability

Detection benchmarks (N = 500,000, k = 50)

		ZIP-307	PS1	PS2	OMDp1	
		[GH18, Ele]	$[MSS^+21]$	$[MSS^+21]$	§7.2	
Communication (bytes/msg)		116	≪ 1	$\ll 1 + 3M \text{ s} \leftrightarrow \text{s}$	0.56	
Detector computation	1 thread	N/A	0.06	0.25	0.021	
time (sec/msg)	2 threads	82			0.01	
	4 threads				0.0099	
Recipient computation	1 throad	70	<i>✓</i> 10 ⁻³	≪ 10−3	0.005	
total time (sec)	1 tineau	10	≪ 10	≪ 10	0.005	
Clue size (bytes)		N/A	32	32	956	
Clue key size (bytes)		N/A	32	N/A	$133\mathrm{k}$	
Detection key size (bytes)		N/A	64	920	$99\mathrm{M}$	
Retrieval privacy				Partitioned		
		Full	Full	across	Full	
				detectors		
Env. assumptions for		None	TEE (SCV)	Non-colluding	None	
privacy			IEE (BGA)	servers		
Env. assumptions for		None	Honost Sl-P	Honost St.P	None	
Soundness+completeness			nonest san	Honest S&R		

Retrieval benchmarks (N = 500,000, k = 50)

		Retrieval schemes (including detection)				
		Zcash full	FMD1	FMD2	OMRp1	OMRp2
		scan [Ele]	$[BLMG21] \ / \ [Lew21b]$	[BLMG21]	§7.3	§7.4
Communication (bytes/msg)		612	42	5.3	1.13	9.03
Detector computation	ector computation 1 thread		0.011 / 0.00020	0.043	0.145	0.155
time (sec/msg)	2 threads				0.075	0.085
	4 threads				0.065	0.72
Recipient computation total time (sec)	1 thread	61	2.1	0.29	0.02	0.063
Clue size (bytes)		N/A	68 / 64.5	$318,\!530$	956	956
Clue key size (bytes)		N/A	$1.5\mathrm{k}$	1 k	133 k	133 k
Detection key size (bytes)		N/A	768	512	$129\mathrm{M}$	$129\mathrm{M}$
Retrieval privacy		Full	$pN-msg-$ anonymity $p = 2^{-5}$	pN-msg-anonymity $p = 2^{-8}$	Full	Full
Env. assumptions for privacy		None	None	None	None	None
Env. assumptions for Soundness+completeness		None	Honest S&R	Honest S&R	None	None

Scaling of recipient costs

Digest size vs. number of messages

For N>300,000 messages, our OMR1p has the lowest costs for the recipients

Recipient computation time vs. number of messages

For N>10,000,000 messages, our OMR2p has the lowest costs for the recipients

... while attaining the strongest privacy guarantees and under minimal environmental/trust assumptions

Real-world prospects

- Concrete retrieval costs
 - \$1.52 per million payments scanned (based on GCP cost)
 - \$0.029/month for Zcash, \$2.46/month for Monero
- Integration considerations
 - Payload Size: for Zcash, 612 bytes sizes
 - Clue Key Distribution
 - embedded in the recipient's public address
 - short URL from which the clue key can be fetched (senders using Tor or IPFS)
 - Clue Embedding
 - 956 bytes, close to a Zcash shielded transaction (which is 1.3kB)
 - extend the transaction format with a dedicated clue field
 - other ways like OP_RETURN field in Zcash transactions
 - Detection Latency
 - Streaming updates reduces latency to 0.0005 core-seconds/msg

Ongoing work

- Reducing detection cost
- Reducing size of clue, clue key, detection key
- DoS-Resistance from standard assumptions
- Integrity against fully-malicious detectors
- Group messaging
- Integrations

Paper

ia.cr/2021/1256

Code

github.com/ZeyuThomasLiu/ObliviousMessageRetrival