
1

Oblivious Message Retrieval

Zeyu Liu
Eran Tromer

Columbia University

RWC 2022 13 April 2022

2

Retrieve

Recipient

Sending privacy
● Riposte [CGBM15]

● Dandelion [VFV17]

● Dandelion++ [FVBDBMV18]

● Signal’s Sealed Sender [Lun18]

● + improvement [MKARW21]

Bulletin privacy
● Zerocash [BSCGMTV14,...]

● Monero [Noe15,...]

● ...

Sender

Generate

Text message,
coin transfer,

etc.

Payload

Receiver privacy
How to receive pertinent
messages without leaking
metadata?

Motivation - anonymous message delivery systems

Payload

● Alpenhorn [LZ16] (uses Mixnet + IBE to establish “mailbox” bulletins)

3

Bulletin

1

2

3

...

N-1

N

Sender

Too expensive in
bandwidth, computation

Generate

Message retrieval via full scan

Payload

Retrieve

Recipient

4

Bulletin

1

2

3

...

N-1

N Recipient

Retrieve

Digest
Digest

Digest

DetectorGenerate

Sender

Text message,
coin transfer,

etc.

Payload

Message retrieval using a detector

5

RecipientDetector

Bulletin RecipientSender

BulletinSender

Message retrieval using a detector - prior work

Digest

Detector

Digest

Distilled full scan [ZIP-307]

Digest size linear to N

Fuzzy Message Detection
[BLMG21]

Decoy-based
→weak privacy [Lew21][SPB21]

Honest senders & recipients

6

BulletinSender Recipient

Bulletin RecipientDetectorSender

Private Signaling 1 [MSSSV21]

Trusted hardware
(e.g., Intel SGX)

Honest senders & recipients

Private Signaling 2 [MSSSV21]

Two communicating but
non-colluding servers

Honest senders & recipients

Message retrieval using a detector - prior work (cont.)

Digest

Digest

7

Our results

Oblivious Message Retrieval (and Detection) that is
● fully private
● under strong, hitherto-unachieved security notions
● based on Fully Homomorphic Encryption
● + bespoke application-driven optimizations
● practical for Bitcoin-scale private messaging

8

Goals:
○ Detector learns nothing about a recipient

■ Which messages are pertinent and which are not
■ Who is doing the retrieval

○ Digest size is much smaller than the bulletin size
(ideally: proportional only to the number of pertinent messages)

Sender

PayloadsPayloads

Detector

Clues

Payloads

Digest

Recipient
Secret keys

Public Keys

Process

Plaintext
payloads

Payload 1

Payload 2

Payload 3

...

Payload N-1

Bulletin

Payload

detection key

clue key

Digest

Message Accumulate

Clue Key

Detection
Key

GenClue
Streaming

Functionality:
Oblivious Message Detection (OMD)

Oblivious Message Retrieval (OMR)

Clue 1

Clue 2

Clue 3

...

Clue N-1
Clue

Payload N Clue N

System Model & Goals

9

FHE.SK

FHE.PK

ℓ encryptions of 1

Bulletin
Payload 1

Payload 2

Payload 3

... ...

Payload N-1

Payload N
FHE

Recrypt
FHE.PK

1

Sender

1, 1, …, 1

FHE.Enc

FHE
Recrypt

FHE.PK

Sender:
● Use recipient’s clue key
● Generate ℓ FHE.Enc(1)

Detector:
● Recrypt all ℓ ciphertexts for each clue (totally N clues)
● Use AND gate to compress ℓ ciphertexts into one ciphertext

 🡆 |PV| linear in N
Detector

Recipient:
● Generate key

Pertinency Vector
(PV)

Recipient

aa1

aa1

aa1

aa1

aa1

aa1

...

...

1
1
1

0
0
1
0

Generic Approach using Fully Homomorphic Encryption

● Decrypt digest

10

● Send the accumulators and counters to the recipient

● For each message i ∈ [N] and its PVi (encrypting 0 or 1)
○ Add PVi i to a pseudorandomly-chosen accumulator
○ Increment the corresponding counter by PVi

Detector ● Initialize m accumulator+counter ciphertexts to 0 (m > k)

0

1

1

0

i PV

1

2

3

N

0

2

3

0

...

0 0

0 0

0 0

Accumulator Counter

04 0

...

2 1

3 1

Compressing the Pertivency Vector to o(N)
a la Private Stream Search [OS05]

Collisions (counter>1) possible,
handled by repetitions and deduction

11

1

0

1

0

Payload PV

P1

P2

P3

PN

P1

... ...

Weights

C1

C2

C3

Combination

0

P3

0

w(1,1) w(1,2) w(1,3) ... w(1,m)

w(2,1) w(2,2) w(2,3) ... w(2,m)

w(3,1) w(3,2) w(3,3) ... w(3,m)

... w(4,m)

w(N,1) w(N,2) w(N,2) ... w(N,m) ...

