SURVIVING THE FO-CALYPSE:

SECURING PQC IMPLEMENTATIONS IN PRACTICE

Melissa Azouaoui, Joppe W. Bos, Björn Fay, Marc Gourjon, Yulia Kuzovkova, Joost Renes, **<u>Tobias Schneider</u>**, Christine van Vredendaal

In Collaboration with UCLouvain: Olivier Bronchain, Clément Hoffmann, François-Xavier Standaert

CONTACT: PQC@NXP.COM

REAL WORLD CRYPTO SYMPOSIUM, APRIL 2022

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

POST-QUANTUM CRYPTO IS ON THE HORIZON

What is the impact on the billions of embedded devices?

2021: General Challenges

- OTA updates
- Secure boot
- Reuse existing co-pros

2021: General Challenges

- OTA updates
- Secure boot
- Reuse existing co-pros

2022: Physical Security

- **2021: General Challenges**
- OTA updates
- Secure boot
- Reuse existing co-pros

2022: Physical Security

- **2021: General Challenges**
- OTA updates
- Secure boot
- Reuse existing co-pros

- **2021: General Challenges**
- OTA updates
- Secure boot
- Reuse existing co-pros

2022: Physical Security

Current Cryptography

PUBLIC

NKP

FO-CALYPSE?

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

The Fujisaki-Okamoto (FO) transformation (or slight variants) underlies the IND-CCA security of many KEMs, e.g.:

The Fujisaki-Okamoto (FO) transformation (or slight variants) underlies the IND-CCA security of many KEMs, e.g.:

Exemplary Decapsulation:

The Fujisaki-Okamoto (FO) transformation (or slight variants) underlies the IND-CCA security of many KEMs, e.g.:

Exemplary Decapsulation:

The Fujisaki-Okamoto (FO) transformation (or slight variants) underlies the IND-CCA security of many KEMs, e.g.:

Exemplary Decapsulation:

Attack 1: Chosen Plaintext

• Attacker inputs only valid ciphertexts

Attack 1: Chosen Plaintext

• Attacker inputs only valid ciphertexts

Attack 1: Chosen Plaintext

- Attacker inputs only valid ciphertexts
- Attack focuses on **CPA Decryption**, everything after (and including) **P** is public

Only need to protect CPA Decryption

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

Attack 2: Chosen Ciphertext

• Attacker inputs specially-crafted invalid ciphertexts

Attack 2: Chosen Ciphertext

- Attacker inputs specially-crafted invalid ciphertexts
- Attack focuses on **CPA Decryption +** everything after (and including) **P** is potentially sensitive
- Potentially all (or most) modules need to be hardened

NP

Why is it bad?

Millions of Points of Interest

Low number of leakage classes (worst case = 2)

Easy to build templates

NP

Why is it bad?

Millions of Points of Interest

Low number of leakage classes (worst case = 2)

Easy to build templates

Most recently at TCHES-2022:

Curse of Re-encryption: A Generic Power/EM Analysis on Post-Quantum KEMs

Rei Ueno^{1,2,3}, Keita Xagawa⁴, Yutaro Tanaka^{1,2}, Akira Ito^{1,2}, Junko Takahashi⁴ and Naofumi Homma^{1,2}

Quantifying the Curse

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

QUANTIFYING THE CURSE

A lot of attacks published.

Some countermeasures.

QUANTIFYING THE CURSE

PUBLIC

NP

QUANTIFYING THE CURSE

 \ominus

Systematic Study of Decryption and Re-Encryption Leakage: the Case of Kyber

Melissa Azouaoui¹, Olivier Bronchain², Clément Hoffmann², Yulia Kuzovkova¹, Tobias Schneider¹, François-Xavier Standaert²

Target: 1M traces SCA security

Target: 1M traces SCA security

Noise Level

PUBLIC

NP

Count leaking variables for Chosen Ciphertext Attack

NP

Disclaimer: Not a replacement for practical evaluations!

R.

• Unprotected Kyber is (unsurprisingly) not sufficient for both noise levels

- Unprotected Kyber is (unsurprisingly) not sufficient for both noise levels
- There is a gap of roughly **x100** between the attacks for high(er) noise

- Unprotected Kyber is (unsurprisingly) not sufficient for both noise levels
- There is a gap of roughly **x100** between the attacks for high(er) noise

Can this be overcome through masking?