Cm
Using suitable Sparse Linear Random Coding
Cost per pertinent message is Õ(1)

Detector ● Compute (PVi Payloadi)
● Multiply it by a pseudorandom weights matrix of width m
● Yields m encrypted linear combinations of the pertinent payloads.

If at least k are linearly independent, recipient can solve and obtain all pertinent payloads

From detection to retrieval

12

• Generic FHE-based
– Oblivious Message Detection
– Oblivious Message Retrieval

● Asymptotically efficient and succinct
○ o(N) communication cost
○ Õ(N) computational cost

● Impractical
○ FHE has high computational cost and communication cost
○ Take milliseconds to do an AND gate (TFHE [CGGI20])
○ One ciphertext can be kilobytes (TFHE [CGGI20]) or more

Thus far

13

a1 a2 a3 ... an b1 ... bℓ

PVW Encryption for ℓ bits [PVW07]

s11 s12 s13 ... s1n

sℓ1 sℓ2 sℓ3 ... sℓn

... }

BFV Homomorphic Encryption [Bra12][FV12]
supports packed SIMD field operations

a b c ... z
BFV
ciphertext

PVW
ciphertext

PVW decryption: a1 a2 a3 ... ana1 a2 a3 ... ana1 a2 a3 ... ana1 a2 a3 ... ana1 a2 a3 ... an

s11 s12 s13 ... s1n

Inner Prod

b1b1b1b1b1

PVW decryption:

a1 a2 a3 ... an

s11 s12 s13 ... s1n

inner product

0/1

b1b1b1b1b1

Range
Check

Range
Check0/1 0/1 0/1 ... 0/1

via
[LCZ21]

+

SIMD PVW decryption under BFV

Key optimization: reduce clue size, lightweight recryption

PV
secret key

14

Putting it together: hybrid PVW+BFV OMR/OMD

15

• FHE tailoring
– Optimized ladder of moduli
– Homomorphic operation scheduling (e.g., multiplication vs.

rotation)
– Symmetric BFV encryption
– Level-specific homomorphic rotation keys

• Scheme optimizations
– Deterministic bitwise index retrieval

• Application tailoring
– Memory footprint reduction
– Streaming updates with low-latency finalization

Additional techniques

16

Bulletin

Generate

PayloadM Clue ……

1

2

3

...

N-1

N

PayloadM

PayloadM

PayloadM

Recipient

Recipient

Recipient

Detector

Detector

Detector

PayloadM Clue

PayloadM Clue

PayloadM Clue

clue key

Denial of Service Attacks

17

Bulletin

Generate

PayloadM Clue ……

1

2

3

...

N-1

N

Payload

Payload

Payload

Recipient

Recipient

Recipient

Detector

Detector

Detector

PayloadM Clue

PayloadM Clue

PayloadM Clue

Denial of Service Attacks (mitigated)

FMD and PS are vulnerable.

18

Detection
Key 2

Detection
Key 1

Detection
Key 2

Detection
Key 1

~~ ~~

Clue Key 1

Clue Key 2

Clue Key 1

Clue Key 2

~~

Clue Key 1

Detection
Key 1

Recipient

Detector

Detection-key to detection-key
unlinkability

Clue-key to clue-key
unlinkability

Clue-key to detection-key
unlinkability

Recipient

RecipientDetector

Recipient

Recipient

Detector

RecipientDetector

Detector

Recipient

Clue Key 2

Recipient

Key unlinkability (defined and attained) FMD and PS are vulnerable.

19

Detection benchmarks (N = 500,000, k = 50)

20

Retrieval benchmarks (N = 500,000, k = 50)

21

For N>300,000 messages, our OMR1p has the lowest
costs for the recipients

Digest size
vs. number of messages

Recipient computation time
vs. number of messages

… while attaining the strongest privacy guarantees
and under minimal environmental/trust assumptions

For N>10,000,000 messages, our OMR2p has the
lowest costs for the recipients

Scaling of recipient costs

22

• Concrete retrieval costs
– $1.52 per million payments scanned (based on GCP cost)
– $0.029/month for Zcash, $2.46/month for Monero

• Integration considerations
– Payload Size: for Zcash, 612 bytes sizes

– Clue Key Distribution
• embedded in the recipient’s public address
• short URL from which the clue key can be fetched (senders using Tor or IPFS)

– Clue Embedding
• 956 bytes, close to a Zcash shielded transaction (which is 1.3kB)
• extend the transaction format with a dedicated clue field
• other ways like OP_RETURN field in Zcash transactions

– Detection Latency
• Streaming updates reduces latency to 0.0005 core-seconds/msg

–

Real-world prospects

23

• Reducing detection cost
• Reducing size of clue, clue key, detection key
• DoS-Resistance from standard assumptions
• Integrity against fully-malicious detectors
• Group messaging
• Integrations

github.com/ZeyuThomasLiu/ObliviousMessageRetrival

Ongoing work

Code
ia.cr/2021/1256

Paper