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

Higher *d* = Higher security + Increased cost

Pre-Quantum: Certified industrial solutions d = 2-3

Number of Shares

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

Higher *d* = Higher security + Increased cost

Pre-Quantum: Certified industrial solutions **d** = **2-3**

For low noise:

- Known ciphertext \rightarrow d = 6
- Chosen ciphertext \rightarrow d = 8

FO leakage causes an increase of 2 shares.

CASE STUDY: MASKED KYBER

Split variables into *d* shares.

- Higher *d* = Higher security + Increased cost
- Pre-Quantum: Certified industrial solutions d = 2-3

For low noise:

- Known ciphertext \rightarrow d = 6
- Chosen ciphertext \rightarrow d = 8

FO leakage causes an increase of 2 shares.

For high(er) noise:

- Known ciphertext \rightarrow d = 2
- Chosen ciphertext \rightarrow d = 3

FO leakage causes an increase of 1 share.

Survival in the FO-CALYPSE

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

d=2	d=3	d=4	d=5	d=6	d=7
3.5x	64x	110x	197x	293x	397x

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

d=2	d=3	d=4	d=5	d=6	d=7
3.5x	64x	110x	197x	293x	397x
	High(er)				-

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

d=	=2	d=3	d=4	d=5	d=6	d=7
3.!	5x	64x	110x	197x	293x	397x
	18x	High(er)				

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

* For this specific implementation + board.

Requires further stack usage optimization.

Higher-Order Masking

Case Study: Higher-order masked Kyber (M4) from [BGR+21] (with adapted A2B)

Overhead compared to unprotected (d=1):

* For this specific implementation + board

Requires further stack usage optimization.

Alternative Solution: Encrypt-then-Sign KEM (*work-in-progress*)

Replace FO check by **signature verification** for some use cases

- Uses less shares because no FO leakage
- Verification only with public values (no SCA protection)

Alternative Solution: Encrypt-then-Sign KEM (*work-in-progress*)

Replace FO check by **signature verification** for some use cases

- Uses less shares because no FO leakage
- Verification only with public values (no SCA protection)

Example: Kyber + Dilithium

Alternative Solution: Adapt the FO before standardization

Add a mechanism to avoid SCA-relevant chosen ciphertexts.

- Filter low-entropy ciphertexts [XPR+20]
- Does not cover border-failure SCA strategies

[XPR+20] Xu et al.:

Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber, IEEE-TC 2021

PUBLIC

Alternative Solution: Adapt the FO before standardization

Add a mechanism to avoid SCA-relevant chosen ciphertexts.

- Filter low-entropy ciphertexts [XPR+20]
- Does not cover border-failure SCA strategies

Randomize the re-encryption.

- Determinism a big factor in the SCA on the FO.
- Would reduce number of variables that can be (easily) predicted.

[XPR+20] Xu et al.:

Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber, IEEE-TC 2021

Alternative Solution: Adapt the FO before standardization

Add a mechanism to avoid SCA-relevant chosen ciphertexts.

- Filter low-entropy ciphertexts [XPR+20]
- Does not cover border-failure SCA strategies

Randomize the re-encryption.

- Determinism a big factor in the SCA on the FO.
- Would reduce number of variables that can be (easily) predicted.

Replace it with something completely new.

• Discussion zero-knowledge proof alternative [ABH+21]

[XPR+20] Xu et al.:

Magnifying Side-Channel Leakage of Lattice-Based Cryptosystems with Chosen Ciphertexts: The Case Study of Kyber, IEEE-TC 2021

[ABH+21] Azouaoui et al.: Systematic Study of Decryption and Re-Encryption Leakage: the Case of Kyber, COSADE 2022

FO leakage will complicate the integration of PQC KEM's.

FO leakage will complicate the integration of PQC KEM's.

Will it make it impossible?

Probably not in noisy environments.

FO leakage will complicate the integration of PQC KEM's.

Will it make it impossible?

Probably not in noisy environments.

But it comes at a price.

Further research required.

FO leakage will complicate the integration of PQC KEM's.

Will it make it impossible?

Probably not in noisy environments.

But it comes at a price.

Further research required.

CONTACT: <u>PQC@NXP.COM</u> | NXP.COM/PQC PQC-FORUM: <u>PQC-FORUM/C/IVBJKCYTOOG</u>

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.